Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = cake layer resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2875 KB  
Article
Clarification of Copper Sulfide Precipitates by Polymeric Microfiltration Membranes
by Michelle Quilaqueo, Nicolás Barraza, Lorena Barros, Karla Pérez, René Ruby-Figueroa, Elizabeth Troncoso and Humberto Estay
Processes 2025, 13(10), 3292; https://doi.org/10.3390/pr13103292 - 15 Oct 2025
Viewed by 452
Abstract
The recovery of copper from metallurgical effluents is critical for advancing sustainable mining and circular economy practices. This study evaluated a hybrid process combining copper sulfide precipitation with clarification using polymeric polyvinylidene fluoride (PVDF) microfiltration membranes. Laboratory-scale experiments were performed under controlled cyanide [...] Read more.
The recovery of copper from metallurgical effluents is critical for advancing sustainable mining and circular economy practices. This study evaluated a hybrid process combining copper sulfide precipitation with clarification using polymeric polyvinylidene fluoride (PVDF) microfiltration membranes. Laboratory-scale experiments were performed under controlled cyanide conditions (100 mg/L free CN, 1800 mg/L Cu2+), focusing on permeate flux behavior, fouling mechanisms, and cleaning strategies. Optimal performance was achieved at moderate transmembrane pressures (<2.0 bar) and higher flow rates, which provided a balance between productivity and fouling control. Flux decline was attributed to a combination of pore blocking and cake layer formation, confirming the multifactorial nature of fouling dynamics. Cleaning tests revealed that oxidizing solutions (HCl + H2O2) restored up to 96% of the initial permeability, while combined treatments with NaCN achieved complete recovery (>100%), albeit with potential risks of membrane aging under prolonged exposure. A techno-economic assessment comparing polymeric and ceramic membranes revealed similar capital and operational costs, with polymeric membranes offering slight reductions in CAPEX (10%) and OPEX (2.3%). Overall, the findings demonstrate the technical feasibility and economic competitiveness of polymeric membranes for copper sulfide clarification, while emphasizing the need to improve long-term chemical resistance to ensure reliable industrial-scale implementation. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

18 pages, 4456 KB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 712
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 3754 KB  
Article
Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances
by Da-Qi Cao, Yi-Xuan Song, Yun-Feng Wu, Guri Yihuo and Jing-Yi Jin
Membranes 2025, 15(6), 169; https://doi.org/10.3390/membranes15060169 - 5 Jun 2025
Cited by 2 | Viewed by 1655
Abstract
Recycling extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has garnered significant research attention. Membrane separation offers a promising approach for EPS concentration; however, membrane fouling remains a critical challenge. Previous studies demonstrate that Ca2+ addition effectively mitigates membrane [...] Read more.
Recycling extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has garnered significant research attention. Membrane separation offers a promising approach for EPS concentration; however, membrane fouling remains a critical challenge. Previous studies demonstrate that Ca2+ addition effectively mitigates membrane fouling. This study reveals that Ca2+ mixing modes govern membrane fouling in the dead-end ultrafiltration of both the practical EPS and model EPS [sodium algiante (SA)]. The interaction mechanisms between Ca2+ and the EPS under varied mixing conditions and their impact on filtration performance were systematically investigated. At a low Ca2+ concentration, the addition sequence critically influenced colloidal particle sizes formed via Ca2+-EPS interactions, altering the cake layer structure governing filtration resistance; these effects diminished at higher Ca2+ concentrations. In suspensions prepared by adding EPS to Ca2+ solution (EPS-Ca), a portion of the EPS became encapsulated within an EPS-Ca layer formed through Ca2+ EPS binding, reducing free EPS concentration and enlarging colloidal aggregates. This encapsulation reduced EPS-mediated membrane fouling, thereby lowering filtration resistance. Conversely, in suspensions prepared by adding Ca2+ to EPS solution (Ca-EPS), more complete Ca2+ EPS interactions formed a dense crosslinked structure with smaller colloids on membrane surfaces, intensifying fouling and resistance. Additionally, EPS-Ca exhibited higher compressibility than Ca-EPS, though both exhibited comparable filtration resistance under high-pressure conditions. These results offer critical insights into optimizing EPS ultrafiltration concentration to mitigate membrane fouling through Ca2+ addition strategies. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 1837 KB  
Article
Mitigation of Membrane Fouling in Membrane Bioreactors Using Granular and Powdered Activated Carbon: An Experimental Study
by Nataly Morales, Camila Mery-Araya, Paula Guerra, Rodrigo Poblete and Jaime Chacana-Olivares
Water 2024, 16(17), 2556; https://doi.org/10.3390/w16172556 - 9 Sep 2024
Cited by 8 | Viewed by 2821
Abstract
This experimental study explores the mitigation of membrane fouling in membrane bioreactors (MBRs) through the combined use of granular activated carbon (GAC) and powdered activated carbon (PAC). The research assesses the impact of these materials on the fouling resistance, critical flux, and permeate [...] Read more.
This experimental study explores the mitigation of membrane fouling in membrane bioreactors (MBRs) through the combined use of granular activated carbon (GAC) and powdered activated carbon (PAC). The research assesses the impact of these materials on the fouling resistance, critical flux, and permeate quality using various mixed liquor suspended solids concentrations and carbon dosages. The results indicate that the GAC-PAC combination significantly reduces the total filtration resistance, particularly the cake layer resistance, by 11.7% to 13.6% compared to setups without activated carbon or with the individual carbon types. The study also reveals that this combination decreased the fouling rate by 15% to 24% at critical flux steps, demonstrating substantial improvements in fouling mitigation and operational efficiency. Furthermore, the GAC-PAC combination, which produces an adsorption process, enhances the permeate quality, achieving the near-complete removal of organic matter, total nitrogen, and turbidity, with total phosphorus removal reaching 99%. These findings demonstrate that the combined use of GAC and PAC not only reduces membrane fouling but also improves the overall MBR performance, making it a viable strategy for enhancing the efficiency of wastewater treatment processes. Full article
(This article belongs to the Special Issue Membrane Technology for Desalination and Wastewater Treatment)
Show Figures

Figure 1

17 pages, 7534 KB  
Article
Impact of PCLNPG Nanopolymeric Additive on the Surface and Structural Properties of PPSU Ultrafiltration Membranes for Enhanced Protein Rejection
by Younus Rashid Taha, Adel Zrelli, Nejib Hajji, Raed A. Al-Juboori and Qusay Alsalhy
Processes 2024, 12(9), 1930; https://doi.org/10.3390/pr12091930 - 8 Sep 2024
Cited by 4 | Viewed by 1581
Abstract
This research explored the use of a partially cross-linked graft copolymer (PCLNPG) as an innovative nanopolymer pore-forming agent to enhance polyphenylsulfone (PPSU) membranes for protein separation applications. The study systematically examined the impact of incorporating PCLNPG at varying concentrations on the morphological and [...] Read more.
This research explored the use of a partially cross-linked graft copolymer (PCLNPG) as an innovative nanopolymer pore-forming agent to enhance polyphenylsulfone (PPSU) membranes for protein separation applications. The study systematically examined the impact of incorporating PCLNPG at varying concentrations on the morphological and surface properties of PPSU membranes. A thorough characterization of the resulting PPSU-PCLNPG membranes was performed, focusing on changes in morphology, water affinity, porosity, pore size, and pore size distribution. The experimental findings demonstrated that the use of PCLNPG led to a significantly more porous structure, as confirmed by SEM analysis, with notable increases in porosity and pore size (nearly double). Additionally, the hydrophilicity of the PPSU membrane was remarkably enhanced. Performance evaluations revealed a substantial improvement in pure water flux, with the flux nearly tripling. The BSA retention was directly correlated with the concentration of the PCLNPG pore former for a loading range of 0.25–0.75 wt.%. The incorporation of PCLNPG also reduced the membrane fouling propensity by reducing both cake layer resistance (Rc) and pore plugging resistance (Rp). These results underscore the potential of PCLNPG-PPSU membranes for wastewater reclamation and nutrient recovery applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 2896 KB  
Article
Influence of Iron and Magnesium on Fouling Properties of Organic Matter Solution in Membrane Process
by Mohammad T. Alresheedi
Membranes 2024, 14(7), 150; https://doi.org/10.3390/membranes14070150 - 7 Jul 2024
Cited by 2 | Viewed by 1743
Abstract
Organic matter has been identified as a significant type of foulant in membrane processes for water treatment. Its fouling tendency is highly affected by the presence of ions and inorganics. While the effects of ions addition on organic fouling have been extensively researched [...] Read more.
Organic matter has been identified as a significant type of foulant in membrane processes for water treatment. Its fouling tendency is highly affected by the presence of ions and inorganics. While the effects of ions addition on organic fouling have been extensively researched in the past, studies on the effect of positively-charged inorganics, such as Fe2+ and Mg2+, on organic fouling are limited. This study investigates the influence of Fe2+ and Mg2+ addition on fouling properties of the Suwannee River Organic Matter (SROM) solution in the MF process, with and without Ca2+ ions. Results showed that increasing the concentration of Fe2+ and Mg2+ from 0–5 mM promoted SROM fouling, and resulted in an increased flux decline up to 33% and 58%, respectively. Cake layer resistance became more dominant with the addition of Fe2+ and Mg2+, and was counted for more than 60% of the fouling. Mg2+, however, caused higher internal pore blocking, and facilitated the formation of a less permeable cake layer, compared to Fe2+. This was evident in the analysis of the cake layer properties and the visualization of the fouling layer. In all cases, SROM fouling with Fe2+ and Mg2+ worsened with the addition of Ca2+ ions. The results of the study indicated the importance of understanding the interaction between organic matter and Fe2+ and Mg2+, which would provide useful insights on their fouling mechanism and control. Full article
Show Figures

Figure 1

16 pages, 6787 KB  
Article
Influence of Particle Surface Energy and Sphericity on Filtration Performance Based on FLUENT-EDEM Coupling Simulation
by Qing Wu, Zhenqiang Xing, Dejun Chen, Jianwu Chen, Bin Yang, Jianfang Zhong, Hong Huang, Zhifei Ma, Shan Huang, Da You, Jianlong Li and Daishe Wu
Atmosphere 2024, 15(7), 787; https://doi.org/10.3390/atmos15070787 - 29 Jun 2024
Cited by 4 | Viewed by 2068
Abstract
The adhesion of dust particles on the surface of the dust collector tends to cause great resistance to the dust collector and affects the operating efficiency. In order to visualize particles in the filtration process and to grasp the mechanism of particle viscosity [...] Read more.
The adhesion of dust particles on the surface of the dust collector tends to cause great resistance to the dust collector and affects the operating efficiency. In order to visualize particles in the filtration process and to grasp the mechanism of particle viscosity and sphericity on filtration performance, a numerical simulation study was conducted to investigate the deposition behavior of particles during filtration, employing FLUENT-EDEM coupling technology. By examining the deposition process, the role of particle characteristics on dust behavior within the entire filtration system was elucidated. The effects of varying particle surface energy and particle sphericity on filtration pressure drop and cake porosity were analyzed. The findings reveal that under the force of the air, particles on the surface of the filter membrane experience compaction, leading to a reduction in the porosity of the formed cake layer. The diminution of porosity serves to impede the air, consequently augmenting the pressure drop across the filtration system and hindering the operational efficacy of the dust collector. As the surface energy of the particles increases, the adhesive forces between particles are intensified, leading to an elevation in the porosity of the cake layer and a subsequent decrease in the pressure drop. When the surface energy of the particles is increased from 0.01 J/m2 to 0.04 J/m2, the porosity experiences a modest increase of only 9.1%, yet the pressure drop is significantly reduced by half, amounting to a decrease of 1594 Pa. Under high particle surface energy, as filtration air velocity increases, particles are compressed, resulting in a decrease in cake porosity and an increase in pressure drop. Concurrently, our findings indicate that as the sphericity of particles increases, their surfaces become increasingly smooth which in turn results in a decreased porosity of the cake layer and, consequently, an elevation in the filtration pressure drop. Full article
(This article belongs to the Special Issue Characteristics and Control of Particulate Matter)
Show Figures

Figure 1

15 pages, 21980 KB  
Article
The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment
by Wenhui Yue, Yanlin Chen, Qianwen Sui, Libing Zheng, Tharindu Ritigala and Yuansong Wei
Membranes 2024, 14(6), 142; https://doi.org/10.3390/membranes14060142 - 18 Jun 2024
Cited by 1 | Viewed by 1709
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane [...] Read more.
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications. Full article
(This article belongs to the Special Issue Advances in Membrane Processes for Wastewater Treatment)
Show Figures

Figure 1

16 pages, 5088 KB  
Article
CuFeS2/MXene-Modified Polyvinylidene Fluoride Membrane for Antibiotics Removal through Peroxymonosulfate Activation
by Dongyang Zhang, Kunfu Li, Lei Fang and Huishan Chen
Water 2024, 16(11), 1504; https://doi.org/10.3390/w16111504 - 24 May 2024
Cited by 1 | Viewed by 1889
Abstract
In this research, the CuFeS2/MXene-modified polyvinylidene fluoride (PVDF) membrane was prepared to activate peroxymonosulfate (PMS) to remove moxifloxacin (MOX) and its morphology; surface functional groups and hydrophilicity were also studied. The parameters of the catalytic membrane/PMS system were optimized, with an [...] Read more.
In this research, the CuFeS2/MXene-modified polyvinylidene fluoride (PVDF) membrane was prepared to activate peroxymonosulfate (PMS) to remove moxifloxacin (MOX) and its morphology; surface functional groups and hydrophilicity were also studied. The parameters of the catalytic membrane/PMS system were optimized, with an optimal loading of 4 mg/cm2 and a PMS dosage of 0.20 mM. High filtration pressure, alkaline conditions, and impurities in water could inhibit MOX removal. After continuous filtration, the removal efficiency of MOX using the catalytic membrane/PMS system and PVDF membrane was 68.2% and 9.9%, respectively. Batch filtration could remove 87.8% MOX by the extra 10 min contact time between the catalytic membrane and solution. During the filtration process, CuFeS2/MXene on the surface of the catalytic membrane activated PMS to produce SO4•−, HO, and 1O2, and MOX was removed through adsorption and degradation. Taking humic acid (HA) as the model foulant, reversible fouling resistance in the catalytic membrane/PMS system was 22.8% of the PVDF membrane. The catalytic membrane/PMS system weakened the formation of the cake layer by oxidizing HA into smaller pollutants and followed the intermediate blocking cake filtration model. The novelty of this research was to develop a CuFeS2/MXene–PVDF membrane-activated PMS system and explore its application in antibiotics removal. Full article
Show Figures

Graphical abstract

17 pages, 3788 KB  
Article
The Development of Anti-Salt Fluid Loss Additive for Cement-Metakaolin Slurry with Semi-Saturated/Saturated Saline Water: The Application of Maleic Anhydride
by Xiaojiang Li, Hui Yin, Shiming Zhou, Huajie Liu, Junfeng Zhao and Hongxu Zhang
Processes 2024, 12(2), 360; https://doi.org/10.3390/pr12020360 - 9 Feb 2024
Cited by 11 | Viewed by 1763
Abstract
Conventional fluid loss additives have difficultly controlling the water loss of cement–metakaolin slurry with semi-saturated brine cement slurry and limiting it to less than 50 mL (30 min)−1. This paper describes the development of an anti-salt fluid loss additive for metakaolin–cement [...] Read more.
Conventional fluid loss additives have difficultly controlling the water loss of cement–metakaolin slurry with semi-saturated brine cement slurry and limiting it to less than 50 mL (30 min)−1. This paper describes the development of an anti-salt fluid loss additive for metakaolin–cement systems. This study adopted the aqueous solution polymerization method; selected four kinds of monomers, namely 2-Acrylamido-2-methylpropane sulfonic acid (AMPS), N,N-Dimethylacrylamide (DMAA), acrylamide (AM), and methyl acrylate (MA); and performed a single-factor experiment on the proportion of monomer, reaction temperature, initiator dosage, and developed fluid loss additive, which has a high salt tolerance and temperature tolerance. This fluid loss additive can resist salt until saturation, and it can control fluid loss in 24 mL·(30 min)−1 when its dosage is 2%. The fluid loss additive can achieve the effect of fluid loss reduction by increasing the filtrate viscosity, forming a flexible elastic adsorption layer via adsorption, and blocking mud cake pores. Full article
Show Figures

Figure 1

17 pages, 3269 KB  
Article
Performance of a Double-Filter-Medium Tandem Membrane Bioreactor with Low Operating Costs in Domestic Wastewater Treatment
by Qiang Liu, Chen Li, Minglei Zhao, Ying Li, Yangyang Yang, Yuxuan Li and Siyuan Ma
Water 2024, 16(2), 361; https://doi.org/10.3390/w16020361 - 22 Jan 2024
Cited by 1 | Viewed by 2354
Abstract
To reduce the operating costs of conventional membrane bioreactors (MBRs) and improve the stability and quality of the dynamic membrane bioreactor (DMBR) effluent, a homemade inexpensive filter cloth assembly was connected to an up-flow ultra-lightweight-medium filter (UUF) in lieu of expensive membrane modules [...] Read more.
To reduce the operating costs of conventional membrane bioreactors (MBRs) and improve the stability and quality of the dynamic membrane bioreactor (DMBR) effluent, a homemade inexpensive filter cloth assembly was connected to an up-flow ultra-lightweight-medium filter (UUF) in lieu of expensive membrane modules to form a double-filter-medium tandem (DT)-MBR. DT-MBR was used to treat domestic wastewater, and its removal efficiencies for chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorus were similar to those of aerobic MBR, with average removal rates of 91.1%, 98.4%, 15.1%, and 50.7%, respectively. The average suspended solid (SS) of the final effluent was 5.6 mg∙L−1, and the filter cloth assembly played a leading role in SS removal, with an average removal rate of 86.0% and a relatively stable removal effect with little impact via backwashing. The activated sludge zeta potential, flocculation and sedimentation properties, particle size distribution, microbial compositions, extracellular polymeric substances (EPS), and filtration resistance of the cake layer were analyzed; it was found that the cake layer, which can also be called the dynamic membrane (DM), had an excellent filtration performance. However, the DM theory could not reasonably explain why the effluent quality of the filter cloth assembly maintained good stability even after backwashing. The real reason must be related to the sieving of cloth pores. Therefore, the concept of an in situ autogenous static membrane (ISASM) was proposed. With low operating costs and good and stable effluent quality, DT-MBR is a desirable alternative to the traditional MBR. Full article
(This article belongs to the Special Issue Innovative Membrane Processes in Low-Carbon Wastewater Treatment)
Show Figures

Figure 1

17 pages, 3538 KB  
Article
Optimization of Critical Factors Affecting Dynamic Membrane Formation in a Gravity-Driven Self-Forming Dynamic Membrane Bioreactor towards Low-Cost and Low-Maintenance Wastewater Treatment
by Luhe Tang, Jingyu Zhang, Lulu Zha, Yisong Hu, Yiming Yang, Yunsheng Zhao, Xinglong Dong, Zhanjiu Wang, Weihang Deng and Yuan Yang
Water 2023, 15(22), 3963; https://doi.org/10.3390/w15223963 - 15 Nov 2023
Cited by 1 | Viewed by 2178
Abstract
Self-forming dynamic membrane (SFDM) formation is affected by a variety of operating conditions. However, previous studies have only focused on individual influencing factors and a systematic analysis of important factors is lacking. In this study, an aerobic self-forming dynamic membrane bioreactor (SFDMBR) was [...] Read more.
Self-forming dynamic membrane (SFDM) formation is affected by a variety of operating conditions. However, previous studies have only focused on individual influencing factors and a systematic analysis of important factors is lacking. In this study, an aerobic self-forming dynamic membrane bioreactor (SFDMBR) was developed for the treatment of domestic wastewater with the critical factors that affect the effective formation of SFDM optimized, and the operational performances under optimized formation conditions confirmed. The results indicated that SFDM could be formed within 5 min using 48 μm stainless-steel mesh as the supporting material at a sludge concentration of 5–6 g/L and a gravity waterhead of 15 cm. And the SFDM formed could maintain a stable flux of 30–50 LMH, and the removals of COD, SCOD, and NH4+-N were 93.28%, 82.85%, and 95.46%, respectively. Furthermore, the cake layer resistance (reversible fouling) contributed to 95.93% of the total filtration resistance, thus a simple physical cleaning can effectively restore the flux indicating a low-maintenance requirement. This study provides valuable insights into the optimization and application of the SFDMBR process. Full article
(This article belongs to the Special Issue Innovative Membrane Processes in Low-Carbon Wastewater Treatment)
Show Figures

Figure 1

17 pages, 4617 KB  
Article
Computational Fluid Dynamics Modeling of the Filtration of 2D Materials Using Hollow Fiber Membranes
by Arash Elahi and Santanu Chaudhuri
ChemEngineering 2023, 7(6), 108; https://doi.org/10.3390/chemengineering7060108 - 9 Nov 2023
Cited by 7 | Viewed by 3675
Abstract
The current study presents a computational fluid dynamics (CFDs) model designed to simulate the microfiltration of 2D materials using hollow fiber membranes from their dispersion. Microfiltration has recently been proposed as a cost-effective strategy for 2D material production, involving a dispersion containing a [...] Read more.
The current study presents a computational fluid dynamics (CFDs) model designed to simulate the microfiltration of 2D materials using hollow fiber membranes from their dispersion. Microfiltration has recently been proposed as a cost-effective strategy for 2D material production, involving a dispersion containing a permeating solute (graphene), a fouling material (non-exfoliated graphite), and the solvent. The objective of the model is to investigate the effects of fouling of flat layered structure material (graphite) on the transmembrane pressure (TMP) of the system and the filtration of the permeating solute. COMSOL Multiphysics software was used to numerically solve the coupled Navier–Stokes and mass conservation equations to simulate the flow and mass transfer in the two-dimensional domain. For the TMP calculations, we used the resistance-in-series approach to link the fouling of the foulants to the TMP behavior. The foulant particles were assumed to form a polarization layer and cake on the membrane surface, leading to the increment of the TMP of the system. We also assumed the wettability of the polymeric membrane’s inner wall increases upon fouling due to the flat layered structure of the foulant, which results in the reduction in the TMP. This approach accurately reproduced the experimental TMP behavior with a Mean Absolute Error (MAE) of 0.007 psi. Furthermore, the permeation of the permeating solute was computed by incorporating a fouling-dependent membrane partition coefficient for these particles. The effects of the concentration polarization and cake formation fouling stages on the membrane partition coefficient were encapsulated into our defined model parameters, denoted as α and β, respectively. This formulation of the partition coefficient yielded permeate concentration profiles, which are in excellent agreement with the experiments. For three feed concentrations of 0.05, 0.1, and 0.3 g/L, our model reproduced the experimental permeate concentration profiles with MAEs of 0.0002, 0.0003, and 0.0022 g/L, respectively. The flexibility of this model enables the users to utilize the size and concentration-dependent α and β parameters and optimize their experimental microfiltration setups effectively. Full article
Show Figures

Figure 1

23 pages, 6065 KB  
Article
Evaluation of Organic and Inorganic Foulant Interaction Using Modified Fouling Models in Constant Flux Dead-End Operation with Microfiltration Membranes
by Muhammad Qasim, Ali Akbar, Imtiaz Afzal Khan, Mumtaz Ali, Eui-Jong Lee and Kang Hoon Lee
Membranes 2023, 13(11), 853; https://doi.org/10.3390/membranes13110853 - 25 Oct 2023
Cited by 5 | Viewed by 2465
Abstract
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic [...] Read more.
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic foulants, and suspended solids at 0.5 mM Ca2+ ionic strength. The membrane’s performance was evaluated by measuring the increase in transmembrane pressure (TMP) during two different filtration scenarios: continuous filtration lasting 1 h and cyclic filtration lasting 12 min, with 3 min backwashing cycles included. Statistical analysis (linear regression results (R2), p-value) was used to verify the fouling model propagation along with the determination of the contributing constant of each fouling model. An increasing TMP percentage of 164–302%, 155–300%, and 208–378% for S1 (HA + Ca2+), S2 (inorganics + kaolin + Ca2+), and S3 (HA + inorganics + kaolin + Ca2+) was recorded for 1 h filtration, respectively. Furthermore, a five percent increase in irreversible resistance was noted for the S3 solution due to the strong adsorption potential of foulants for the PVDF membrane caused by the electrostatic and hydration forces of foulants. In addition to that, the participation equation elucidated the contribution of the fouling model and confirmed that complete blocking and cake layer contribution were dominant for the S1 and S3 solutions, while standard blocking was dominant for the S2 solution with a high significance ratio. Moreover, R2 and cyclic filtration analysis also confirmed the propagation of these fouling models. The statistical confirmation and regression results analysis of the modified model gave comparative results and satisfied the filtration mechanism and can be used for the constant flux dead filtration analysis of water treatment. Full article
Show Figures

Figure 1

17 pages, 2199 KB  
Article
Effects of Different TiO2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters
by Ákos Ferenc Fazekas, Tamás Gyulavári, Zsolt Pap, Attila Bodor, Krisztián Laczi, Katalin Perei, Erzsébet Illés, Zsuzsanna László and Gábor Veréb
Membranes 2023, 13(10), 812; https://doi.org/10.3390/membranes13100812 - 27 Sep 2023
Cited by 4 | Viewed by 2653
Abstract
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including –OH or/and –COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the [...] Read more.
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including –OH or/and –COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the membranes coated with functionalized CNT-containing composites provided significantly higher fluxes than the non-functionalized ones, proving the beneficial effect of the surface modifications of the CNTs. Additionally, until the end of the filtration experiments (VRR = 5), notable flux enhancements were achieved with both TiO2 (~50%) and TiO2/CNT-coated membranes (up to ~300%), compared to the uncoated membrane. The irreversible filtration resistances of the membranes indicated that both the hydrophilicity and surface charge (zeta potential) played a crucial role in membrane fouling. However, a sharp and significant flux decrease (~90% flux reduction ratio) was observed for all membranes until reaching a VRR of 1.1–1.8, which could be attributed to the chemical composition of the oil. Gas chromatography measurements revealed a lack of hydrocarbon derivatives with polar molecular fractions (which can act as natural emulsifiers), resulting in significant coalescent ability (and less stable emulsion). Therefore, this led to a more compact cake layer formation on the surface of the membranes (compared to a previous study). It was also demonstrated that all membranes had excellent purification efficiency (97–99.8%) regarding the turbidity, but the effectiveness of the chemical oxygen demand reduction was slightly lower, ranging from 93.7% to 98%. Full article
(This article belongs to the Special Issue Advance in Photocatalytic Membrane Reactor (2nd Edition))
Show Figures

Figure 1

Back to TopTop