Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = carbon fiber-reinforced polymers recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4452 KB  
Article
Mechanical Characterization of Carbon Fibers and Their Interfaces Recycled Through Plasma-Assisted Solvolysis Under Different Processing Conditions
by Ilektra Tourkantoni, Konstantinos Tserpes, Dimitrios Marinis, Ergina Farsari and Eleftherios Amanatides
Fibers 2025, 13(12), 158; https://doi.org/10.3390/fib13120158 - 24 Nov 2025
Viewed by 147
Abstract
The rapid expansion of carbon-fiber-reinforced polymer (CFRP) applications in aerospace, automotive, and energy sectors has intensified concerns over end-of-life waste and the absence of efficient recycling solutions. Plasma-assisted solvolysis has emerged as a promising hybrid approach, combining oxidative chemical treatment with plasma activation [...] Read more.
The rapid expansion of carbon-fiber-reinforced polymer (CFRP) applications in aerospace, automotive, and energy sectors has intensified concerns over end-of-life waste and the absence of efficient recycling solutions. Plasma-assisted solvolysis has emerged as a promising hybrid approach, combining oxidative chemical treatment with plasma activation to accelerate matrix degradation. In this study, CFRP cylinders (6.4 cm height, 5.5 cm internal, and 6.0 cm external diameter) were processed in a closed-loop plasma solvolysis system under varied operational parameters, including plasma power, plasma gas composition, and nitric acid concentration. The mechanical performance of the recovered carbon fibers was assessed through single-fiber tensile and microbond tests, evaluating both tensile and interfacial properties. In most cases, the recycled fibers retained—or even exceeded—the tensile strength of their virgin counterparts, reaching up to 1.49 times that of the virgin fibers. Young’s modulus, though more variable, ranged from 0.48 to 1.67 times the reference value depending on treatment conditions. Elongation at break generally increased, particularly in the 24K (24,000-filaments) fiber sets, suggesting improved surface ductility. Weibull statistical analysis indicated higher consistency in 3K (3000-filaments) fiber batches compared to 24K, whereas interfacial shear strength was moderately retained across conditions. Overall, balanced plasma and acid conditions enabled efficient fiber recovery with high strength and interfacial performance, validating plasma-assisted solvolysis as a viable route for recovering high-performance fibers suitable for structural reuse, in alignment with circular economy principles. Full article
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Enabling Industrial Re-Use of Large-Format Additive Manufacturing Molding and Tooling
by Matthew Korey, Amber M. Hubbard, Gregory Haye, Robert Bedsole, Zachary Skelton, Neeki Meshkat, Ashish L. S. Anilal, Kathryn Slavny, Katie Copenhaver, Tyler Corum, Don X. Bones, William M. Gramlich, Chad Duty and Soydan Ozcan
Polymers 2025, 17(22), 2981; https://doi.org/10.3390/polym17222981 - 10 Nov 2025
Viewed by 679
Abstract
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use [...] Read more.
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use of bio-based, glass, and/or carbon fiber reinforced thermoplastic composites which, when printed, serve as a lower-cost alternative to metallic parts. One of the highest-volume materials utilized by the industry is carbon fiber (CF)-filled polycarbonate (PC), which in out-of-autoclave applications can achieve comparable mechanical performance to metal at a significantly lower cost. Previous work has shown that if this material is recovered at various points throughout the manufacturing process for both the lab and pilot scale, it can be mechanically recycled with minimal impacts on the functional performance and printability of the material while significantly reducing the feedstock costs. End-of-life (EOL) CF-PC components were processed through industrial shredding, melt compounding, and LFAM equipment, followed by evaluation of the second-life material properties. Experimental assessments included quantitative analysis of fiber length attrition, polymer molecular weight degradation using gel permeation chromatography (GPC), density changes via pycnometry, thermal performance using dynamic mechanical analysis (DMA), and mechanical performance (tensile properties) in both the X- and Z-directions. Results demonstrated a 24.6% reduction in average fiber length compared to virgin prints, accompanied by a 21% decrease in X-direction tensile strength and a 39% reduction in tensile modulus. Despite these reductions, Z-direction tensile modulus improved by 4%, density increased by 6.8%, and heat deflection temperature (HDT) under high stress retained over 97% of its original value. These findings underscore the potential for integrating mechanically recycled CF-PC into industrial LFAM applications while highlighting the need for technological innovations to mitigate fiber degradation and enhance material performance for broader adoption. This critical step toward circular material practices in LFAM offers a pathway to reducing feedstock costs and environmental impact while maintaining functional performance in industrial applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

20 pages, 3539 KB  
Article
Investigating the Static and Dynamic Mechanical Properties of Fiber-Reinforced Concrete Incorporating Recycled Carbon Fiber and Modified Basic Oxygen Furnace Slag Aggregate
by Yeou-Fong Li, Hung-Sheng Lin, Jin-Yuan Syu, Wei-Hao Lee, Chih-Hong Huang, Ying-Kuan Tsai and Asia Shvarzman
Recycling 2025, 10(6), 206; https://doi.org/10.3390/recycling10060206 - 6 Nov 2025
Viewed by 352
Abstract
This study explores the mechanical behavior of concrete reinforced with recycled carbon fiber (RCF) and incorporating modified basic oxygen furnace slag (MBOF) as a sustainable aggregate. The RCF was recovered from waste carbon fiber-reinforced polymer (CFRP) bicycle rims via microwave-assisted pyrolysis (MAP), while [...] Read more.
This study explores the mechanical behavior of concrete reinforced with recycled carbon fiber (RCF) and incorporating modified basic oxygen furnace slag (MBOF) as a sustainable aggregate. The RCF was recovered from waste carbon fiber-reinforced polymer (CFRP) bicycle rims via microwave-assisted pyrolysis (MAP), while MBOF was produced by water-based treatment of hot BOF slag. The experimental program included compressive, splitting tensile, and flexural strength tests, as well as impact resistance and stress-reversal Split Hopkinson Pressure Bar (SRSHPB) tests. The effects of RCF length (6 mm and 12 mm) on the mechanical performance of MBOF-based concrete were systematically examined. The results demonstrated that incorporating MBOF as aggregate, combined with the addition of RCF, significantly enhanced both static strength and dynamic impact resistance. Compared with fiber-free MBOF concrete, the incorporation of 6 mm and 12 mm RCF increased compressive strength by 3.03% and 13.77%, flexural strength by 14.50% and 19.74%, and splitting tensile strength by 2.60% and 25.84%, respectively. Similarly, the impact number increased by approximately 6.81 and 12.67 times for the 6 mm and 12 mm RCF specimens, respectively, relative to the fiber-free specimen. Furthermore, the SRSHPB test results indicated that MBOF concrete reinforced with 12 mm RCF exhibited greater dynamic compressive strength than that reinforced with 6 mm RCF. Overall, MBOF concrete incorporating 12 mm RCF demonstrated superior performance to its 6 mm counterpart across all evaluated strength parameters. These findings highlight the potential of utilizing metallurgical and composite waste to develop high-performance, sustainable concrete materials. Full article
Show Figures

Figure 1

19 pages, 4508 KB  
Article
Recycled PET Sandwich Cores, Waste-Derived Carbon Additive, and Cure-Rate Control: FTIR/SEM Study of Flexural Performance in Flax Fiber-Reinforced Composites
by Veena Phunpeng, Kitsana Khodcharad and Wipada Boransan
Fibers 2025, 13(10), 142; https://doi.org/10.3390/fib13100142 - 20 Oct 2025
Cited by 1 | Viewed by 471
Abstract
To address circularity and resource recovery in modern structural applications, industry is seeking materials that are sustainable and lightweight. Although natural fiber-reinforced composites offer sustainability advantages, their mechanical properties remain inferior to those of synthetic fiber systems, limiting practical deployment. Flax fibers were [...] Read more.
To address circularity and resource recovery in modern structural applications, industry is seeking materials that are sustainable and lightweight. Although natural fiber-reinforced composites offer sustainability advantages, their mechanical properties remain inferior to those of synthetic fiber systems, limiting practical deployment. Flax fibers were selected as reinforcement due to their high specific stiffness, biodegradability, and wide availability. This study implements a three-level strategy to enhance the flexural performance of flax fiber-reinforced composites: at the process level, curing under distinct heating rates to promote a more uniform polymer network; at the material level, incorporation of a carbonaceous additive derived from fuel–oil furnace waste to strengthen interfacial adhesion; and at the structural level, adoption of a sandwich configuration with a recycled PET core to increase section bending inertia. Specimens were fabricated via vacuum-assisted resin transfer molding (VARTM) and tested using a three-point bending method. Mechanical testing shows clear improvements in flexural performance, with the sandwich architecture yielding the highest values and increasing flexural strength by up to 4.52× relative to the other conditions. For the curing series, FTIR indicates greater reaction extent, evidenced by lower intensities of the epoxide ring at 915 cm−1 and glycidyl/oxirane band near 972 cm−1, together with a more pronounced C–O–C stretching region, consistent with the higher flexural response. While SEM observations revealed interfacial debonding at 5% FCB, a hybrid mechanism with crack deflection appeared at 10%. This transition created tortuous crack paths, consistent with the higher flexural strength and modulus at 10% FCB. A distinctive feature of this work is the integration of three reinforcement strategies—controlled curing, waste-derived carbon additive, and recycled PET sandwich design. This integration not only enhances the performance of natural fiber composites but also emphasizes sustainability by valorizing recycled and waste-derived resources, thereby supporting the development of greener composite materials. Full article
Show Figures

Figure 1

15 pages, 2800 KB  
Article
Repairable, Degradable and Recyclable Carbon Fiber-Reinforced Bio-Based Epoxy Vitrimer Composites Enabled by Facile Transesterification
by Haidan Lin, Kai Dong, Jingyao Luan, Chenggang Li, Di Zhao, Chengji Zhao and Xuefeng Li
Polymers 2025, 17(17), 2387; https://doi.org/10.3390/polym17172387 - 31 Aug 2025
Cited by 1 | Viewed by 1637
Abstract
Developing high-performance bio-based epoxy resins as sustainable alternatives to petroleum-derived bisphenol A (BPA) epoxies for recyclable carbon fiber-reinforced polymers (CFRPs) is pivotal in materials research. Herein, the bio-based bisphenol monomer BDEF was synthesized from the lignin derivative 4-propylguaiacol. The derived epoxy monomer BDEF-EP [...] Read more.
Developing high-performance bio-based epoxy resins as sustainable alternatives to petroleum-derived bisphenol A (BPA) epoxies for recyclable carbon fiber-reinforced polymers (CFRPs) is pivotal in materials research. Herein, the bio-based bisphenol monomer BDEF was synthesized from the lignin derivative 4-propylguaiacol. The derived epoxy monomer BDEF-EP was cured with adipic acid to form a bio-based vitrimer. Stress relaxation synergistically accelerates through intrinsic dynamic carboxylic acid ester exchange and enhanced chain mobility from the flexible propyl structure. At 220 °C, this vitrimer shows rapid stress relaxation (τ* < 30 s) and repairs ~90% of surface scratches in 30 min. It exhibits tensile and flexural strengths of 69 MPa and 105 MPa, respectively. BDEF-EP’s low viscosity reduces diluent needs in composite fabrication, lowering costs and improving efficiency. The resulting bio-based CFRP achieves tensile and flexural strengths of 543 MPa and 414 MPa, respectively, which are comparable to commercially available petroleum-derived CFRP. In addition, CFRP containing dynamic crosslinked networks demonstrates degradable recyclability in ethylene glycol solvent, preserving the surface morphology and chemical structure of recovered carbon fibers. The results demonstrate that this bio-based epoxy vitrimer has promising potential for developing sustainable, degradable, and recyclable CFRP composites. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

18 pages, 6816 KB  
Article
Development of Graphene/Recycled Carbon Fiber-Reinforced PLA Composites for MEX Printing and Dry Machinability Analysis
by Abdullah Yahia AlFaify, Mustafa Saleh, Saqib Anwar, Abdulrahman M. Al-Ahmari and Abd Elaty E. AbdElgawad
Polymers 2025, 17(17), 2372; https://doi.org/10.3390/polym17172372 - 31 Aug 2025
Viewed by 1300
Abstract
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high [...] Read more.
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high due to the process-related layering nature and the materials’ properties. This study explores RPC development for MEX printing and the potential of dry milling post-processing to enhance the MEX-printed part’s surface quality. RPC MEX filaments were developed by incorporating graphene nanoplatelets (GNPs) and/or recycled-carbon fibers (rCFs) into a polylactic acid (PLA) matrix. The filaments, including pure PLA and various GNPs-PLA composites, rCF-PLA, and rCF-GNPs-PLA, were developed through ball mill mixing and melt extrusion. Tensile tests were performed to assess the mechanical properties of the developed materials. Dry milling post-processing was carried out to assess the machinability, with the aim of enhancing the MEX-printed part’s surface quality. The results revealed that adding GNPs into PLA showed no considerable enhancements in the tensile properties of the fabricated RPCs, which is contrary to several existing studies. Dry milling showed an enhanced surface quality of MEX-printed parts in terms of surface roughness (Sa and Sz) and the absence of defects such as delamination and layer lines. Adding GNPs into PLA facilitated the dry machining of PLA, resulting in reduced surface asperities compared to pure PLA. Also, there was no observation of pulled-out, realigned, or naked rCFs, which indicates good machinability. Adding GNPs also suppressed the formation of voids around the rCFs during the dry milling. This study provides insights into machining 3D-printed polymer composites to enhance their surface quality. Full article
Show Figures

Figure 1

50 pages, 5366 KB  
Review
Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review
by Lahiru Wijewickrama, Janitha Jeewantha, G. Indika P. Perera, Omar Alajarmeh and Jayantha Epaarachchi
Polymers 2025, 17(17), 2345; https://doi.org/10.3390/polym17172345 - 29 Aug 2025
Cited by 2 | Viewed by 3392
Abstract
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus [...] Read more.
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus on manufacturing methods, durability challenges, and future innovations. Thermoset polymer composites, particularly those with epoxy and vinyl ester matrices, continue to dominate marine applications due to their mechanical robustness and processing maturity. In contrast, thermoplastic composites such as Polyether Ether Ketone (PEEK) and Polyether Ketone Ketone (PEKK) offer advantages in recyclability and hydrothermal performance but are hindered by higher processing costs. The review evaluates the performance of various fiber types, including glass, carbon, basalt, and aramid, highlighting the trade-offs between cost, mechanical properties, and environmental resistance. Manufacturing processes such as vacuum-assisted resin transfer molding (VARTM) and automated fiber placement (AFP) enable efficient production but face limitations in scalability and in-field repair. Key durability concerns include seawater-induced degradation, moisture absorption, interfacial debonding, galvanic corrosion in FRP–metal hybrids, and biofouling. The paper also explores emerging strategies such as self-healing polymers, nano-enhanced coatings, and hybrid fiber architectures that aim to improve long-term reliability. Finally, it outlines future research directions, including the development of smart composites with embedded structural health monitoring (SHM), bio-based resin systems, and standardized certification protocols to support broader industry adoption. This review aims to guide ongoing research and development efforts toward more sustainable, high-performance marine composite systems. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

14 pages, 4168 KB  
Article
Manufacturing and Recycling of 3D-Printed All-Polymer Composites
by Itsari Phuangmali, Yao Xu, Leyu Lin and Alois K. Schlarb
Recycling 2025, 10(5), 168; https://doi.org/10.3390/recycling10050168 - 26 Aug 2025
Viewed by 1022
Abstract
The reinforcement of polymers with carbon or glass fibers is the reason for their incredible success as ideal lightweight construction materials. However, one challenge with these materials is their recyclability. True recycling, meaning achieving the same performance level as virgin material, is impossible, [...] Read more.
The reinforcement of polymers with carbon or glass fibers is the reason for their incredible success as ideal lightweight construction materials. However, one challenge with these materials is their recyclability. True recycling, meaning achieving the same performance level as virgin material, is impossible, especially with mechanical recycling processes, because the reinforcement structure is destroyed. Additionally, thermoplastics undergo molecular degradation and changes in the properties of the materials. Therefore, polymer fiber-reinforced plastics may have an advantage here, as polymer fibers are much more flexible than glass or carbon fibers. We investigated the production and recyclability of microfibrillar composites (MFCs) made of polypropylene (PP) and polyethylene terephthalate (PET). The samples were produced using extrusion-based 3D printing with different parameters, and their morphology and mechanical properties were examined. The samples were crushed, and the residue was fed back into the production line. The process was repeated with the samples produced from regenerate. The results prove that the printing process can be controlled to ensure the presence of fibers in samples made from recycled material. However, it is important to note that the mechanical properties decrease with each additional processing cycle. The choice of manufacturing parameters, especially in 3D printing, is crucial for achieving good properties. Full article
Show Figures

Figure 1

22 pages, 6771 KB  
Article
Enhancing Through-Thickness Electrical Conductivity in Recycled Carbon Fiber-Reinforced Polymer Composites Using Machining Waste
by Denise Bellisario, Fabrizio Quadrini, Francesco Napolitano and Pietro Russo
J. Compos. Sci. 2025, 9(8), 451; https://doi.org/10.3390/jcs9080451 - 21 Aug 2025
Viewed by 1165
Abstract
CFRP (carbon fiber-reinforced polymer) production in Europe is approximately 10,000 metric tons annually, and according to the UK authorities, approximately 35% of end-of-life CFRP waste is currently landfilled. The authors propose a novel recycling process for industrial CFRP waste particles to produce the [...] Read more.
CFRP (carbon fiber-reinforced polymer) production in Europe is approximately 10,000 metric tons annually, and according to the UK authorities, approximately 35% of end-of-life CFRP waste is currently landfilled. The authors propose a novel recycling process for industrial CFRP waste particles to produce the core of a sandwich CFRP panel through the direct molding method. Industrial CFRP powder from grinding operations was collected, sieved and molded into square panels with and without external skins of virgin CFRP prepreg. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analysis revealed thermal activation (~70 °C), indicating potential for reprocessing. This study proposes a novel recycling route that directly molds industrial CFRP grinding waste into the core of sandwich structures, with or without virgin CFRP prepreg skins. Key findings: thermal re-processability was confirmed through TGA and DSC, showing activation near 70 °C; electrical conductivity reached 0.045 S/cm through the thickness in sandwich panels, with recycled cores maintaining comparable conductivity (0.04 S/cm); mechanical performance was improved significantly with prepreg skins, as evidenced by three-point bending tests showing enhanced stiffness and strength. These results demonstrate the potential of recycled CFRP waste in multifunctional structural applications, supporting circular economy goals in composite materials engineering. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 3437 KB  
Article
Sustainable Acrylic Thermoplastic Composites via Vacuum-Assisted Resin Infusion Molding: Evaluation and Comparison of Fabrics and Recycled Non-Woven Carbon Fiber as Reinforcement
by Sara Taherinezhad Tayebi, Tommaso Pini, Bruno Caruso, Matteo Sambucci, Irene Bavasso, Fabrizio Sarasini, Jacopo Tirillò and Marco Valente
J. Compos. Sci. 2025, 9(8), 441; https://doi.org/10.3390/jcs9080441 - 17 Aug 2025
Viewed by 1264
Abstract
Recently, environmental issues have compelled people worldwide to pursue sustainability and adopt circular economy practices across all engineering sectors, including polymer engineering and composite fabrication. A transition towards fabric-reinforced thermoplastics (FRTPs), a greener solution, has been recommended in recent years. On the other [...] Read more.
Recently, environmental issues have compelled people worldwide to pursue sustainability and adopt circular economy practices across all engineering sectors, including polymer engineering and composite fabrication. A transition towards fabric-reinforced thermoplastics (FRTPs), a greener solution, has been recommended in recent years. On the other hand, utilizing recovered reinforcing phases, such as recycled carbon fiber (rCF), has attracted tremendous attention. In this framework, the aim of this research is to investigate the performance of acrylic-based FRTPs (Elium® resin developed by Arkema). Woven virgin carbon fiber (vCF) and non-woven recycled carbon fiber (rCF) fabrics were used as reinforcement architectures for the fabrication of composites via resin infusion. The optimized formulation selected for the matrix showed flexural modulus and flexural strength of 5 GPa and 78 MPa, respectively. Composites prepared with woven vCF reached 36 GPa and 620 MPa values of flexural modulus and strength, respectively. The study of non-woven fabric is of particular interest, because the web is composed of recycled carbon fibers obtained from end-of-life (EoL) thermoset composite components. The results were promising; the flexural modulus reached 8 GPa, and the flexural strength was 113 MPa. Improvements are anticipated, especially in the parameters and conditions of the molding process. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

18 pages, 8702 KB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 - 2 Aug 2025
Cited by 2 | Viewed by 1162
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

24 pages, 2554 KB  
Review
Technical Chains in Civil and Urban Engineering: Review of Selected Solutions, Shaping, Geometry, and Dimensioning
by Krzysztof Adam Ostrowski and Mariusz Spyrowski
Appl. Sci. 2025, 15(13), 7600; https://doi.org/10.3390/app15137600 - 7 Jul 2025
Cited by 1 | Viewed by 1045
Abstract
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The [...] Read more.
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The study includes a detailed classification of chains by type, material, and application, ranging from steel-based lifting and transport chains to lightweight, corrosion-resistant polymer types. Manufacturing methods and connection techniques are also discussed, underscoring the importance of proper assembly for mechanical reliability. Special attention is given to the role of materials, particularly the emergence of polymer composites reinforced with glass or carbon fibers, which offer promising alternatives to conventional metals. Although such composites exhibit advantageous properties—such as low weight, corrosion resistance, and energy efficiency—their application remains limited, insufficient load-bearing capacity, and the absence of standardized design guidelines. The review identifies critical knowledge gaps in the field, especially concerning shaping, dimensioning, and normative requirements for polymer-based load-bearing chains. It also highlights the lack of focused research on chain-specific geometries and the need for numerical simulations to optimize link design. The article concludes by emphasizing the importance of developing sustainable, durable, and standardized chain systems—particularly those utilizing recycled or novel materials—to meet both technical demands and environmental goals. This work supports future innovation in the design of advanced chain structures and provides a foundation for expanding the use of high-performance composites in civil and urban engineering applications. Full article
Show Figures

Figure 1

22 pages, 7385 KB  
Article
Axial Performances of CFRP-PVC Confined RAC Columns: Experimental and Numerical Study
by Zidong Hu, Ruoyu Cao, Qiaoyun Wu, Cheng Zhao, Jie Li and Xuyong Chen
Buildings 2025, 15(12), 2089; https://doi.org/10.3390/buildings15122089 - 17 Jun 2025
Viewed by 568
Abstract
The use of recycled aggregate concrete (RAC) in construction mitigates environmental pollution by repurposing demolition waste, but its lower compressive strength compared to natural aggregate concrete (NAC) limits broader application. Although carbon fiber reinforced polymer (CFRP) composites and polyvinyl chloride (PVC) tubes have [...] Read more.
The use of recycled aggregate concrete (RAC) in construction mitigates environmental pollution by repurposing demolition waste, but its lower compressive strength compared to natural aggregate concrete (NAC) limits broader application. Although carbon fiber reinforced polymer (CFRP) composites and polyvinyl chloride (PVC) tubes have individually been shown to improve concrete strength and ductility, existing studies focus on fully wrapped CFRP jackets on NAC columns and do not systematically explore CFRP–PVC hybrid confinement using strips on RAC. To address this research gap, this study investigates the axial compressive behavior of CFRP–PVC–RAC columns by varying CFRP strip width (from 25 to 75 mm), strip spacing (from 31 to 77.5 mm), and the number of CFRP layers (one to nine) over a central PVC tube. Axial compression tests reveal that specimens with a central CFRP strip width equal to or greater than 75 mm achieve peak loads up to 1331 kN and that, after rupture of the central strip, the remaining strips continue to carry load, producing a more gradual stress–strain decline and enhanced ductility compared to fully wrapped controls (peak load 1219 kN). These results show that CFRP–PVC composites enhance the axial compressive strength and ductility of RAC columns. The confinement mechanism increases the ultimate axial strain and redistributes transverse stresses, delaying brittle failure and improving deformation capacity. When two or more CFRP layers are applied, strip width and spacing affect axial stress by no more than three percent. Increasing layers from one to four raises axial strength by approximately 23 percent, whereas adding layers beyond four yields diminishing returns, with less than a six percent increase. Finally, a multilayer lateral confined pressure formula is derived and validated against thirty-two specimens, exhibiting errors no greater than three percent and accurately predicting effective confinement. These findings offer practical guidance for optimizing strip dimensions and layering in CFRP–PVC reinforcement of RAC columns, achieving material savings without compromising performance. Full article
Show Figures

Figure 1

38 pages, 4607 KB  
Review
Rubber-Based Sustainable Textiles and Potential Industrial Applications
by Bapan Adak, Upashana Chatterjee and Mangala Joshi
Textiles 2025, 5(2), 17; https://doi.org/10.3390/textiles5020017 - 8 May 2025
Cited by 2 | Viewed by 4882
Abstract
This review explores the evolving landscape of sustainable textile manufacturing, with a focus on rubber-based materials for various industrial applications. The textile and rubber industries are shifting towards eco-friendly practices, driven by environmental concerns and the need to reduce carbon footprints. The integration [...] Read more.
This review explores the evolving landscape of sustainable textile manufacturing, with a focus on rubber-based materials for various industrial applications. The textile and rubber industries are shifting towards eco-friendly practices, driven by environmental concerns and the need to reduce carbon footprints. The integration of sustainable textiles in rubber-based products, such as tires, conveyor belts, and defense products, is becoming increasingly prominent. This review discusses the adoption of natural fibers like flax, jute, and hemp, which offer biodegradability and improved mechanical properties. Additionally, it highlights sustainable elastomer sources, including natural rubber from Hevea brasiliensis and alternative plants like Guayule and Russian dandelion, as well as bio-based synthetic rubbers derived from terpenes and biomass. The review also covers sustainable additives, such as silica fillers, nanoclay, and bio-based plasticizers, which enhance performance while reducing environmental impact. Textile–rubber composites offer a cost-effective alternative to traditional fiber-reinforced polymers when high flexibility and impact resistance are needed. Rubber matrices enhance fatigue life under cyclic loading, and sustainable textiles like jute can reduce environmental impact. The manufacturing process involves rubber preparation, composite assembly, consolidation/curing, and post-processing, with precise control over temperature and pressure during curing being critical. These composites are versatile and robust, finding applications in tires, conveyor belts, insulation, and more. The review also highlights the advantages of textile–rubber composites, innovative recycling and upcycling initiatives, addressing current challenges and outlining future perspectives for achieving a circular economy in the textile and rubber sectors. Full article
Show Figures

Graphical abstract

16 pages, 8231 KB  
Article
A Study on the Effect of an Oxidizing Atmosphere During the Recycling of CFRP by Pyrolysis
by Cynthie Dega, Ali Jadidinia and Rachid Boukhili
Fibers 2025, 13(5), 58; https://doi.org/10.3390/fib13050058 - 7 May 2025
Cited by 1 | Viewed by 2088
Abstract
Composite materials are increasingly in demand. However, challenges such as high raw-material costs and complicated waste management impede their adoption. Overcoming these obstacles requires efficient recycling methods. Pyrolysis effectively recycles carbon fiber-reinforced polymers (CFRPs). This study proposes a cost-effective CFRP recovery approach utilizing [...] Read more.
Composite materials are increasingly in demand. However, challenges such as high raw-material costs and complicated waste management impede their adoption. Overcoming these obstacles requires efficient recycling methods. Pyrolysis effectively recycles carbon fiber-reinforced polymers (CFRPs). This study proposes a cost-effective CFRP recovery approach utilizing conventional ovens to minimize recycling expenses and maximize reclaimed-product value. Pyrolysis was conducted under atmospheric conditions at 450–600 °C, lasting 1–6 h at each temperature. It was optimal at 2.5 h and 500 °C. Higher temperatures caused fiber degradation, and lower temperatures excessively prolonged duration. After determining the optimal conditions, composite plates were produced using recycled carbon fibers and a vacuum-assisted resin infusion process. Subsequent physical characterization and mechanical tests were conducted on these plates to assess the recycled-CFRP properties. The recovered tensile strength and tensile modulus were 88% and 97% that of virgin carbon fibers (vCF), respectively. Full article
Show Figures

Figure 1

Back to TopTop