Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = concrete damaged plasticity model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8177 KB  
Article
The Influence of Holes and Beam Sleeves on the Compressive Mechanical Properties of Reinforced Concrete Beam Segments
by Jianjun Ye, Tianlong Wu, Pengfei Xue, Wei Zhao, Kaijun Xu and Song Li
Appl. Sci. 2025, 15(22), 11956; https://doi.org/10.3390/app152211956 - 11 Nov 2025
Abstract
In the newly developed hybrid prefabricated RC-steel structure (SS) foundation pit bracing system, the main braces are the main load-carrying components, which are assembled from standardized prefabricated reinforced concrete beam segments (referred to as beam segments). To facilitate assembly, beam segments are equipped [...] Read more.
In the newly developed hybrid prefabricated RC-steel structure (SS) foundation pit bracing system, the main braces are the main load-carrying components, which are assembled from standardized prefabricated reinforced concrete beam segments (referred to as beam segments). To facilitate assembly, beam segments are equipped with beam sleeves and beam-end connection holes. The holes at the end of the beam can cause stress concentration problems, while the beam sleeve has a reinforcing effect on the end of the beam segment. To investigate the influence of beam-end holes and beam sleeves on the compressive mechanical properties of beam segments, a numerical simulation study was conducted. Taking the beam segment (specification: 4500 mm × 700 mm × 800 mm) used in a certain foundation pit support project as the research object (i.e., specimen), Abacus software was first used to build parameterized models of beam segments with holes and beam sleeves using the concrete damaged plasticity model (CDP) and the steel double-line strengthening model. Then the influence of three factors, namely end face friction coefficient, beam-end holes diameter, and beam sleeve thickness, on the axial compression performance of the beam segment specimens was studied. The results indicated that the axial compressive capacity of specimens without a beam sleeve decreased with increasing hole diameter; the axial compressive bearing capacities of specimens with hole diameters of 35 mm, 40 mm, and 45 mm were 13,300 kN, 12,500 kN, and 12,300 kN, respectively, which are 11.3%, 16.7%, and 18% lower than the compressive bearing capacity of specimens without holes (15,000 kN). When both a beam sleeve and holes were present, the holes had a negligible influence on the compressive capacity, while the beam sleeve played a decisive role. The compressive bearing capacity increased with greater beam sleeve thickness; the peak bearing capacities of the specimens with beam sleeves 5 mm, 10 mm, and 15 mm thick were 16,200 kN, 16,500 kN, and 17,600 kN, respectively. As the end face friction coefficient decreased from 0.6 to 0.1, the location of maximum compressive damage shifted toward the end face of the beam segment, and the area of maximum concrete damage gradually migrated toward the hole locations. The study demonstrates that the confinement effect of the beam sleeve can compensate for the weakening effect caused by the holes and confirms that the designs of holes in beam segment ends and in the beam sleeve can meet safety requirements. Full article
Show Figures

Figure 1

43 pages, 44461 KB  
Article
Energy-Consistent Mapping for Concrete Tensile Softening Within a Framework Combining Concrete Damaged Plasticity and Crack Band Theory
by Mingzhu Chen, Wouter De Corte, Fan Zhang and Luc Taerwe
Buildings 2025, 15(21), 3985; https://doi.org/10.3390/buildings15213985 - 4 Nov 2025
Viewed by 208
Abstract
As concrete exhibits localized strain softening, for example, under tension, fracture-energy consistency is essential for obtaining mesh-insensitive results of finite-element (FE) analyses. Accordingly, element- and structural-level parametric studies of uniaxial tensile behavior are performed within an FE framework coupling the Concrete Damaged Plasticity [...] Read more.
As concrete exhibits localized strain softening, for example, under tension, fracture-energy consistency is essential for obtaining mesh-insensitive results of finite-element (FE) analyses. Accordingly, element- and structural-level parametric studies of uniaxial tensile behavior are performed within an FE framework coupling the Concrete Damaged Plasticity (CDP) model, the Crack Band Theory, and the Newton–Raphson solver in Abaqus. The effects of several CDP parameters and the mesh size are quantified using a sensitivity index (SI). A damage evolution law with several tensile parameters is proposed for energy consistency in addition to scaling of the softening strain. Besides tensile strength, elastic modulus, and an estimated uniaxial stress–strain curve, three key parameters are validated: the ratio between fracture energy from pure tension in the crack band and that from direct-tension tests, and two mesh-independent damage evolution parameters. An inverse calibration is proposed, in which the damage parameters and the fracture-energy ratio are identified in one-element (SI5%) and multi-element models, respectively. With these calibrations, the tensile response of the crack band is obtained, and multi-element analyses achieve mesh insensitivity when meshes are not smaller than the crack-band width. For finer meshes violating continuum assumptions, the initial damage rate parameter is reduced to preserve energy consistency. Full article
Show Figures

Figure 1

20 pages, 5380 KB  
Article
Numerical Assessment of Localized Damage in Pipe-on-Wall Impact Under Pipe Whip Failure Conditions
by Isaac Solomon, Kishorekanna Gunasekaran, Rosa Lo Frano and Gintautas Dundulis
Appl. Sci. 2025, 15(21), 11714; https://doi.org/10.3390/app152111714 - 2 Nov 2025
Viewed by 337
Abstract
High-pressure pipelines in nuclear power plants (NPPs) are prone to structural failures, and the study of their failure behavior is essential to analyze and minimize damage to the surrounding structures and components. The prediction of the extent of damage is also a key [...] Read more.
High-pressure pipelines in nuclear power plants (NPPs) are prone to structural failures, and the study of their failure behavior is essential to analyze and minimize damage to the surrounding structures and components. The prediction of the extent of damage is also a key parameter when designing the surrounding structures. This prediction holds significant importance, since a substantial number of NPPs globally are approaching the 60-year mark in their operational lifespan. Consequently, it becomes imperative to formulate sophisticated methodologies for assessing damage behavior of structures and components under dynamic loading conditions with a more realistic representation of the behavior. This study investigates the damage response resulting from the pipe whip phenomenon in high-pressure pipelines of nuclear power plants through numerical simulations that incorporate damage models for both concrete and steel. The proposed modeling approach was also verified with the results of a ballistics impact study. The finite element modeling (FEM) of the pipe-on-wall-impact (POWI) scenario using ABAQUS helps to implement the damage models of Johnson–Cook (J–C) and Cowper–Symonds (C–S) to steel and the Concrete Damaged Plasticity (CDP) model to concrete using a damage-based approach to determine the extent of damage and failure possibilities. The maximum stresses of the pipe attained 450 MPa for the C–S model and 387 MPa for the J–C model, with the C–S model predicting higher stresses due to its high strain rate sensitivity at extreme loads. By incorporating the damage parameters for the POWI model, a better understanding of the mechanical behavior under impact conditions can be attained. Full article
Show Figures

Figure 1

19 pages, 7213 KB  
Article
Reuse of Solid Bricks in Construction: An Experimental Work
by Erion Luga, Enea Mustafaraj, Emrah Tasdemir, Marco Corradi, Ervis Lika and Erion Periku
Buildings 2025, 15(21), 3935; https://doi.org/10.3390/buildings15213935 - 31 Oct 2025
Viewed by 385
Abstract
This study experimentally and numerically examines the structural and seismic performance of recycled solid-brick masonry infills and load-bearing walls constructed from demolition materials. Solid bricks recovered from demolished structures were reused as infill in reinforced concrete (RC) frames and as standalone walls. Five [...] Read more.
This study experimentally and numerically examines the structural and seismic performance of recycled solid-brick masonry infills and load-bearing walls constructed from demolition materials. Solid bricks recovered from demolished structures were reused as infill in reinforced concrete (RC) frames and as standalone walls. Five full-scale panels, bare, 50% infilled, and 100% infilled frames, were tested under diagonal compression in accordance with ASTM E519-17, simulating in-plane seismic loading. Results showed that fully infilled frames exhibited a 149% increase in diagonal shear strength but a 40% reduction in ductility relative to the bare frame, indicating a trade-off between stiffness and deformation capacity. Finite element simulations using the Concrete Damaged Plasticity (CDP) model reproduced the experimental load–displacement curves with close agreement (within 6–8% in peak load) and captured the main failure patterns. Reusing cleaned demolition bricks reduces the demand for new fired bricks and helps divert construction waste from landfill, contributing to sustainable and circular construction. The findings confirm the potential of recycled masonry for low-carbon and seismic-resilient construction, provided that ductility limitations are appropriately addressed in design. Full article
Show Figures

Figure 1

25 pages, 6415 KB  
Article
Microscopic Numerical Simulation of Compressive Performance of Steel-Recycled PET Hybrid Fiber Recycled Concrete
by Shaolong Guo, Qun Lu, Krzysztof Robert Czech and Julita Krassowska
Buildings 2025, 15(21), 3893; https://doi.org/10.3390/buildings15213893 - 28 Oct 2025
Viewed by 271
Abstract
Numerical simulations, unlike experimental studies, eliminate material and setup costs while significantly reducing testing time. In this study, a random distribution program for steel-recycled polyethylene terephthalate hybrid fiber recycled concrete (SRPRAC) was developed in Python (3.11), enabling direct generation in Abaqus. Mesoscopic simulation [...] Read more.
Numerical simulations, unlike experimental studies, eliminate material and setup costs while significantly reducing testing time. In this study, a random distribution program for steel-recycled polyethylene terephthalate hybrid fiber recycled concrete (SRPRAC) was developed in Python (3.11), enabling direct generation in Abaqus. Mesoscopic simulation parameters were calibrated through debugging and sensitivity analysis. The simulations examined the compressive failure mode of SRPRAC and the influence of different factors. Results indicate that larger recycled coarse aggregate particle sizes intensify tensile and compressive damage in the interfacial transition zone between the coarse aggregate and mortar. Loading rate strongly affects outcomes, while smaller mesh sizes yield more stable results. Stronger boundary constraints at the top and bottom surfaces lead to higher peak stress, peak strain, and residual stress. Failure was mainly distributed within the specimen, forming a distinct X-shaped damage zone. Increasing fiber content reduced the equivalent plastic strain area above the compressive failure threshold, though the effect diminished beyond 1% total fiber volume. During initial loading, steel fibers carried higher tensile stresses, whereas recycled polyethylene terephthalate fibers (rPETF) contributed less. After peak load, tensile stress in rPETF increased significantly, complementing the gradual stress increase in steel fibers. The mesoscopic model effectively captured the stress–strain damage behavior of SRPRAC under compression. Full article
Show Figures

Figure 1

19 pages, 14851 KB  
Article
Investigation on the Evolution Mechanism of the Mechanical Performance of Road Tunnel Linings Under Reinforcement Corrosion
by Jianyu Hong, Xuezeng Liu, Dexing Wu and Jiahui Fu
Buildings 2025, 15(20), 3723; https://doi.org/10.3390/buildings15203723 - 16 Oct 2025
Viewed by 278
Abstract
To clarify the influence of reinforcement corrosion on the mechanical performance of road tunnel linings, localized tests on reinforcement-induced concrete expansion are conducted to identify cracking patterns and their effects on load-bearing behavior. Refined three-dimensional finite element models of localized concrete and the [...] Read more.
To clarify the influence of reinforcement corrosion on the mechanical performance of road tunnel linings, localized tests on reinforcement-induced concrete expansion are conducted to identify cracking patterns and their effects on load-bearing behavior. Refined three-dimensional finite element models of localized concrete and the entire tunnel are developed using the concrete damaged plasticity model and the extended finite element method and validated against experimental results. The mechanical response and crack evolution of the lining under corrosion are analyzed. Results show that in single-reinforcement specimens, cracks propagate perpendicular to the reinforcement axis, whereas in multiple-reinforcement specimens, interacting cracks coalesce to form a π-shaped pattern. The cover-layer crack width exhibits a linear relationship with the corrosion rate. Corrosion leads to a reduction in the stiffness and load-bearing capacity of the local concrete. At the tunnel scale, however, its influence remains highly localized, and the additional deflection exhibits little correlation with the initial deflection. Local corrosion causes a decrease in bending moment and an increase in axial force in adjacent linings; when the corrosion rate exceeds about 15%, stiffness damage and internal force distribution tend to stabilize. Damage and cracks initiate around corroded reinforcement holes, extend toward the cover layer, and connect longitudinally, forming potential spalling zones. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 7277 KB  
Article
Multi-Performance Evolution and Elasto-Plastic Damage Modeling of Basalt Fiber-Reinforced EPS Geopolymer Lightweight Concrete
by Feng Liang, Qingshun Yang and Jutao Tao
Polymers 2025, 17(18), 2471; https://doi.org/10.3390/polym17182471 - 12 Sep 2025
Viewed by 590
Abstract
To elucidate the multi-performance evolution mechanisms of basalt fiber-reinforced lightweight expanded polystyrene geopolymer concrete (LEGC), a two-tiered investigation was conducted. In the first part, a series of LEGC mixtures with varying volume fractions of EPS (10–40%) and basalt fiber (BF) (0.4–0.8%) were designed. [...] Read more.
To elucidate the multi-performance evolution mechanisms of basalt fiber-reinforced lightweight expanded polystyrene geopolymer concrete (LEGC), a two-tiered investigation was conducted. In the first part, a series of LEGC mixtures with varying volume fractions of EPS (10–40%) and basalt fiber (BF) (0.4–0.8%) were designed. Experimental tests were carried out to evaluate density, flowability, compressive strength, flexural strength, and splitting tensile strength. Crack propagation behavior was monitored using DIC-3D speckle imaging. Additionally, X-ray CT scanning revealed the internal clustering of EPS particles, porosity distribution, and crack connectivity within LEGC specimens, while SEM analysis confirmed the bridging effect of basalt fibers and the presence of dense matrix regions. These microstructural observations verified the consistency between the synergistic effects of EPS weakening and fiber reinforcement at the microscale and the macroscopic failure behavior. The results indicated that increasing EPS content led to reduced mechanical strength, whereas the reinforcing effect of basalt fiber followed a rising-then-falling trend. Among all specimens, LEGC20BF06 exhibited the best comprehensive performance, achieving a compressive strength of 40.87 MPa and a density of 1747.6 kg/m3, thus meeting the criteria for structural lightweight concrete. In the second part, based on the experimental data, predictive models were developed for splitting tensile and flexural strengths using compressive strength as a reference, as well as a dual-factor model incorporating EPS and fiber contents. Both models were validated and demonstrated high predictive accuracy. Furthermore, a splitting tensile elasto-plastic damage constitutive model was proposed based on composite mechanics and energy dissipation theory. The model showed excellent agreement with experimental stress–strain curves, with all fitting coefficients of determination (R2) exceeding 0.95. These findings offer robust theoretical support for the performance optimization of LEGC and its application in green construction and prefabricated structural systems. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

31 pages, 10806 KB  
Article
Study on the Mechanical Behavior of a Large-Segment Fully Prefabricated Subway Station During the Construction Process
by Zhongsheng Tan, Yuanzhuo Li, Xiaomin Fan and Jian Wang
Appl. Sci. 2025, 15(18), 9941; https://doi.org/10.3390/app15189941 - 11 Sep 2025
Viewed by 499
Abstract
In response to issues of long construction cycles, high pollution, and labor shortages in traditional cast in situ subway station construction, a refined 3D model of a large-segment prefabricated subway station was established using ABAQUS software 2024, with mechanical behavior throughout the construction [...] Read more.
In response to issues of long construction cycles, high pollution, and labor shortages in traditional cast in situ subway station construction, a refined 3D model of a large-segment prefabricated subway station was established using ABAQUS software 2024, with mechanical behavior throughout the construction process studied based on the Shenzhen Huaxia Station project case. The model incorporates a concrete inelastic damage constitutive model and a steel elastic–plastic model, accurately simulates key components, including dry joints of mortise–tenon grooves, prestressed reinforcement, and bolted connections, and implements a seven-phase construction sequence. Research findings indicate the following: (1) During component assembly, the roof vault settlement remains ≤3.8 mm, but backfilling significantly increases displacements (roof settlement reaches 45 mm, middle slab deflection measures 66.91 mm). (2) Longitudinal mortise–tenon joints develop stress concentrations due to stiffness disparities, with mid-column installation slots identified as vulnerable zones exhibiting maximum Von Mises stress of 32 MPa. (3) Mid-column eccentricity induces structural asymmetry, causing increased deflection in longer-span middle slabs, corbel contact stress differentials up to 6 MPa, and bolt tensile stresses exceeding 1.1 GPa. (4) The arched roof effectively transfers loads via three-hinged arch mechanisms, though spandrel horizontal displacement triggers 5 cm rebound in diaphragm wall displacement. Conclusions confirm overall the stability of the prefabricated structure while recommending the optimization of member stiffness matching, avoidance of asymmetric designs, and localized reinforcement for mortise–tenon edges and mid-column joints. Results provide valuable references for analogous projects. Full article
Show Figures

Figure 1

20 pages, 11441 KB  
Article
Mechanism and Optimized Design Methodology of Steel Plate Reinforcement for Tunnel Lining Void Zones
by Shuai Shao, Yimin Wu, Helin Fu and Jiawei Zhang
Materials 2025, 18(17), 4204; https://doi.org/10.3390/ma18174204 - 8 Sep 2025
Viewed by 633
Abstract
Voids behind tunnel linings are common hidden defects in underground engineering, leading to reduced structural capacity and potential safety hazards. To address the deficiencies in the understanding of the mechanism and the optimization of design of the existing steel plate reinforcement methods, this [...] Read more.
Voids behind tunnel linings are common hidden defects in underground engineering, leading to reduced structural capacity and potential safety hazards. To address the deficiencies in the understanding of the mechanism and the optimization of design of the existing steel plate reinforcement methods, this study systematically investigates the reinforcement mechanisms and proposes refined design strategies through numerical simulations and experimental validation. First, a comparative analysis of the Concrete Damage Plasticity (CDP) model and the Extended Finite Element Method (XFEM) revealed that the CDP model exhibits superior accuracy and computational efficiency in simulating large-scale void linings. Second, the effectiveness of different reinforcement schemes (chemical anchor bolts alone, structural adhesive alone, and combined systems) was evaluated, demonstrating that structural adhesive dominates stress transfer, while chemical anchor bolts primarily prevent plate detachment. Through further optimization simulations of the steel plate spacing, it was found that a spacing of 0.25 m can balance the reinforcement effect and cost. This spacing restricts the maximum principal stress (1.83 MPa) below the tensile strength of concrete while essentially eliminating damage to the lower surface of the lining. An optimized steel plate reinforcement structure was ultimately proposed. By reducing the number of chemical anchor bolts and decreasing their size (with only M12 chemical anchor bolts arranged at the edges), local damage is minimized while maintaining reinforcement efficiency. The research results provide theoretical support and engineering guidance for the safe repair of tunnel void areas. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 6272 KB  
Article
Based-Performance Evaluation of Partial Staggered-Story RC Frame Building Considering Confinement Coefficients of Steel Tube-Reinforced Concrete Columns
by Junfu Tong, Long Guo, Shuyun Zhang, En Wang, Jianbo Liu and Qing Qin
Buildings 2025, 15(17), 3193; https://doi.org/10.3390/buildings15173193 - 4 Sep 2025
Viewed by 466
Abstract
Compared with conventional RC frame buildings, staggered-story frame buildings are prone to the formation of short columns due to the vertical staggering of beam members, which exerts an adverse impact on the seismic performance of the building. Therefore, steel tube-reinforced concrete (ST-RC) columns [...] Read more.
Compared with conventional RC frame buildings, staggered-story frame buildings are prone to the formation of short columns due to the vertical staggering of beam members, which exerts an adverse impact on the seismic performance of the building. Therefore, steel tube-reinforced concrete (ST-RC) columns are usually adopted to address the issue of the insufficient ductility of short columns. For this purpose, to investigate the seismic performance of partial staggered-story RC frame buildings, an elastic–plastic model is established based on a specific practical building, with ST-RC columns installed in the staggered-story area. By varying the confinement coefficients of the ST-RC columns (1.087, 1.152, 1.224, and 1.307) and classifying the member-level performance states, the seismic performance of ST-RC columns in staggered-story buildings under different confinement coefficients is evaluated. The research results indicate the following: in the statistical analysis of the performance states of the positive sections of the ST-RC columns, the degree of damage of the ST-RC columns first decreases and then increases sharply with an increase in the confinement coefficient, and the member damage is minimized when the confinement coefficient is 1.224. In the statistical analysis of the performance states of the inclined sections of the ST-RC columns, the damage state of the ST-RC columns shows a decreasing trend as the confinement coefficient increases; when the confinement coefficients are 1.224 and 1.307, the ST-RC columns are completely in the elastic state. With an increase in the confinement coefficient, the shear force borne by the ST-RC columns first increases and then decreases, while the tensile strain and compressive strain generally show a decreasing trend. When the confinement coefficient is 1.224, the tensile strain and compressive strain of the ST-RC columns are the smallest. Therefore, when arranging ST-RC columns in staggered-story buildings, it is necessary to select an appropriate confinement coefficient according to the actual project conditions to maximize the ductility of the short columns. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3041 KB  
Article
Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties
by Ali Jahami, Hektor Frangieh, Joseph Assaad, Ahmad Alkhatib, Cigdem Avci-Karatas and Nicola Chieffo
Buildings 2025, 15(17), 3185; https://doi.org/10.3390/buildings15173185 - 4 Sep 2025
Viewed by 740
Abstract
This study presents a rigorous experimental and numerical investigation of the synergistic effect of metakaolin (MK) and waste glass (WG) on the structural performance of reinforced concrete (RC) beams without stirrups. A two-phase methodology was adopted: (i) optimization of MK and WG replacement [...] Read more.
This study presents a rigorous experimental and numerical investigation of the synergistic effect of metakaolin (MK) and waste glass (WG) on the structural performance of reinforced concrete (RC) beams without stirrups. A two-phase methodology was adopted: (i) optimization of MK and WG replacement levels through concrete-equivalent mortar mixtures and (ii) evaluation of the fresh and hardened properties of concrete, including compressive and tensile strengths, elastic modulus, sorptivity, and beam shear capacity. Five beam groups incorporating up to 30% MK, 15% WG, and 1% steel fiber were tested under four-point bending. The results demonstrated that MK enhanced compressive strength (up to 22%), WG improved workability but reduced ductility, and the combined system achieved a 13% increase in shear strength relative to the control. Steel fibers further restored ductility, increasing the ductility index from 1.338 for WG-only beams to 2.489. Finite Element Modeling (FEM) using ABAQUS with the Concrete Damage Plasticity (CDP) model reproduced experimental (EXP) load–deflection responses, peak loads, and crack evolution with high fidelity. This confirmed the predictive capability of the numerical framework. By integrating material-level optimization, structural-scale testing, and validated FEM simulations, this study provides robust evidence that MK–WG concrete, especially when fiber-reinforced, delivers mechanical, durability, and structural performance improvements. These findings establish a reliable pathway for incorporating sustainable cementitious blends into design-oriented applications, with direct implications for the advancement of performance-based structural codes. Full article
Show Figures

Figure 1

18 pages, 4547 KB  
Article
The Effect of Geometric and Material Nonlinearities on the Development of Membrane Resistance in Reinforced Concrete Flat Slab–Column Buildings
by Sylwester Walach, Seweryn Kokot and Juliusz Kus
Materials 2025, 18(17), 4053; https://doi.org/10.3390/ma18174053 - 29 Aug 2025
Viewed by 687
Abstract
This article presents a numerical study of the influence of applied nonlinearities on the response of a flat slab–column structure under progressive collapse conditions. A key aspect of the work is the extension of nonlinear static analysis by considering cases of material nonlinearity [...] Read more.
This article presents a numerical study of the influence of applied nonlinearities on the response of a flat slab–column structure under progressive collapse conditions. A key aspect of the work is the extension of nonlinear static analysis by considering cases of material nonlinearity combined with both linear and nonlinear geometry, using a corotational formulation and a damage-based elasto-plastic concrete model. A multi-layer shell element implemented in the OpenSees platform is used to distinguish between the strength characteristics of the concrete and reinforcement, with particular attention given to the modeling of the slab–column connection in nonlinear analyzes involving both shell and beam elements. The applied vertical pushover analysis enabled the derivation of load–displacement curves and the identification of the sequence in which plastic hinges can be formed. The development of membrane action resistance, expressed through the formation of compressive and tensile rings, is observed numerically when both material and geometric nonlinearities are simultaneously considered. Moreover, the transition from compressive membrane action to tensile membrane action occurs once the deflections reach the value equal to the effective depth of the slab. This insight may serve as an important guideline for the development of future revisions to design standards related to progressive collapse. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 3215 KB  
Article
Advanced Hybrid Modeling of Cementitious Composites Using Machine Learning and Finite Element Analysis Based on the CDP Model
by Elif Ağcakoca, Sebghatullah Jueyendah, Zeynep Yaman, Yusuf Sümer and Mahyar Maali
Buildings 2025, 15(17), 3026; https://doi.org/10.3390/buildings15173026 - 25 Aug 2025
Viewed by 786
Abstract
This study aims to investigate the mechanical behavior of cement mortar and concrete through a hybrid approach that integrates artificial intelligence (AI) techniques with finite element modeling (FEM). Support Vector Machine (SVM) models with Radial Basis Function (RBF) and polynomial kernels, along with [...] Read more.
This study aims to investigate the mechanical behavior of cement mortar and concrete through a hybrid approach that integrates artificial intelligence (AI) techniques with finite element modeling (FEM). Support Vector Machine (SVM) models with Radial Basis Function (RBF) and polynomial kernels, along with Multilayer Perceptron (MLP) neural networks, were employed to predict the compressive strength (Fc) and flexural strength (Fs) of cement mortar incorporating nano-silica (NS) and micro-silica (MS). The dataset comprises 89 samples characterized by six input parameters: water-to-cement ratio (W/C), sand-to-cement ratio (S/C), nano-silica-to-cement ratio (NS/C), micro-silica-to-cement ratio (MS/C), and curing age. Simultaneously, the axial compressive behavior of C20-grade concrete was numerically simulated using the Concrete Damage Plasticity (CDP) model in ABAQUS, with stress–strain responses benchmarked against the analytical models proposed by Mander, Hognestad, and Kent–Park. Due to the inherent limitations of the finite element software, it was not possible to define material models incorporating NS and MS; therefore, the simulations were conducted using the mechanical properties of conventional concrete. The SVM-RBF model demonstrated the highest predictive accuracy with RMSE values of 0.163 (R2 = 0.993) for Fs and 0.422 (R2 = 0.999) for Fc, while the Mander model showed the best agreement with experimental results among the FEM approaches. The study demonstrates that both the SVM-RBF and CDP-based modeling approaches serve as robust and complementary tools for accurately predicting the mechanical performance of cementitious composites. Furthermore, this research addresses the limitations of conventional FEM in capturing the effects of NS and MS, as well as the existing gap in integrated AI-FEM frameworks for blended cement mortars. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

32 pages, 32119 KB  
Article
Experimental Study on Improving the Strength and Ductility of Prefabricated Concrete Bridge Piers Using GFRP Tube Confinement
by Hanhui Ye, Haoyang Zhou, Hehui Peng, Jiahui Ye and Zhanyu Bu
Buildings 2025, 15(17), 2981; https://doi.org/10.3390/buildings15172981 - 22 Aug 2025
Viewed by 454
Abstract
The application of precast assembled pier systems in high-seismicity regions is often constrained by their seismic performance limitations. To validate the optimization effect of GFRP confinement on the hysteretic performance of bridge piers, this study first conducted axial compression tests on 54 glass [...] Read more.
The application of precast assembled pier systems in high-seismicity regions is often constrained by their seismic performance limitations. To validate the optimization effect of GFRP confinement on the hysteretic performance of bridge piers, this study first conducted axial compression tests on 54 glass fiber-reinforced polymer (GFRP)-confined concrete cylindrical specimens. The investigation focused on the effects of fiber layers (6 and 10), orientation angles (±45°, ±60°, ±80°), slenderness ratios (2 and 4), and compression section configurations (fully loaded vs. core concrete loading only) on confinement efficacy. The experimental results demonstrate that specimens with ±60° fiber angles achieved an optimal balance between strength and ductility, exhibiting an average strength enhancement of 298.0% and a maximum axial strain of 2.7% compared to unconfined concrete. Subsequently, two GFRP tube-confined concrete bridge piers with varying fiber layers (PRCG1: 6 layers; PRCG2: 10 layers) and one unconfined reference pier (PRC) were designed and fabricated. All specimens employed grout-filled sleeves to connect caps and piers. Pseudo-static tests revealed that GFRP confinement effectively mitigated damage in plastic hinge zones and enhanced seismic performance. Compared to the PRC, PRCG1 and PRCG2 exhibited increases in ultimate displacement by 19.50% and 28.57%, in ductility coefficients by 18.56% and 27.84%, and in cumulative hysteretic energy dissipation by 13.90% and 26.43%, respectively. At the 5% drift ratio, their load capacities increased by 26.74% and 23.25%, stiffnesses improved by 28.91% and 25.51%, and residual displacements decreased by 20.89% and 11.17%. The accuracy and applicability of the GFRP tube-confined bridge pier model, developed based on the Lam–Teng model, were validated through numerical simulations using the OpenSees fiber element approach. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 5836 KB  
Article
Mechanical Performance of Square Box-Type Core Mold Hollow Floor Slabs Based on Field Tests and Numerical Simulation
by Ziguang Zhang, Fengyu Chen, Wenjun Yu, Jie Sheng, Lin Wei and Ankang Hu
Buildings 2025, 15(16), 2948; https://doi.org/10.3390/buildings15162948 - 20 Aug 2025
Cited by 1 | Viewed by 545
Abstract
This study investigates the mechanical performance and failure mechanisms of large-span, cast-in situ hollow-core floor slabs with square-box core molds under vertical loading. A combination of in situ tests and refined numerical simulations was used to investigate the slab’s behavior. An 8 m [...] Read more.
This study investigates the mechanical performance and failure mechanisms of large-span, cast-in situ hollow-core floor slabs with square-box core molds under vertical loading. A combination of in situ tests and refined numerical simulations was used to investigate the slab’s behavior. An 8 m × 8 m hollow slab from the Xinluzhou Industrial Park in Hefei, China, was subjected to five-stage cyclic loading up to 9.0 kN/m2 using a distributed water tank system. Real-time strain monitoring showed that the slab remained within the elastic range, exhibiting a linear strain-load relationship and bidirectional bending stiffness, with less than 5% deviation between the X and Y directions. Finite element analysis, incorporating a concrete plastic damage model and a bilinear steel model, replicated the experimental stress distribution, with errors of less than 6.9% for reinforcement and 8.8% for concrete. The simulation predicted an ultimate load-bearing capacity of 27.2 kN/m2, with initial failure indicated by diagonal cracks at the column capital edges, followed by flexural cracks at the slab mid-span. These findings clarify the bidirectional bending behavior and stress redistribution, characterized by “banded gradient” and “island-shaped” stress zones. This study provides valuable insights and design optimization strategies to improve the structural performance and safety of hollow-core floor slabs in high-rise buildings. Full article
Show Figures

Figure 1

Back to TopTop