Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (543)

Search Parameters:
Keywords = carbide precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7016 KB  
Article
An Ultrastrong and Ductile Duplex Lightweight Steel with Dual-Nanoprecipitation
by Menghao Zhang, Huihui Zhi, Ruizhe Wang, Xinlan Ye, Xiyue Li, Zihao Xu, Weijun Wang, Haifeng Wang and Yanjing Su
Crystals 2025, 15(12), 1019; https://doi.org/10.3390/cryst15121019 - 28 Nov 2025
Viewed by 99
Abstract
In this study, a duplex lightweight steel with the compositions of Fe-30Mn-9Al-1C-1V-5Ni (wt.%) was designed, and its microstructure and mechanical properties were analyzed after simple rolling and heat treatment. The microstructure of duplex lightweight steel consists of austenite and B2 phases, with the [...] Read more.
In this study, a duplex lightweight steel with the compositions of Fe-30Mn-9Al-1C-1V-5Ni (wt.%) was designed, and its microstructure and mechanical properties were analyzed after simple rolling and heat treatment. The microstructure of duplex lightweight steel consists of austenite and B2 phases, with the dual-nanoprecipitation of L′12 type long-range ordered domains and VC carbides within the austenite. The steel exhibits an ultra-high strength-ductility combination, with a yield strength of 1316 ± 16 MPa, a tensile strength of 1458 ± 11 MPa, and a total elongation of 11.7 ± 1.2%. Its high strength is primarily attributed to hetero-deformation induced (HDI) strengthening, solid solution strengthening, and precipitation strengthening. Meanwhile, the substantial dislocation accumulation in both austenite and B2 phases, coupled with the HDI hardening from intense heterogeneous deformation near grain/phase boundaries, collectively confers the steel with excellent ductility. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

19 pages, 3695 KB  
Article
Comparative Study of Different Additive Manufacturing Methods for H13 Tool Steel
by Paweł Widomski, Marcin Kaszuba, Daniel Dobras, Dominik Terefinko and Michał Kołodziński
Materials 2025, 18(23), 5299; https://doi.org/10.3390/ma18235299 - 24 Nov 2025
Viewed by 358
Abstract
Additive manufacturing (AM) of hot-work tool steels such as H13 offers unique opportunities for producing complex, conformally cooled tools with reduced production time and material waste. In this study, five metal AM technologies—Fused Deposition Modeling and Sintering (FDMS, Desktop Metal Studio System and [...] Read more.
Additive manufacturing (AM) of hot-work tool steels such as H13 offers unique opportunities for producing complex, conformally cooled tools with reduced production time and material waste. In this study, five metal AM technologies—Fused Deposition Modeling and Sintering (FDMS, Desktop Metal Studio System and Zetamix), Binder Jetting (BJ), Laser Powder Bed Fusion (LPBF), and Directed Energy Deposition (DED)—were compared in terms of microstructure, porosity, and post-processing heat treatment response. The as-printed microstructures revealed distinct differences among the technologies: FDMS and BJ exhibited high porosity (6–9%), whereas LPBF and DED achieved near-full densification (<0.1%). Samples with sufficiently low porosity (BJ, LPBF, DED) were subjected to tempering and quenching treatments to evaluate hardness evolution and microstructural transformations. The satisfactory post-treatment hardness was observed in both tempered and quenched and tempered BJ samples, associated with secondary carbide precipitation, while LPBF and DED samples retained stable martensitic structures with hardness around 600 HV0.5. Microstructural analyses confirmed the dependence of phase morphology and carbide distribution on the thermal history intrinsic to each AM process. The study demonstrates that while FDMS and BJ are more accessible and cost-effective for low-density prototypes, LPBF and DED offer superior density and mechanical integrity suitable for functional tooling applications. Full article
Show Figures

Figure 1

18 pages, 10871 KB  
Article
The Effect of In Situ Heat Treatment on the Microstructure and Mechanical Properties of H13 Tool Steel Specimens Produced by Laser-Engineered Net Shaping (LENS®)
by Michalina Rothen-Chaja, Izabela Kunce, Agata Radziwonko, Tomasz Płociński, Julita Dworecka-Wójcik and Marek Polański
Materials 2025, 18(22), 5164; https://doi.org/10.3390/ma18225164 - 13 Nov 2025
Viewed by 568
Abstract
Samples of H13 tool steel were produced using the LENS® laser additive manufacturing technique. Three variants of samples were produced such that during and 2 h after deposition, both the substrate and sample temperatures were maintained at 80, 180, and 350 °C. [...] Read more.
Samples of H13 tool steel were produced using the LENS® laser additive manufacturing technique. Three variants of samples were produced such that during and 2 h after deposition, both the substrate and sample temperatures were maintained at 80, 180, and 350 °C. After the samples were produced, the effect of the substrate temperature on their metallurgical quality, microstructure, and mechanical properties was determined. No segregation of alloying elements was observed. The test results indicate that, depending on the temperature used, the structure of the H13 alloy is martensitic or martensitic-bainitic with a slight residual austenite content of up to 2.1%. Owing to structural changes, the obtained alloy is characterized by lower impact strength compared with conventionally produced alloys and high brittleness, particularly when using an annealing temperature of 350 °C. Isothermal annealing above the martensite start temperature results in extreme brittleness due to a partial structural transformation of martensite into bainite and probable carbide precipitation processes at the nanoscale. Full article
Show Figures

Graphical abstract

13 pages, 11164 KB  
Article
Synergistic Effects of Sub-Micron WC Reinforcement and T6 Heat Treatment on the Evolution of Microstructure and Mechanical Behavior in Al–Cu–Mg Composites Fabricated Through Powder Metallurgy
by Gustavo Rodríguez-Cabriales, Juan Pablo Flores-De los Ríos, Juan Francisco López de Lara-Herrera, Mario Sánchez-Carrillo, Hansel Manuel Medrano Prieto, Jose Manuel Mendoza-Duarte, Marco Antonio Ruiz-Esparza-Rodríguez, Carlos Gamaliel Garay-Reyes, Sergio González, Alfredo Martínez-García, Ivanovich Estrada-Guel and Roberto Martínez-Sánchez
Metals 2025, 15(11), 1216; https://doi.org/10.3390/met15111216 - 1 Nov 2025
Viewed by 378
Abstract
Al–Cu–Mg composites reinforced with sub-micron tungsten carbide (WC) particles were synthesized by powder metallurgy and subjected to T6 heat treatment to clarify the interplay between dispersion strengthening and precipitation hardening. Composites with 1–3 wt.% WC (average size 0.8 μm) were solution-treated at 540 [...] Read more.
Al–Cu–Mg composites reinforced with sub-micron tungsten carbide (WC) particles were synthesized by powder metallurgy and subjected to T6 heat treatment to clarify the interplay between dispersion strengthening and precipitation hardening. Composites with 1–3 wt.% WC (average size 0.8 μm) were solution-treated at 540 °C for 3 h, water-quenched, and aged at 195 °C for up to 100 h. Microstructural analyses confirmed a uniform distribution of WC and demonstrated that its presence did not modify the dissolution–precipitation sequence of the Al-Cu-Mg matrix. Transmission Electron Microscopy observations provided direct evidence of θ′ (Al2Cu) precipitates. The 3 wt.% WC composite reached peak hardness after 5 h (78 HRF), a 15% increase over the T6-treated unreinforced alloy, and exhibited a 40% higher yield strength (330 MPa). These improvements were attributed to the combined effects of Orowan strengthening and age-hardening precipitates (θ′). The results demonstrate that integrating powder metallurgy, sub-micron WC reinforcement, and T6 treatment is an effective route to enhance strength in Al–Cu–Mg alloys without delaying aging kinetics. Full article
Show Figures

Graphical abstract

11 pages, 2717 KB  
Article
Precipitation of Fe-25Cr-5Al-Ti-RE Ferritic Stainless Steel Under Different Quenching Temperatures
by Xiaojian Du, Jianghua Ma, Guowang Song, Taotao Li, Jiayi Qi, Chengzhi Liu and Yucheng Yin
Crystals 2025, 15(11), 948; https://doi.org/10.3390/cryst15110948 - 31 Oct 2025
Viewed by 274
Abstract
This study investigated the variation in precipitation in Fe-25Cr-5Al-Ti-RE ferritic stainless steel under different quenching heat treatment temperatures. Quenching heat treatments were performed at five temperatures, namely 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C. To analyze the alloy’s microstructure [...] Read more.
This study investigated the variation in precipitation in Fe-25Cr-5Al-Ti-RE ferritic stainless steel under different quenching heat treatment temperatures. Quenching heat treatments were performed at five temperatures, namely 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C. To analyze the alloy’s microstructure and precipitation behavior, comprehensive characterization techniques were employed, including X-ray Diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrated that after quenching at these temperatures, the main precipitation in the alloy was a chromium-rich phase (α′), aluminum oxide (Al2O3), titanium carbide (TiC), and titanium nitride (TiN). Specifically, Al2O3 was detected exclusively after heat treatments at 800 °C, 900 °C, and 1000 °C, with its particle size ranging from 10 nm to 100 nm. During high-temperature heat treatment, aluminum atoms and oxygen atoms in the matrix interacted with each other, and fine Al2O3 particles precipitated through a solid-state phase transition. Regarding titanium-containing precipitates, TiC precipitated after heat treatments at 700 °C, 800 °C, and 900 °C, whereas TiN was only observed after the quenching treatment at 1000 °C. The size of TiC particles fell within the range of 100 nm to 400 nm, while TiN particles exhibited a significantly larger size, spanning from 5 μm to 10 μm. Thermodynamic and kinetic analyses revealed that at elevated temperatures, nitrogen (N) exhibited a relatively high diffusion coefficient in the matrix; meanwhile, titanium (Ti) demonstrated an extremely strong chemical affinity for N. Consequently, even when the N content in the alloy was at a low level, N tended to preferentially react with Ti rather than with carbon (C) to form TiN. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

17 pages, 4695 KB  
Article
Crack Arrest Effect of FeMnNiSi-Inconel625-Ni60 Laminated Structure Prepared by Laser Cladding Additive Manufacturing
by Lihong Ding, Weining Lei and Jufang Chen
Materials 2025, 18(21), 4996; https://doi.org/10.3390/ma18214996 - 31 Oct 2025
Viewed by 381
Abstract
This study addresses the technical challenges of cracking and surface crack initiation in Ni60 alloy cladding layers fabricated by laser cladding additive manufacturing on FeMnNiSi alloys. An innovative FeMnNiSi-Inconel625-Ni60 laminate design was proposed, achieving metallurgical bonding of the dissimilar materials through an Inconel625 [...] Read more.
This study addresses the technical challenges of cracking and surface crack initiation in Ni60 alloy cladding layers fabricated by laser cladding additive manufacturing on FeMnNiSi alloys. An innovative FeMnNiSi-Inconel625-Ni60 laminate design was proposed, achieving metallurgical bonding of the dissimilar materials through an Inconel625 transition layer. This effectively addresses the interfacial stress concentration issue caused by differences in thermal expansion coefficients in conventional processes. The results demonstrate that the interfacial microstructure is regulated by synergistic Nb-Mo element segregation, promoting the precipitation of γ″ phase and the formation of a nanoscale Laves phase. This phase not only inhibits carbide aggregation and growth, refining grain size, but also deflects crack propagation paths by pinning dislocations, achieving a dual mechanism of stress reduction and crack arrest. The Ni60 cladding layer in the laminated structure exhibits an average surface microhardness of 641.31 HV0.3, 3.88 times that of the substrate (165.22 HV0.3), while the Inconel625 base layer shows 340.71 HV0.3, 2.06 times the substrate’s value. Wear testing reveals the laminated cladding layer has a wear volume of 0.086 mm3 (0.243 mm3 less than the substrate’s 0.329 mm3) and a wear rate of 0.86 × 10−2 mm3/(N·m), 73.86% lower than the substrate’s 3.29 × 10−2 mm3/(N·m), indicating superior wear resistance. The electrochemical test results show that under the same corrosion conditions, the self-corrosion potential and polarization resistance of the FeMnNiSi-Inconel625-Ni60 cladding layer are significantly higher than those of the substrate, while the corrosion current density is significantly lower than that of the substrate. The frequency stability region at the highest impedance modulus |Z| is wider than that of the substrate, and the corrosion rate is 71.86% slower than that of the substrate, demonstrating excellent wear resistance. This study not only reveals the mechanism by which Laves phases improve interfacial properties through microstructural regulation but also provides a scalable interface design strategy for heterogeneous material additive manufacturing, which has important engineering value in promoting the application of laser cladding technology in the field of high-end equipment repair. Full article
Show Figures

Figure 1

36 pages, 16341 KB  
Article
Experimental Study on the Chemical Composition, Microstructure, Heat Treatment and Mechanical Properties of Steels for Special Knife Applications
by Jaroslava Svobodová, Miroslav Müller, Ludmila Nováková and Josef Hořejší
Materials 2025, 18(21), 4900; https://doi.org/10.3390/ma18214900 - 26 Oct 2025
Viewed by 814
Abstract
This study presents an experimental investigation of steels used in special knife applications, focusing on the interrelationship between chemical composition, microstructure, heat treatment, and mechanical properties. Four representative materials were analysed: VG10 (stainless steel with nickel-laminated edges and a VG10 core), RWL34 [...] Read more.
This study presents an experimental investigation of steels used in special knife applications, focusing on the interrelationship between chemical composition, microstructure, heat treatment, and mechanical properties. Four representative materials were analysed: VG10 (stainless steel with nickel-laminated edges and a VG10 core), RWL34TM (powder-metallurgical steel), laminated steel K110+N695 (with a nickel interlayer), and forge-welded steel K600+K720. The steels were characterised using OES, optical microscopy and SEM, supported by EDS for local chemical analysis. Microhardness testing was applied to individual structural regions to correlate carbide morphology, layer interfaces, and heat-treatment response with hardness values. The results reveal pronounced differences in structural homogeneity and defect occurrence. Powder-metallurgical RWL34TM exhibited the most uniform microstructure with finely dispersed Cr carbides, achieving high hardness and absence of structural defects. In contrast, laminated and forge-welded steels contained large primary carbides, carbide precipitation at grain boundaries, porous cavities, and insufficient cohesion in interlayers or weld zones, which may compromise toughness. VG10 and K110+N695 showed carbide coarsening caused by inadequate heat treatment, whereas K600+K720 revealed weld-related defects and heterogeneous phase structures. Overall, the study demonstrates the critical role of heat treatment and processing route in determining blade quality and performance. The findings provide guidance for optimising steel selection and processing technologies in advanced cutlery engineering. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

18 pages, 9023 KB  
Article
Effect of Austempering Time and Temperature on the Mechanical and Microstructural Properties of a Niobium-Alloyed Austempered Ductile Iron
by César Yeshua Becerra Mayorga, Marissa Vargas Ramírez, Edgar Cardoso Legorreta, Jesús García Serrano, José Merced Martínez Vázquez, Erick Uriel Morales Cruz and Cynthia Aristeo Domínguez
Metals 2025, 15(11), 1168; https://doi.org/10.3390/met15111168 - 23 Oct 2025
Viewed by 443
Abstract
This study evaluated the influence of niobium addition and austempering time and temperature on the microstructure and mechanical behavior of ductile iron. Three alloys were produced: unalloyed ductile iron (H1) and two Nb-alloyed ductile iron (H2, 0.11 wt.% Nb and H3, 0.32 wt.% [...] Read more.
This study evaluated the influence of niobium addition and austempering time and temperature on the microstructure and mechanical behavior of ductile iron. Three alloys were produced: unalloyed ductile iron (H1) and two Nb-alloyed ductile iron (H2, 0.11 wt.% Nb and H3, 0.32 wt.% Nb). After austenitizing at 900 °C for 60 min, samples were austempered at 250 °C and 300 °C for 15, 30, 60, and 90 min. The as-cast microstructure of H3 exhibited a higher pearlite fraction (73.31 vol%) and increased carbide content (2.48 vol%), accompanied by reduced nodularity and nodule count. X-ray diffraction analysis revealed that the highest fraction of carbon-rich retained austenite was obtained in H3 after 30 min at 300 °C, reaching 42.48%. Hardness decreased with increasing retained austenite, confirming the inverse relationship between this phase and matrix strengthening. Wear testing showed that H2 presented slightly lower volume loss due to carbide precipitation, with the lowest value recorded after 15 min at 300 °C (1.088 mm3). Tensile tests indicated that ultimate tensile strength and yield strength were superior at 250 °C, with H3 achieving the highest values at 90 min (1353 and 1090 MPa, respectively). Overall, niobium promoted carbide formation and austenite stabilization, modifying the balance between hardness, toughness, and wear resistance in austempered ductile iron. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

16 pages, 8731 KB  
Article
Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel
by Muhammad Rizqi Ramadhan Fatih, Hou-Jen Chen, Kun-Ming Lin and Hsin-Chih Lin
Metals 2025, 15(10), 1152; https://doi.org/10.3390/met15101152 - 17 Oct 2025
Viewed by 541
Abstract
Deep cryogenic treatment (DC) is widely applied to martensitic stainless steels to suppress the presence of metastable retained austenite (RA), which may otherwise transform into brittle martensite under deformation and degrade mechanical performance. In this study, a low-carbon 13Cr-2Ni-2Mo martensitic stainless steel was [...] Read more.
Deep cryogenic treatment (DC) is widely applied to martensitic stainless steels to suppress the presence of metastable retained austenite (RA), which may otherwise transform into brittle martensite under deformation and degrade mechanical performance. In this study, a low-carbon 13Cr-2Ni-2Mo martensitic stainless steel was subjected to deep cryogenic treatment for 2 h, followed by tempering at 200–600 °C to investigate carbide evolution and its correlation with mechanical response. At 200 °C, undissolved M23C6 was observed, accompanied by an RA volume fraction of 8.43% which exhibited a hardness of 543.3 ± 5.1 Hv. When tempered at 400 °C, M3C became predominant, corresponding to a hardness of 524.5 ± 5.1 Hv. At 500 °C, the simultaneous precipitation of M3C, M7C3, and M23C6 carbides induced pronounced secondary hardening, which promoted the peak hardness of 559 ± 5.6 Hv. Further tempering at 600 °C resulted in carbide spheroidization M23C6, which resulted in a hardness reduction to 392.2 ± 3.9 Hv while enhancing ductility. These findings reveal that the tempering temperature plays a decisive role in controlling the carbide precipitation sequence and the stability of retained austenite, thereby enabling the design of an optimal strength–ductility balance in deep cryogenically treated martensitic stainless steels. Full article
(This article belongs to the Special Issue Metallic Materials Behaviour Under Applied Load)
Show Figures

Figure 1

12 pages, 7003 KB  
Article
The Comparison of Microstructure, Phase Composition and Mechanical Properties of Inconel 625 Alloys Obtained by Wire Arc and Wire Electron Beam Additive Manufacturing
by Denis Gurianov, Sergey Fortuna, Sergei Tarasov, Vyacheslav Semenchuk, Nikolay Shamarin, Andrey Chumaevskii, Valery Rubtsov, Alexander M. Korsunsky and Evgeny Kolubaev
Crystals 2025, 15(10), 848; https://doi.org/10.3390/cryst15100848 - 29 Sep 2025
Viewed by 682
Abstract
The present paper compares the microstructure and mechanical properties of Inconel 625 alloy samples produced by using wire-arc additive manufacturing (WAAM) and wire electron beam additive manufacturing (WEBAM). The obtained wall-shaped samples did not contain any macroscopic defects in the form of cracks, [...] Read more.
The present paper compares the microstructure and mechanical properties of Inconel 625 alloy samples produced by using wire-arc additive manufacturing (WAAM) and wire electron beam additive manufacturing (WEBAM). The obtained wall-shaped samples did not contain any macroscopic defects in the form of cracks, delaminations and geometry distortions. The WAAM-built “wall” exhibits finer dendritic structures (WAAM—10–16 μm; WEBAM—20–25 μm). Also, the WAAM-built one is characterized by the more homogeneous-sized distribution of microstructure components. In both cases, the material is represented by the γ-phase, with large precipitates of MC-type carbides in the interdendritic spaces. Additionally, the sample obtained using the WAAM contained aluminum oxide. It was found that the intrinsic periodic heat treatment is not sufficient for the formation of the γ″-phase, and it is necessary to perform a subsequent long-term aging. However, the overall mechanical properties of both samples show similar levels of yield stress and ultimate tensile strength, and demonstrate the same degree of anisotropy. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 25476 KB  
Article
The Effect of Mo on the Microstructure and Mechanical Properties of High-Manganese Railway Frog Steel Produced with the Thermal Mechanical Control Process
by Junke Lin, Genhao Shi, Xiangyao Fu, Tiebing Tang, Qingfeng Wang and Ping Wang
Metals 2025, 15(9), 1025; https://doi.org/10.3390/met15091025 - 16 Sep 2025
Viewed by 544
Abstract
The aim of this study is to investigate the influence of Mo on the microstructure and mechanical properties of railway frog steel. To address the challenges of a coarse microstructure and alloy element segregation caused by the current casting method of railway frog [...] Read more.
The aim of this study is to investigate the influence of Mo on the microstructure and mechanical properties of railway frog steel. To address the challenges of a coarse microstructure and alloy element segregation caused by the current casting method of railway frog steel, the application of thermal mechanical control process (TMCP) technology can achieve a uniform and refined microstructure and stable mechanical properties, which is progress for the development of high-manganese railway frog steel. The TMCP of four experimental steels with varying Mo contents of 0.02~1.01 wt.% was simulated using a Gleeble 3500. The mechanical properties were tested, and the microstructure of each sample was characterized. A single austenite formed in each Mo-containing steel. With the increased Mo content, the grain boundary carbides decreased due to the formation of carbides within the grains, and the austenite and twin sizes were refined. Moreover, grain boundary strengthening and dislocation strengthening increased, while solid solution strengthening and precipitation strengthening had little effect, leading to an increase in the final yield strength. The contribution of dislocation strengthening to the yield strength was 51~56%, indicating that dislocation strengthening was the most significant strengthening method in the high-manganese railway frog steel produced using the TMCP. The impact energy showed a trend of first increasing and then decreasing, and the impact energy reached the highest point when the Mo content was 0.30 wt.%. In addition, the mechanisms governing the effect of increased Si in controlling the final microstructure and mechanical properties are discussed. Full article
Show Figures

Figure 1

14 pages, 4634 KB  
Article
Functionally Graded WC-Reinforced Stainless-Steel Composites via Casting: Microstructure and Wear Performance
by Aida B. Moreira, Laura M. M. Ribeiro and Manuel F. Vieira
J. Compos. Sci. 2025, 9(9), 495; https://doi.org/10.3390/jcs9090495 - 12 Sep 2025
Viewed by 724
Abstract
This study presents an effective route for producing functionally graded metal matrix composites with enhanced abrasion wear resistance by incorporating ex situ Fe–WC preforms into austenitic stainless-steel castings. The preforms, produced by cold-pressing mixed WC and Fe powders, were positioned in the desired [...] Read more.
This study presents an effective route for producing functionally graded metal matrix composites with enhanced abrasion wear resistance by incorporating ex situ Fe–WC preforms into austenitic stainless-steel castings. The preforms, produced by cold-pressing mixed WC and Fe powders, were positioned in the desired locations in sand molds and reacted in situ with the molten steel during casting. This process generated a metallurgically bonded reinforcement zone with a continuous microstructural and compositional gradient, characteristic of a Functionally Graded Material (FGM). Near the surface, the microstructure consisted of a martensitic matrix with WC particles and (W,Fe,Cr)6C carbides, while towards the base metal, it transitioned to austenitic dendrites with an interdendritic network of Cr- and W-rich carbides, including (W,Fe,Cr)6C, (Fe,Cr,W)7C3, and (Fe,Cr,W)23C6. Vickers hardness measurements revealed surface-adjacent values (969 ± 72 HV 30) approximately six times higher than those of the base alloy, and micro-abrasion tests demonstrated a 70% reduction in micro-abrasion wear rate in the reinforced zones. These findings show that WC dissolution during casting enables tailored hardness and abrasion wear performance, offering an accessible manufacturing solution for high-demand mechanical environments. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

13 pages, 41617 KB  
Article
Characterization of the Carbides in Carburized CSS-42L Steel and Their Effect on the Fatigue Failure Mechanism
by Ming Liu, Xingyu Lu, Chengshuai Lei, Xinxin Ma and Hongwei Liu
Metals 2025, 15(9), 1013; https://doi.org/10.3390/met15091013 - 11 Sep 2025
Cited by 1 | Viewed by 578
Abstract
The types of carbides and their effects on the fatigue failure mechanism in carburized CSS-42L steel were systematically studied in the present investigation. The results indicate that the main carbides in carburized CSS-42L steel are Cr-rich M23C6 carbides and Mo-rich [...] Read more.
The types of carbides and their effects on the fatigue failure mechanism in carburized CSS-42L steel were systematically studied in the present investigation. The results indicate that the main carbides in carburized CSS-42L steel are Cr-rich M23C6 carbides and Mo-rich M6C carbides. M23C6 carbides precipitate along grain boundaries and interconnect, forming network carbides. Rolling contact fatigue (RCF) tests reveal that fatigue cracks in CSS-42L steel can initiate both at the contact surface and within the subsurface. During RCF, the spalling of large-sized, networked M23C6 carbides creates micro-spalling pits on the contact surface, inducing local stress concentration that triggers the initiation of surface cracks. The surface cracks initially propagate perpendicularly to the contact surface and then shift to propagate parallelly to the contact surface, ultimately causing large-scale spalling of the surface layer. Subsurface cracks initiate at a position approximately 100 μm below the contact surface, with their propagation direction roughly parallel to the contact surface. Meanwhile, the development of subsurface cracks can connect with surface cracks, leading to the expansion of surface micro-pitting. Network carbides facilitate the propagation of secondary cracks, leading to the formation of grid-distributed crack networks. Full article
Show Figures

Figure 1

17 pages, 7205 KB  
Article
Evolution of Microstructure and the Influence of Carbides on Hardness Properties in Martensitic Stainless Steel 90Cr18MoV During Heat Treatment
by Shengfu Yuan, Ruizhi Wang, Xuelin Wang, Fajian Jiang, Chengjia Shang and Xinghua Wu
Metals 2025, 15(9), 999; https://doi.org/10.3390/met15090999 - 9 Sep 2025
Viewed by 954
Abstract
In this study, we utilized Thermo-Calc software (2023a) to optimize the heat treatment process of martensitic stainless steel 90Cr18MoV through phase diagram calculations. The microhardness of 90Cr18MoV was characterized using a nanoindentation instrument. The microstructural morphology of the samples was analyzed using scanning [...] Read more.
In this study, we utilized Thermo-Calc software (2023a) to optimize the heat treatment process of martensitic stainless steel 90Cr18MoV through phase diagram calculations. The microhardness of 90Cr18MoV was characterized using a nanoindentation instrument. The microstructural morphology of the samples was analyzed using scanning electron microscopy (SEM). The composition of the samples was characterized through scanning electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). Additionally, laser confocal microscopy (FIB) and transmission electron microscopy (TEM) were employed to characterize the precipitate phase composition and size before and after heat treatment, while also observing the dislocation structure within the samples. The relationship between the quenching temperature and the percentage of residual austenite content in the material was established. The influence of the dislocation structure and precipitate size on the hardness of the samples was investigated. The research findings confirm that the observed secondary hardening phenomenon in tempered samples is attributed to the co-precipitation of two types of carbides, M23C6 and MC, within the matrix. The study investigated the effects of the tempering temperature and duration on the size of secondary precipitates, indicating that M23C6 and MC particles with sizes less than or equal to 20 nm contribute to enhancing the matrix, while particles larger than 30 nm lead to a reduction in hardness after tempering. Notably, during the tempering process, M23C6 precipitated from the matrix nucleates on MC. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

17 pages, 5243 KB  
Article
Morphology and Wear Resistance of Laser-Clad Fe-Cr-Nb-C Alloy Coatings
by Min Chen, Haoran Zhou, Xuyang Liu, Zhongxue Feng, Xuan Xiao, Liu Weng, Yang Yang and Yan Jiang
Coatings 2025, 15(9), 1055; https://doi.org/10.3390/coatings15091055 - 8 Sep 2025
Cited by 1 | Viewed by 699
Abstract
Fe-Cr-Nb-C wear-resistant alloy coatings were successfully fabricated on high-carbon forged steel via coaxial powder feeding laser cladding. The evolution of microstructure and wear resistance with varying Nb content was systematically investigated. The results indicate that appropriate NbC addition markedly modifies the distribution of [...] Read more.
Fe-Cr-Nb-C wear-resistant alloy coatings were successfully fabricated on high-carbon forged steel via coaxial powder feeding laser cladding. The evolution of microstructure and wear resistance with varying Nb content was systematically investigated. The results indicate that appropriate NbC addition markedly modifies the distribution of grain and boundary carbides. As Nb content increases from 2.5 wt% to 3.5 wt%, nanoscale rod-like NbC precipitates form uniformly along boundaries, effectively suppressing the formation of brittle Cr23C6 precipitation. Semi-coherent NbC/matrix interfaces and NbC-induced grain refinement reduce adhesive/abrasive wear, thereby improving hardness and wear resistance. At 4.5 wt% Nb, discrete micron-sized NbC particles form within the grains, yielding optimal performance. However, excessive Nb (≥5.5 wt%) causes NbC agglomeration, inducing stress concentrations and large spallation pits that deteriorate wear resistance. This work highlights NbC morphology as a key factor for tailoring coating properties. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

Back to TopTop