Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (900)

Search Parameters:
Keywords = chimeric antigen receptor T cells (CAR-T)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5801 KB  
Article
A Bidirectional EF1 Promoter System for Armoring CD19 CAR-T Cells with Secreted Anti-PD1 Antibodies
by Asmita Khaniya, Nattarika Khuisangeam, Supannikar Tawinwung, Koramit Suppipat and Nattiya Hirankarn
Int. J. Mol. Sci. 2025, 26(23), 11566; https://doi.org/10.3390/ijms262311566 - 28 Nov 2025
Viewed by 25
Abstract
Chimeric antigen receptor (CAR) T cell therapy for B cell malignancies is often limited by T cell exhaustion, which is frequently driven by the PD-1/PD-L1 immune checkpoint axis. To overcome this, we developed an “armored” CAR-T cell strategy using a novel bidirectional promoter [...] Read more.
Chimeric antigen receptor (CAR) T cell therapy for B cell malignancies is often limited by T cell exhaustion, which is frequently driven by the PD-1/PD-L1 immune checkpoint axis. To overcome this, we developed an “armored” CAR-T cell strategy using a novel bidirectional promoter system. We engineered a single vector to co-express a CD19-specific CAR alongside a secreted anti-PD1 molecule, in either a full-length antibody or a single-chain variable fragment (scFv) format, using the Sleeping Beauty (SB) transposon system. The sequences for the anti-PD1 modules were derived from the clinical antibody nivolumab. Both armored constructs demonstrated robust CAR expression, comparable to or higher than conventional CAR-T cells, and proliferated significantly more than untransfected controls. The engineered cells successfully secreted their anti-PD1 payloads, with the full-length antibody showing more sustained secretion than the scFv. This autocrine blockade resulted in significantly reduced surface PD1 expression on the armored CAR-T cells. Functionally, the anti-PD1-secreting cells exhibited superior cytotoxicity against PD-L1-positive Raji target cells, particularly at low effector-to-target ratios. Critically, in a serial rechallenge assay designed to simulate chronic antigen exposure, both armored CAR-T cell groups showed markedly enhanced proliferation and persistence compared to conventional CAR-T cells, which failed to expand after repeated stimulation. Our findings validate the bidirectional EF1 promoter as an efficient system for generating multi-functional T cells and demonstrate that armoring CAR-T cells with secreted anti-PD1 antibodies is a potent strategy to enhance their persistence and anti-tumor efficacy. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Figure 1

25 pages, 2062 KB  
Review
Neurofibromatosis Type 1: Genetic Mechanisms and Advances in Therapeutic Innovation
by Yuqing Lu, Manzhu Xu, Xiaojun Chen, Huazhen Xu, Nihao Sun, Karis E. Weisgerber and Ren-Yuan Bai
Cancers 2025, 17(23), 3788; https://doi.org/10.3390/cancers17233788 - 26 Nov 2025
Viewed by 81
Abstract
Mutations in the NF1 gene cause Neurofibromatosis Type 1 (NF1), one of the most common genetic disorders. This gene encodes neurofibromin, a member of the GTPase-activating protein (GAP) family that functions as a negative regulator of RAS signaling. Loss of NF1 function leads [...] Read more.
Mutations in the NF1 gene cause Neurofibromatosis Type 1 (NF1), one of the most common genetic disorders. This gene encodes neurofibromin, a member of the GTPase-activating protein (GAP) family that functions as a negative regulator of RAS signaling. Loss of NF1 function leads to persistent RAS activation and promotes tumor growth. The clinical manifestations of NF1 mainly include pigmentary changes, benign and malignant peripheral nerve sheath tumors, as well as gliomas affecting the central nervous system. Currently, MEK inhibition is the only approved therapy and is primarily effective in controlling plexiform neurofibromas (pNFs). However, more comprehensive treatments are needed to address the full spectrum of NF1 manifestations and malignant transformation. Novel therapeutic strategies, including AAV-based gene therapy aimed at restoring NF1 function, oncolytic herpes simplex virus (oHSV) therapy targeting RAS-dysregulated tumor cells, and chimeric antigen receptor T cell (CAR-T) therapy targeting NF1-associated tumors, are under active investigation. In this review, we explore the genetic mechanisms underlying NF1 and highlight recent advances in therapeutic development with a special focus on AAV-based gene therapies alongside other approaches with recent clinical and translational advancements. Full article
(This article belongs to the Special Issue Advances in Neurofibromatosis)
Show Figures

Figure 1

19 pages, 491 KB  
Review
Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments
by Alex Wade Song and Xiaotong Song
Pharmaceutics 2025, 17(12), 1520; https://doi.org/10.3390/pharmaceutics17121520 - 26 Nov 2025
Viewed by 273
Abstract
Background/Objectives: Chimeric antigen receptor (CAR) T cells have shown remarkable clinical success in certain blood cancers but remain largely ineffective in solid tumors. A major reason for this limitation is the hostile tumor microenvironment, which restricts oxygen and nutrients while producing toxic [...] Read more.
Background/Objectives: Chimeric antigen receptor (CAR) T cells have shown remarkable clinical success in certain blood cancers but remain largely ineffective in solid tumors. A major reason for this limitation is the hostile tumor microenvironment, which restricts oxygen and nutrients while producing toxic metabolites that suppress immune cell activity. This review aims to examine how targeted metabolic reprogramming can overcome these barriers and improve CAR T cell performance. Methods: We evaluated preclinical and translational studies that focused on engineering CAR T cells to resist hypoxia, improve nutrient utilization, reduce metabolic exhaustion, and counteract suppressive metabolites in solid tumors. Results: Emerging strategies include engineering resistance to low oxygen and high lactate, enhancing nutrient uptake through transporter overexpression, and blocking inhibitory pathways such as those driven by adenosine. These approaches improve CAR T cell persistence, memory formation, and cytotoxic function in challenging tumor environments. Conclusions: Integrating metabolic reprogramming with conventional CAR design is essential to unlock the full potential of CAR T therapy against solid tumors. Continued innovation in this area will be critical for translating laboratory advances into effective clinical treatments. Full article
Show Figures

Figure 1

16 pages, 1162 KB  
Review
Recurrent Limitations of CAR-T Therapy in Gliomas: Evidence from Preclinical and Phase I Clinical Studies
by Jessica Bria, Andrea Filardo, Anna Di Vito, Attilio Della Torre, Angelo Lavano, Isabella Coscarella, Emanuela Chiarella, Emanuela Procopio, Maria Teresa Egiziano, Prospero Longo and Domenico La Torre
Int. J. Mol. Sci. 2025, 26(23), 11435; https://doi.org/10.3390/ijms262311435 - 26 Nov 2025
Viewed by 188
Abstract
In recent years, the development of new immunotherapy strategies has been a significant breakthrough in cancer treatment. Among these, engineered T cell therapy with chimeric antigen receptors (CAR-T) has produced notable clinical results, especially in hematological malignancies. This success has sparked growing interest [...] Read more.
In recent years, the development of new immunotherapy strategies has been a significant breakthrough in cancer treatment. Among these, engineered T cell therapy with chimeric antigen receptors (CAR-T) has produced notable clinical results, especially in hematological malignancies. This success has sparked growing interest in extending the application of CAR-Ts to solid tumors, including gliomas. Gliomas—in particular, glioblastoma multiforme (GBM)—are among the most aggressive primary brain tumors, associated with a poor prognosis and a median survival of approximately one year after diagnosis. However, the translation of CAR-T therapy to gliomas presents significant challenges, related to factors such as tumor heterogeneity, presence of the blood–brain barrier (BBB), and a strongly immunosuppressive tumor environment. Despite this, in recent years, there has been an intensification of research efforts aimed at the identification of new antigenic targets and the development of preclinical models—both in vitro and in vivo—to evaluate the efficacy and safety of CAR-Ts in the treatment of gliomas. Despite promising results, currently available models still have essential limitations in faithfully reproducing the complexity of human gliomas. This review aims to offer an exhaustive overview of the most recent preclinical studies on CAR-T therapy in gliomas, with a focus on the identification of molecular targets, experimental strategies aimed at overcoming immunological barriers, and translational challenges that need to be addressed for future successful clinical implementation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

33 pages, 3055 KB  
Review
CAR Therapies: Ex Vivo and In Vivo Potential of Exosomes and Biomimetic Nanoparticles
by Ekaterina Tkachenko, Natalia Ponomareva, Konstantin Evmenov, Artyom Kachanov, Sergey Brezgin, Anastasiya Kostyusheva, Vladimir Chulanov, Elena Volchkova, Alexander Lukashev, Dmitry Kostyushev and Peter Timashev
Cancers 2025, 17(23), 3766; https://doi.org/10.3390/cancers17233766 - 25 Nov 2025
Viewed by 185
Abstract
Chimeric antigen receptor (CAR) therapy represents a promising modality for treating cancer and autoimmune diseases, employing genetically engineered immune cells. Despite remarkable clinical outcomes, its broad implementation is constrained by significant challenges, including toxicity, limited specificity, and complexities associated with genetic material delivery. [...] Read more.
Chimeric antigen receptor (CAR) therapy represents a promising modality for treating cancer and autoimmune diseases, employing genetically engineered immune cells. Despite remarkable clinical outcomes, its broad implementation is constrained by significant challenges, including toxicity, limited specificity, and complexities associated with genetic material delivery. Biological nanoparticles, such as exosomes, virus-like particles, and biomimetic nanostructures, possess unique properties that can address these limitations. These nanoplatforms enable targeted delivery of genetic constructs, mitigate the risk of cytokine release syndrome, modulate CAR cell activity, and can function as biosensors. Furthermore, they facilitate non-viral, in vivo CAR cell engineering, streamlining the process compared to conventional ex vivo methods. The advancement of in vivo strategies underscores the critical need to overcome toxicity hurdles inherent to current CAR-T platforms. In this context, exosomes and biomimetic nanoparticles offer considerable potential due to their innate biocompatibility, programmability, and versatile cargo capacity for payloads like mRNA and circular RNA. This review comprehensively outlines contemporary genetic platforms for CAR expression and examines the opportunities presented by biological delivery vehicles. It focuses on recent achievements and revisits fundamental CAR principles through the lens of emerging technologies aimed at confronting persistent challenges in the field. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

31 pages, 1586 KB  
Review
State of the Art of CAR-NK Cell Therapy in Multiple Myeloma: A Comprehensive Review of Cell Sources and Target Antigens
by Asya Bastrich, Kamilla Vinogradova, Diana Mokrousova, Anna Efremova, Oleg Makhnach and Dmitry Goldshtein
Int. J. Mol. Sci. 2025, 26(22), 11224; https://doi.org/10.3390/ijms262211224 - 20 Nov 2025
Viewed by 641
Abstract
Multiple myeloma (MM) is a clonal malignancy of plasma cells that remains largely incurable despite major advances in proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. Chimeric antigen receptor (CAR)-engineered immune cells have transformed the therapeutic landscape, but CAR-T cell therapy faces challenges such [...] Read more.
Multiple myeloma (MM) is a clonal malignancy of plasma cells that remains largely incurable despite major advances in proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. Chimeric antigen receptor (CAR)-engineered immune cells have transformed the therapeutic landscape, but CAR-T cell therapy faces challenges such as severe cytokine release syndrome (CRS), neurotoxicity, limited persistence, and logistical complexity. In recent years, natural killer (NK) cells have emerged as a promising platform for next-generation cellular immunotherapy, offering innate antitumor activity, a reduced risk of graft-versus-host disease (GvHD), and the feasibility of “off-the-shelf” allogeneic production. This review summarizes current advances in CAR-NK cell therapy for MM, focusing on two major aspects: the diversity of cell sources—including NK-92, peripheral (PB) and cord blood (CB), and induced pluripotent stem cell (iPSC)-derived NK cells—and the expanding repertoire of target antigens such as BCMA (B-cell maturation antigen), NKG2D, CD38, CD70, SLAMF7, CD138, and GPRC5D. We highlight preclinical and early clinical studies demonstrating potent cytotoxicity, favorable safety profiles, and innovative multi-targeting strategies designed to overcome antigen escape and enhance persistence. Emerging clinical data suggest that CAR-NK cell therapy may combine the specificity of CAR recognition with the inherent safety and versatility of NK biology, offering a potential paradigm shift in the treatment of relapsed or refractory MM. Further clinical validation will determine whether CAR-NK cell therapy can achieve durable remission and complement or surpass current CAR-T modalities. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Graphical abstract

4 pages, 164 KB  
Editorial
Special Issue “Targeting CAR T-Cell Therapy: Molecular Research and Its Future Implication”
by Stella Bouziana
Int. J. Mol. Sci. 2025, 26(22), 10868; https://doi.org/10.3390/ijms262210868 - 9 Nov 2025
Viewed by 980
Abstract
The emergence of chimeric antigen receptor (CAR) T-cell therapy represents a significant milestone in the cellular treatment of cancer [...] Full article
13 pages, 610 KB  
Article
High Rate of Cytokine Release Syndrome-Related Coagulopathy with Low Incidence of Bleeding and Thrombosis in Patients Treated with B-Cell Maturation Antigen (BCMA)-Targeted Chimeric Antigen Receptor T-Cells (CAR-T)
by Ariela Arad, Maya Katz, Eyal Lebel, Yosef Kalish, Miri Assayag, Batia Avni, Shlomo Elias, Sigal Grisariu, Ela Shai, Shlomit Kfir-Erenfeld, Nathalie Asherie, Moshe E. Gatt, Polina Stepensky and Eran Zimran
Cancers 2025, 17(21), 3551; https://doi.org/10.3390/cancers17213551 - 2 Nov 2025
Viewed by 467
Abstract
Background: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated substantial efficacy in relapsed and/or refractory multiple myeloma. While toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) have been well characterized, the incidence [...] Read more.
Background: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated substantial efficacy in relapsed and/or refractory multiple myeloma. While toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) have been well characterized, the incidence and clinical consequences of the coagulopathy associated with CRS remain underexplored. Methods: We conducted a prospective analysis of 108 adult patients with multiple myeloma or light chain amyloidosis treated with the academic anti-BCMA CAR-T HBI0101 in a single-center trial (NCT04720313). Coagulopathy was evaluated via serial fibrinogen measurements, with hypofibrinogenemia defined as <200 mg/dL and severe coagulopathy as <100 mg/dL. Laboratory markers, tocilizumab and blood product use, and thrombotic and bleeding complications were recorded. Patients received a short (3-day) or extended course of enoxaparin thromboprophylaxis as well as fresh frozen plasma in cases of severe coagulopathy. Results: CRS grades 1–3 occurred in 100 patients (93%). Hypofibrinogenemia was observed in 79 patients (73%), including 20 (19%) with severe coagulopathy. Fibrinogen levels were significantly associated with CRS severity (p < 0.001), number of tocilizumab doses (p < 0.001), peak levels of the inflammation markers LDH (p = 0.001) and ferritin (p = 0.006), and neutropenia (p = 0.33). Five thrombotic events (4.6%) and three minor bleeding events (2.7%) occurred within 3 months post-CAR-T infusion and were not associated with degree of coagulopathy or CRS. No cases of major bleeding or fatal thrombosis occurred. Conclusions: CRS-related coagulopathy is common following BCMA-targeted CAR-T treatment and correlates closely with CRS severity. Despite the high rate of laboratory coagulopathy, thrombosis and bleeding events were infrequent, suggesting the benefit of the prophylactic strategies used. Full article
(This article belongs to the Special Issue CAR T-Cell Therapy and Multiple Myeloma)
Show Figures

Figure 1

16 pages, 1568 KB  
Review
CAR-T Cell Therapy in Autoimmune Diseases: Promise, Progress, and Pitfalls
by Alessandro Conforti, Carlos Cifuentes-González, Alarico Ariani, Alberto Lo Gullo and Rupesh Agrawal
Rheumato 2025, 5(4), 15; https://doi.org/10.3390/rheumato5040015 - 31 Oct 2025
Viewed by 799
Abstract
Background: Chimeric Antigen Receptor T-cell (CAR-T) cell therapy has revolutionized cancer treatment and is now being explored as a novel approach to treat refractory autoimmune diseases by targeting autoreactive immune components, especially B cells. Objective: Our aim was to provide a narrative review [...] Read more.
Background: Chimeric Antigen Receptor T-cell (CAR-T) cell therapy has revolutionized cancer treatment and is now being explored as a novel approach to treat refractory autoimmune diseases by targeting autoreactive immune components, especially B cells. Objective: Our aim was to provide a narrative review of the current evidence, mechanisms, efficacy, safety, and future directions of CAR-T cell therapy in autoimmune diseases. Methods: A structured literature search was conducted in MEDLINE via PubMed using keywords such as “CAR-T”, “chimeric antigen receptor T-cell”, “autoimmune diseases”, “lupus”, “rheumatoid arthritis”, “multiple sclerosis”, and “vasculitis”. Studies on CAR-T mechanisms, efficacy, safety, and clinical outcomes were included. Results: CAR-T cell therapies, especially CD19-directed constructs, demonstrated sustained drug-free remission in all patients across early SLE case series (n = 5–7), with normalization of serological markers and improved renal outcomes. Emerging preclinical and early clinical data in rheumatoid arthritis, multiple sclerosis, ANCA-associated vasculitis, juvenile autoimmune diseases, and idiopathic inflammatory myopathies also report clinical improvement and biomarker normalization. Reported adverse events in autoimmune cohorts were limited to mild cytokine release syndrome in a minority of cases, with no severe neurotoxicity or life-threatening infections, suggesting a more favorable safety profile compared to oncology settings. In parallel, next-generation innovations—including dual-target CARs, CAR-Tregs, and molecular safety switches—are advancing toward clinical translation. Conclusions: CAR-T cell therapy is emerging as a transformative strategy for autoimmune disease management, especially in refractory cases. Although initial outcomes are promising, long-term safety, cost-effectiveness, and broader accessibility remain key challenges. Future research should focus on optimizing cell targets, minimizing off-target effects, and improving affordability. Full article
Show Figures

Figure 1

37 pages, 1441 KB  
Review
Soil and Seed: Tumor Microenvironment Nurtures Immunotherapy Resistance and Renewal
by Yiya Li, Qiushi Feng, Yangyang Xia, Lingzi Liao and Shang Xie
Int. J. Mol. Sci. 2025, 26(21), 10547; https://doi.org/10.3390/ijms262110547 - 30 Oct 2025
Viewed by 669
Abstract
Cancer immunotherapy has become a powerful clinical strategy for cancer management, while its efficacy is frequently limited by primary and acquired resistance. The tumor microenvironment (TME) plays a pivotal role in mediating such resistance through multifaceted mechanisms involving cellular, metabolic, mechanical, and microbial [...] Read more.
Cancer immunotherapy has become a powerful clinical strategy for cancer management, while its efficacy is frequently limited by primary and acquired resistance. The tumor microenvironment (TME) plays a pivotal role in mediating such resistance through multifaceted mechanisms involving cellular, metabolic, mechanical, and microbial components. This review systematically examines how the TME contributes to immunotherapy failure. We compare resistance mechanisms common to both immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapies, two cornerstone modalities in clinical practice. Furthermore, we discuss emerging strategies designed to overcome these barriers, including immune microenvironment, stromal normalization, metabolic modulation, and microbiota engineering. By integrating recent preclinical and clinical insights, this review aims to provide a comprehensive framework for understanding and targeting microenvironmental resistance, ultimately facilitating the translation of novel combination therapies into improved patient outcomes. Full article
Show Figures

Figure 1

19 pages, 340 KB  
Review
Mechanisms of Resistance to Novel Immunotherapies in B-Cell Lymphomas: Focus on CAR T and Bispecific Antibodies
by Gloria Arena and Roberto Chiarle
Cancers 2025, 17(21), 3453; https://doi.org/10.3390/cancers17213453 - 28 Oct 2025
Viewed by 944
Abstract
Treatment paradigms for B-cell lymphomas have evolved significantly in the last decades. Nevertheless, the widespread clinical use of immunotherapy has demonstrated that it invariably leads to the development of resistance. This review outlines the underlying molecular mechanisms of resistance associated with emerging immunotherapeutic [...] Read more.
Treatment paradigms for B-cell lymphomas have evolved significantly in the last decades. Nevertheless, the widespread clinical use of immunotherapy has demonstrated that it invariably leads to the development of resistance. This review outlines the underlying molecular mechanisms of resistance associated with emerging immunotherapeutic strategies, including Chimeric Antigen Receptor (CAR) T cell therapy and bispecific antibodies (BsAbs). In high-grade B-cell lymphomas, nearly 50% of patients progress following CAR T treatment due to host-related factors affecting CAR T cell proliferation and persistence, as well as tumor-intrinsic factors, such as loss of CD19 epitope expression, trogocytosis, and other genomic alterations (e.g., CD19 mutations, chromothripsis, APOBEC mutational activity, and deletions of RHOA). Additional genomic and epigenetic events, including mutations, alternative splicing of CD19, and aberrant promoter methylation, further contribute to resistance. BsAbs, representing an off-the-shelf T-cell-redirecting strategy, have recently shown promising single-agent efficacy with a manageable toxicity profile, predominantly characterized by T cell overactivation syndromes. Similarly to CAR T cell therapy, BsAb resistance arises through diverse mechanisms, such as antigen loss, T cell dysfunction (exhaustion and regulatory T cell activation), tumor-intrinsic alterations (e.g., TP53 mutations and MYC amplifications), and immunosuppressive influences from the tumor microenvironment. These findings underscore the complexity of immune evasion in B-cell lymphomas and highlight the ongoing need to optimize immunotherapeutic strategies and develop combination approaches to overcome resistance. Full article
(This article belongs to the Special Issue Advances in B-Cell Lymphoma: From Diagnostics to Cure)
Show Figures

Graphical abstract

10 pages, 2295 KB  
Communication
CD5 Expression in CTCL and Its Implications for Anti-CD5 CAR T-Cell Therapy
by Leena Wardeh, Madeline Williams, Courtney Prestwood, Zachary Wolner and Neda Nikbakht
Int. J. Mol. Sci. 2025, 26(21), 10411; https://doi.org/10.3390/ijms262110411 - 27 Oct 2025
Viewed by 535
Abstract
Cutaneous T-Cell Lymphomas (CTCL) are a heterogenous group of T-cell malignancies in the skin and have poor treatment outcomes in advanced stages. CD5, a surface glycoprotein expressed on most mature T cells, has emerged as a promising target for chimeric antigen receptor (CAR) [...] Read more.
Cutaneous T-Cell Lymphomas (CTCL) are a heterogenous group of T-cell malignancies in the skin and have poor treatment outcomes in advanced stages. CD5, a surface glycoprotein expressed on most mature T cells, has emerged as a promising target for chimeric antigen receptor (CAR) T-cell therapy in systemic T-cell lymphomas. However, its expression profile in CTCL and relevance for targeted therapy remain unclear. Notably, in CTCL, the cell surface expression of receptors, such as CD7 and CD26, tends to become downregulated on the surfaces of malignant T cells In this study, we analyzed single-cell RNA sequencing (scRNA-seq) data from patients at two institutions with mycosis fungoides (MF), the most common subtype of CTCL with a predominantly CD4 phenotype. We utilized 5 patch/plaque MF skin biopsies (majority from early-stage patients), 8 MF tumor biopsies (all from advanced-stage patients), and 8 healthy control biopsies to evaluate lesion-specific CD5 gene expression on CD4 T cells. We found that CD5 was significantly increased in malignant MF CD4 T cells compared to healthy control CD4 T cells (21.1% of MF CD4 T cells expressed CD5 vs. 5.2% of healthy control CD4 T cells, respectively). In subgroup analysis, patch/plaque stage MF biopsies showed higher expression of CD5 in CD4 T cells than tumor stage MF biopsies. Notably, 94.3% of malignant CD4+ T cells in tumor stage MF lesions exhibited complete CD5 loss compared to only 76.6% in patch-plaque MF lesions, suggesting antigen escape in tumor stage disease. These findings demonstrate that CD5 expression in CTCL is dynamic and varies based on lesion type. Our work suggests CD5 may be a viable therapeutic target in MF with patch/plaque presentations but may not be as effective in advanced stages of MF with tumor presentations. This work informs CD5 gene expression in MF based on clinical lesion type and further information is needed to clarify clinical implications as a future therapeutic target. Full article
(This article belongs to the Special Issue Study on the Microenvironment in Lymphoma)
Show Figures

Figure 1

16 pages, 254 KB  
Review
Advanced Neuroimaging and Emerging Systemic Therapies in Glioblastoma: Current Evidence and Future Directions
by Ilona Bar-Letkiewicz, Anna Pieczyńska, Małgorzata Dudzic, Michał Szkudlarek, Krystyna Adamska and Katarzyna Hojan
Biomedicines 2025, 13(11), 2597; https://doi.org/10.3390/biomedicines13112597 - 23 Oct 2025
Viewed by 1035
Abstract
Despite technological progress, glioblastoma (GBM) continues to confer dismal prognoses. Modern neuroimaging methods are assuming an ever greater role in diagnosing and monitoring brain tumors. This review shows current neuroimaging approaches and systemic therapeutic strategies for glioblastoma, with a focus on emerging and [...] Read more.
Despite technological progress, glioblastoma (GBM) continues to confer dismal prognoses. Modern neuroimaging methods are assuming an ever greater role in diagnosing and monitoring brain tumors. This review shows current neuroimaging approaches and systemic therapeutic strategies for glioblastoma, with a focus on emerging and innovative treatments. Advances in multiparametric magnetic resonance imaging—MRI (diffusion, perfusion, and spectroscopy) and novel positron emission tomography (PET) tracers, complemented by radiomics and artificial intelligence (AI), now refine tumor delineation, differentiate progression from treatment effects, and may help predict treatment responses. Maximal safe resection followed by chemoradiotherapy with temozolomide remains the standard, with the greatest benefit seen in O6-methylguanine DNA methyltransferase (MGMT) promoter-methylated tumors. Bevacizumab and other targeted modalities offer mainly progression-free, not overall survival, gains. Immune checkpoint inhibitors (e.g., nivolumab) have not improved survival in unselected GBM, while early multi-antigen CAR-T (chimeric antigen receptor T-cell) strategies show preliminary bioactivity without established durability. While actionable alterations (NTRK fusions and BRAF V600E) justify selective targeted therapy trials, their definitive benefit in classical GBM is unproven. Future priorities include harmonized imaging molecular integration, AI-driven prognostic modeling, novel PET tracers, and strategies to breach or transiently open the blood–brain barrier to enhance drug delivery. Convergence of these domains may convert diagnostic precision into improved patient outcomes. Full article
(This article belongs to the Special Issue Medical Imaging in Brain Tumor: Charting the Future)
30 pages, 1988 KB  
Review
Regulatory T Cell-Based Adoptive Cell Therapy in Autoimmunity
by Eduardo Gozálvez, Adrián Lario, Guillermo Muñoz-Sánchez and Francisco Lozano
Int. J. Mol. Sci. 2025, 26(21), 10340; https://doi.org/10.3390/ijms262110340 - 23 Oct 2025
Viewed by 3094
Abstract
Regulatory T cells (Tregs) are a distinctive subset of CD4+ T cells critical in self-tolerance maintenance to prevent the development of autoimmunity. The mechanisms by which these cells provide immune regulation are numerous and, consequently, deeply involved in the pathogenesis of many [...] Read more.
Regulatory T cells (Tregs) are a distinctive subset of CD4+ T cells critical in self-tolerance maintenance to prevent the development of autoimmunity. The mechanisms by which these cells provide immune regulation are numerous and, consequently, deeply involved in the pathogenesis of many autoimmune disorders. Treg-based adoptive cell transfer (ACT) therapy has generated interest as a novel, promising strategy to restore self-tolerance in autoimmunity. Polyclonal Treg-based ACT therapy was first implemented in clinical trials, presenting adequate safety profiles. Subsequent preclinical studies have shown antigen-specific Tregs to be safer and more effective than polyclonal approaches, so research has recently moved in this direction. Antigen-specificity can be conferred to Tregs by viral transduction of genes coding for engineered T cell receptors (eTCRs) or chimeric antigen receptors (CARs), with encouraging outcomes in different animal models of autoimmunity. This review focuses on the biology of Tregs, as well as on current preclinical and clinical data for Treg-based ACT in the field of autoimmunity. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

45 pages, 3535 KB  
Review
CAR-T Cell Therapy for Prostate Cancer: Current Advances and Future Perspectives
by Maria Luisa Calabrò, Roberta Ettari, Carla Di Chio, Fabiola De Luca, Santo Previti and Maria Zappalà
Biomedicines 2025, 13(10), 2545; https://doi.org/10.3390/biomedicines13102545 - 18 Oct 2025
Viewed by 1815
Abstract
Prostate cancer is the most frequently diagnosed solid-organ malignancy in men worldwide. Metastatic castration-resistant prostate cancer represents a rapidly fatal, end-stage form of the disease for which current therapies remain palliative rather than curative. The advent of chimeric antigen receptor (CAR) T-cell therapy [...] Read more.
Prostate cancer is the most frequently diagnosed solid-organ malignancy in men worldwide. Metastatic castration-resistant prostate cancer represents a rapidly fatal, end-stage form of the disease for which current therapies remain palliative rather than curative. The advent of chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of refractory hematologic malignancies, and a growing number of studies are now exploring its potential in solid tumors. In this review, we first provide a concise overview of current immunotherapeutic strategies for prostate cancer, including checkpoint inhibitors, vaccine-based approaches, and bispecific antibodies. We then focus on the most recent and promising developments in CAR-T cell therapy for this malignancy. Specifically, we examine the key tumor-associated antigens targeted in prostate cancer-directed CAR-T cell therapy and summarize findings from preclinical research as well as ongoing and completed clinical trials. Finally, we discuss the main challenges that limit the efficacy of CAR-T therapy in prostate cancer, such as antigen heterogeneity, immunosuppressive tumor microenvironments, on-target/off-tumor toxicity, limited T-cell persistence, and inefficient trafficking to metastatic lesions, and outline potential strategies to overcome these barriers. Our aim is to define a translational roadmap for advancing CAR-T therapy toward clinical application in patients with metastatic castration-resistant prostate cancer. Full article
(This article belongs to the Special Issue Diagnostic and Therapeutic Challenges of CAR-T Cell Therapy)
Show Figures

Graphical abstract

Back to TopTop