Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (952)

Search Parameters:
Keywords = creep model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7021 KB  
Article
Mechanism and Parametric Study on Pullout Failure of Tunnel Anchorage in Suspension Bridges
by Menglong Dong, Zhijin Shen, Xiaojie Geng, Li Zhang and Aipeng Tang
Appl. Sci. 2025, 15(21), 11587; https://doi.org/10.3390/app152111587 - 30 Oct 2025
Viewed by 55
Abstract
Tunnel anchorages are critical components in long-span suspension bridges, transferring immense cable forces into the surrounding rock mass. Although previous studies have advanced the understanding of their pullout behavior through field tests, laboratory models, numerical simulations, and theoretical analyses, significant challenges remain in [...] Read more.
Tunnel anchorages are critical components in long-span suspension bridges, transferring immense cable forces into the surrounding rock mass. Although previous studies have advanced the understanding of their pullout behavior through field tests, laboratory models, numerical simulations, and theoretical analyses, significant challenges remain in predicting their performance in complex geological conditions. This study investigates the pullout failure mechanism and bearing behavior of tunnel anchorages situated in heterogeneous conglomerate rock, with application to the Wujiagang Yangtze River Bridge in China to employ a tunnel anchorage in such strata. An integrated research methodology is adopted, combining in situ and laboratory geotechnical testing, a highly instrumented 1:12 scaled field model test, and detailed three-dimensional numerical modeling. The experimental program characterizes the strength and deformation properties of the rock, while the field test captures the mechanical response under design, overload, and ultimate failure conditions. Numerical models, calibrated against experimental results, are employed to analyze the influence of key parameters such as burial depth, inclination, and overburden strength. Furthermore, the long-term stability and creep behavior of the anchorage are evaluated. The results reveal the deformation characteristics, failure mode, and ultimate pullout capacity specific to weakly cemented and stratified rock. The study provides novel insights into the rock–anchorage interaction mechanism under these challenging conditions and validates the feasibility of tunnel anchorages in complex geology. The findings offer practical guidance for the design and construction of future tunnel anchorages in similar settings, ensuring both safety and economic efficiency. Full article
Show Figures

Figure 1

16 pages, 2934 KB  
Article
A Universal Tool Interaction Force Estimation Approach for Robotic Tool Manipulation
by Diyun Wen, Jiangtao Xiao, Yu Xie, Tao Luo, Jinhui Zhang and Wei Zhou
Sensors 2025, 25(21), 6619; https://doi.org/10.3390/s25216619 - 28 Oct 2025
Viewed by 290
Abstract
The six-degree-of-freedom (6-DoF) interaction forces/torque of the tool-end play an important role in the robotic tool manipulation using a gripper, which are usually indirectly measured by a robot wrist force/torque sensor. However, the real-time decoupling of the tool’s inertial force remains a challenge [...] Read more.
The six-degree-of-freedom (6-DoF) interaction forces/torque of the tool-end play an important role in the robotic tool manipulation using a gripper, which are usually indirectly measured by a robot wrist force/torque sensor. However, the real-time decoupling of the tool’s inertial force remains a challenge when different tools and grasping postures are involved. This paper presents a universal tool-end interaction forces estimation approach, which is capable of handling diverse grippers and tools. Firstly, to address uncertainties from varying tools and grasping postures, an online-identifiable tool dynamics model was built based on the Newton–Euler approach for the integrated gripper–tool system. Sensor zero-drift caused by factors such as the tool weight and prolonged operation is incorporated into the dynamic model and identified online in real time, enabling a coarse estimation of the interaction forces. Secondly, a spiking neural network (SNN) is specially employed to compensate for uncertainties caused by the wrist sensor creep effect, since its temporal processing and event-driven characteristics match the time-varying creep effects introduced by tool changes. The proposed method is experimentally validated on a robotic arm with a gripper, and the results show that the root mean square errors of the estimated tool-end interaction forces are below 0.5 N with x, y, and z axes and 0.03 Nm with τx, τy, and τz axes, which has a comparable precision with the in situ measurement of the interaction forces at the tool-end. The proposed method is further applied to robotic scraper manipulation with impedance control, achieving the interaction forces feedback during compliant operation precisely and rapidly. Full article
Show Figures

Figure 1

16 pages, 2357 KB  
Article
Ecological Composite Materials Based on Polylactide (PLA) and Organic Fillers: Coffee Grounds and Hen Eggshells Produced by the FDM Method: Mechanical, Thermal Properties, Stress Relaxation and Creep
by Anna Gaweł, Kinga Setlak, Damian Szubartowski, Dariusz Mierzwiński and Aneta Liber-Kneć
Materials 2025, 18(21), 4918; https://doi.org/10.3390/ma18214918 - 28 Oct 2025
Viewed by 218
Abstract
In this article, an ecological composite based on a neat polylactide with 50 and 75% degrees of coffee particles and eggshells as an infill and organic filler, was developed. It has been shown that the content of fillers used reduced the mechanical properties, [...] Read more.
In this article, an ecological composite based on a neat polylactide with 50 and 75% degrees of coffee particles and eggshells as an infill and organic filler, was developed. It has been shown that the content of fillers used reduced the mechanical properties, increasing the possibility of environmental degradation and accelerating the biodegradation process. During the additive production of polylactide with 10% of coffee grounds as a filler, it was possible to reduce the additive manufacturing temperature, which reduced the process time, energy costs, carbon dioxide emissions and the amount of polymer that may affect the environment. The structure of polylactide enriched with hen eggshells is characterized by roan and irregular shapes, which can cause a high tendency to form a concentration of cracks in these areas. Based on the results obtained from the stress relaxation test, the Zener model was used to describe a creep model of the produced ecological composites. The polymer composition of coffee grounds and eggshells shows a tendency to creep faster than pure polylactide and with different degrees of infill. Voids reduce the strength of composite materials, which increases the creep potential of samples with incomplete degrees of infill. Full article
Show Figures

Figure 1

20 pages, 3504 KB  
Article
Modeling the Evolution of Mechanical Behavior in Rocks Under Various Water Environments
by Lixiang Liu, Sai Fu, Xianlin Jia, Xibin Li and Linfei Zhang
Water 2025, 17(20), 2983; https://doi.org/10.3390/w17202983 - 16 Oct 2025
Viewed by 282
Abstract
After reservoir impoundment, water infiltration weakens rock strength and accelerates creep deformation. Existing models seldom capture both strength degradation and creep behavior under prolonged saturation. This study develops a coupled hydro-mechanical creep model that integrates saturation-dependent elastic modulus reduction, cohesion decay with pore [...] Read more.
After reservoir impoundment, water infiltration weakens rock strength and accelerates creep deformation. Existing models seldom capture both strength degradation and creep behavior under prolonged saturation. This study develops a coupled hydro-mechanical creep model that integrates saturation-dependent elastic modulus reduction, cohesion decay with pore pressure, and a nonlinear creep law modified by a Heaviside function. Simulation of rock deformation during water infiltration reveals that water–creep coupling increases steady-state deformation by over 50% compared to strength degradation alone. A case study of a high arch dam reservoir slope demonstrates that models incorporating both water-weakening and creep effects predict significantly larger deformations than those ignoring these mechanisms. The model provides a practical tool for predicting long-term deformation in reservoir slopes under water–rock interaction. Full article
Show Figures

Figure 1

23 pages, 7146 KB  
Article
Creep Performance and Viscoelastic Constitutive Relationship of Structural Acrylic Connected Using Bulk Polymerization Technique
by Zongyi Wang, Yuhao Liu, Bailun Zhang, Yuanqing Wang, Jianxia Xiao, Wei Cheng, Ming Huang and Yulong Song
Buildings 2025, 15(20), 3691; https://doi.org/10.3390/buildings15203691 - 14 Oct 2025
Viewed by 326
Abstract
Acrylic is increasingly being used in structural engineering applications due to its characteristics of light weight, capability of bulk polymerization, and absence of self-destruction risk, compared to tempered glass. However, structural acrylic exhibits creep behavior when subjected to prolonged loading. In order to [...] Read more.
Acrylic is increasingly being used in structural engineering applications due to its characteristics of light weight, capability of bulk polymerization, and absence of self-destruction risk, compared to tempered glass. However, structural acrylic exhibits creep behavior when subjected to prolonged loading. In order to study the creep performance of structural acrylic base material and coupons connected using the bulk polymerization technique, short-term tensile tests and long-term creep tests were conducted, and the effect of annealing temperature controlled in the bulk polymerization process was considered. The results show that annealing temperature significantly affects the quality of bulk polymerization. The Burgers model accurately describes the viscoelastic behavior of acrylic, and the Prony series converted from the parameters in the Burgers model can be directly implemented in Abaqus and accurately simulates the creep behavior of acrylic. The equation proposed in this study, on the basis of the Findley model, is precise enough to predict the creep curves of acrylic base material and connecting coupons. The Time–Stress Superposition Principle is valid when the time is greater than the threshold value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5882 KB  
Article
Creep and Fatigue Life Prediction of Bulk-Polymerized Spliced Acrylic
by Zongyi Wang, Yuhao Liu, Bailun Zhang, Yuanqing Wang, Jianxia Xiao, Yulong Song and Wei Cheng
Buildings 2025, 15(20), 3677; https://doi.org/10.3390/buildings15203677 - 13 Oct 2025
Viewed by 281
Abstract
To evaluate the creep and fatigue fracture lives of structural acrylic spliced components fabricated via bulk polymerization, and to elucidate the associated fracture mechanisms, this study conducted creep and fatigue tests on spliced coupons annealed at 85 °C and 65 °C, as well [...] Read more.
To evaluate the creep and fatigue fracture lives of structural acrylic spliced components fabricated via bulk polymerization, and to elucidate the associated fracture mechanisms, this study conducted creep and fatigue tests on spliced coupons annealed at 85 °C and 65 °C, as well as base material coupons. The experimental life data were fitted using log-log linear regression models. Based on statistical analysis, a simple yet robust statistical framework was established for life prediction, featuring three design curves: 97.7% survival curves, improved 95% confidence interval lower bounds, and one-sided tolerance curves. Fractographic examination using scanning electron microscopy (SEM) was performed to characterize macroscopic failure modes. The results indicate distinct threshold behavior between stress levels and both creep and fatigue life. The creep threshold stresses are 25 MPa for the base material, 29 MPa for the spliced coupons annealed at 85 °C, and 17 MPa for the spliced coupons annealed at 65 °C. Corresponding fatigue threshold stress amplitudes are 21 MPa, 22 MPa, and 31 MPa, respectively. Failure in the base material is primarily initiated by randomly distributed internal defects, whereas failure in the spliced coupons is mainly caused by defects within the seam or interfacial tearing. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 5267 KB  
Article
Effect of Increased Extrusion Ram Speed and Liquid Nitrogen Cooling on the Mechanical Properties of 6060 Aluminum Alloy
by Evangelos Giarmas, Emmanouil Tzimtzimis, Konstantinos Tsongas, Apostolos Korlos, Constantine David and Dimitrios Tzetzis
Metals 2025, 15(10), 1136; https://doi.org/10.3390/met15101136 - 12 Oct 2025
Viewed by 352
Abstract
This study investigates the impact of increased extrusion ram speed—achieved by utilizing liquid nitrogen as a die cooling agent—on the mechanical properties of a 6060-aluminum alloy. Mechanical characterization of the extruded profiles was performed using both tensile and nanoindentation tests. In addition, nanoindentation [...] Read more.
This study investigates the impact of increased extrusion ram speed—achieved by utilizing liquid nitrogen as a die cooling agent—on the mechanical properties of a 6060-aluminum alloy. Mechanical characterization of the extruded profiles was performed using both tensile and nanoindentation tests. In addition, nanoindentation was employed to evaluate creep behaviour and to extract key parameters, such as the steady-state creep strain rate. The findings indicate that while the enhanced ram speed has a minimal influence on Ultimate Tensile Strength (UTS) and Yield Tensile Strength (YTS), it has a more noticeable effect on elongation. Finite Element Analysis (FEA) was used in conjunction with nanoindentation data to model the mechanical behaviour of the alloy, showing good agreement with experimental tensile test results. This confirms the effectiveness of FEA-assisted nanoindentation as a reliable tool for mechanical assessment. Moreover, the results demonstrate that creep displacement is significantly influenced by the increased ram speed. However, the steady-state creep strain rate remained largely unaffected by variations in ram speed with the use of liquid nitrogen as a coolant. Notably, the creep stress exponent (n) was found to increase with higher ram speeds enabled by liquid nitrogen cooling. Full article
(This article belongs to the Special Issue Research and Application of Lightweight Metals)
Show Figures

Figure 1

19 pages, 1525 KB  
Article
Fractional Modeling of Deep Coal Rock Creep Considering Strong Time-Dependent Behavior
by Shuai Yang, Wenhao Jia, Senlin Xie, Haochen Wang and Lu An
Mathematics 2025, 13(20), 3247; https://doi.org/10.3390/math13203247 - 10 Oct 2025
Cited by 1 | Viewed by 260
Abstract
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional [...] Read more.
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional time-dependent strains induced by stress-state variations were considered, with long-term rock strength adopted as the damage stress threshold. The stress difference between nominal and post-damage stress, σD(t), defined as the stress gradient, was applied to a viscoelastic–plastic body containing a fractional Abel dashpot, producing conventional creep strain and strong time-dependent strain. The model was extended from one-dimensional to three-dimensional under triaxial stress conditions. The validity of the model was verified using triaxial creep test data for argillaceous sandstone and coal in deep roadways, and the model parameters were determined. The results demonstrate that the model accurately reproduces the full creep process, particularly the nonlinear accelerated stage influenced by strong time-dependence. Through stress-gradient-induced variations in strong time-dependent strain, the proposed creep model elucidates the progression of deformation in the strong time-dependent stage, offering a theoretical framework for the quantitative assessment of deep rock’s strong time-dependence. Sensitivity analysis identified the stress level, fractional order, and strong time-dependence coefficient α as key factors affecting strong time-dependent creep behavior. These findings indicate that tunnel support structures in deep environments are prone to instability, underscoring the necessity of accounting for strong time-dependence to ensure long-term stability. Full article
Show Figures

Figure 1

16 pages, 3753 KB  
Article
Effects of Stress Level and Elevated Temperature on Transverse Compression Stress Relaxation Behavior and Post-Relaxation Mechanical Performance of UD-CFRP
by Jianwen Li, Maoqiang Wang, Lili Hu and Xiaogang Liu
Polymers 2025, 17(20), 2718; https://doi.org/10.3390/polym17202718 - 10 Oct 2025
Viewed by 398
Abstract
Unidirectional carbon fiber-reinforced polymer (UD-CFRP) composites demonstrate superior tensile creep strain and stress relaxation behavior along fiber orientation. However, prolonged transverse compressive loading in structural connection zones induces significant interfacial stress relaxation and creep deformation, primarily driven by resin matrix degradation and interfacial [...] Read more.
Unidirectional carbon fiber-reinforced polymer (UD-CFRP) composites demonstrate superior tensile creep strain and stress relaxation behavior along fiber orientation. However, prolonged transverse compressive loading in structural connection zones induces significant interfacial stress relaxation and creep deformation, primarily driven by resin matrix degradation and interfacial slippage under thermal-mechanical interactions, and remains poorly understood. This study systematically investigates the transverse stress relaxation characteristics of UD-CFRP through controlled experiments under varying thermal conditions (20–80 °C) and compressive stress levels (30–80% ultimate strength). Post-relaxation mechanical properties were quantitatively evaluated, followed by the development of a temperature-stress-time-dependent predictive model aligned with industry standards. The experimental results reveal bi-stage relaxation behavior under elevated temperatures and compressive stresses, characterized by a rapid primary phase and stabilized secondary phase progression. Notably, residual transverse compressive strength remained almost unchanged, while post-relaxation elastic modulus increased by around 10% compared to baseline specimens. Predictive modeling indicates that million-hour relaxation rates escalate with temperature elevation, reaching 51% at 60 °C/60% stress level—about 1.8 times higher than equivalent 20 °C conditions. These findings provide crucial design insights and predictive tools for ensuring the long-term integrity of CFRP-based structures subjected to transverse compression in various thermal environments. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymeric Composites)
Show Figures

Figure 1

12 pages, 1464 KB  
Article
Carbon Micro-Alloying Promotes Creep Flow via Enhanced Structural Heterogeneity in Fe-Based Amorphous Alloys
by Deyu Cao, Sishi Teng, Jiajie Lv, Xin Su, Yu Tong, Mingliang Xiang, Lijian Song, Meng Gao, Yan Zhang, Juntao Huo and Junqiang Wang
Materials 2025, 18(19), 4637; https://doi.org/10.3390/ma18194637 - 9 Oct 2025
Viewed by 574
Abstract
Tuning structural heterogeneity in metallic glasses is key to improving their mechanical performance. Here we examine how carbon micro-alloying modulates the relaxation dynamics and creep of Fe-based amorphous ribbons. Increasing carbon content lowers the crystallization temperature, amplifies β-relaxation, and reduces hardness, consistent [...] Read more.
Tuning structural heterogeneity in metallic glasses is key to improving their mechanical performance. Here we examine how carbon micro-alloying modulates the relaxation dynamics and creep of Fe-based amorphous ribbons. Increasing carbon content lowers the crystallization temperature, amplifies β-relaxation, and reduces hardness, consistent with enhanced atomic mobility. Nanoindentation creep, fitted with a stretched-exponential model, shows a decreasing exponent with carbon addition, indicating broader relaxation–time distributions and stronger dynamic heterogeneity. Nanoscale force-mapping further reveals a larger fraction of liquid-like regions and pronounced viscoelastic heterogeneity in carbon-rich samples. These changes facilitate the activation of shear-transformation zones and promote room-temperature creep flow. Together, the results establish a direct link between structural heterogeneity, relaxation processes, and mechanical response, providing guidance for the design of ductile metallic glasses. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

25 pages, 1098 KB  
Review
Review of Nano- and Micro- Indentation Tests for Rocks
by Qingqing He and Heinz Konietzky
Geosciences 2025, 15(10), 389; https://doi.org/10.3390/geosciences15100389 - 7 Oct 2025
Viewed by 634
Abstract
Nano- and micro-indentation have become essential tools for quantifying the micromechanical behavior of rocks beyond traditional macroscopic tests. This review summarizes the historical evolution, experimental methodologies, and interpretation models (e.g., Oliver–Pharr, Doerner–Nix, energy-based methods, Hertz/ECM/Lawn), with a particular focus on rock-specific challenges such [...] Read more.
Nano- and micro-indentation have become essential tools for quantifying the micromechanical behavior of rocks beyond traditional macroscopic tests. This review summarizes the historical evolution, experimental methodologies, and interpretation models (e.g., Oliver–Pharr, Doerner–Nix, energy-based methods, Hertz/ECM/Lawn), with a particular focus on rock-specific challenges such as heterogeneity, anisotropy, and surface roughness. A structured literature survey (1980–August 2025) covers representative studies on shale, limestone, marble, sandstone, claystone, and granite. The transition from classical hardness measurements to advanced instrumented indentation has enabled more reliable determination of localized properties, including hardness, elastic modulus, fracture toughness, and creep. Special attention is given to the applicability and limitations of different interpretation models when applied to heterogeneous and anisotropic rocks. Current challenges include high sensitivity to surface conditions and difficulties in capturing the full complexity of natural rock behavior. Looking forward, promising directions involve intelligent systems that integrate AI-driven data analytics, robotic automation, and multiscale modeling (from molecular dynamics to continuum FEM) to enable predictive material design. This review aims to provide geoscientists and engineers with a comprehensive foundation for the effective application and further development of indentation-based testing in rock mechanics and geotechnical engineering. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

20 pages, 10567 KB  
Article
Kinematic and Dynamic Behavior of a Coastal Colluvial Landslide in a Low-Elevation Forest
by Chia-Cheng Fan, Chung-Jen Yang, Tsung-Hsien Wang and Kuo-Wei Huang
Appl. Sci. 2025, 15(19), 10593; https://doi.org/10.3390/app151910593 - 30 Sep 2025
Viewed by 258
Abstract
This study examines the kinematic behavior of a large-scale colluvial landslide in a coastal low-elevation forest, where rainfall, geological formations, and hydrological conditions drive substantial slope displacement. The landslide comprises a colluvial layer overlying mudstone, with downslope movement toward the coastline induced by [...] Read more.
This study examines the kinematic behavior of a large-scale colluvial landslide in a coastal low-elevation forest, where rainfall, geological formations, and hydrological conditions drive substantial slope displacement. The landslide comprises a colluvial layer overlying mudstone, with downslope movement toward the coastline induced by gravitational forces and infiltration. Using GPS surveys, inclinometers, soil moisture sensors, and numerical modeling, the temporal and spatial patterns of displacement were analyzed. Maximum horizontal displacements reach 8.1 cm/year, with deep-seated movements extending over 25 m into the mudstone. Key mechanisms include weakening of the colluvium–mudstone interface and creep within saturated mudstone, while a hydraulic barrier near the coastline restricts subsurface flow. Progressive upslope migration of the freshwater-bearing mudstone zone under annual rainfall further contributes to long-term deformation. These findings provide critical insights into the hydrologically controlled kinematics of coastal colluvial landslides. Full article
(This article belongs to the Special Issue A Geotechnical Study on Landslides: Challenges and Progresses)
Show Figures

Figure 1

22 pages, 5267 KB  
Article
On Ballooning and Burst Behavior of Nuclear Fuel Clad Considering Heating Rate Effect: Development of a Damage Model, a Burst Correlation and Experimental Validation
by Ather Syed and Mahendra Kumar Samal
Solids 2025, 6(4), 56; https://doi.org/10.3390/solids6040056 - 28 Sep 2025
Viewed by 497
Abstract
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of [...] Read more.
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of cladding is essential for ensuring structural integrity, especially under varying heating rates—an aspect inadequately addressed in existing empirical models. In this study, a finite element-based damage model is developed to simulate the ballooning and burst behavior of Zircaloy-4 cladding. The model incorporates creep deformation, stress triaxiality, and time-dependent damage accumulation. Material behavior is characterized using experimentally determined creep constants and the model is calibrated against burst test data from the literature. A new heating-rate-dependent burst correlation is proposed based on model outputs. The results indicate that increasing the heating rate raises the burst temperature due to reduced exposure time in the temperature regime where creep damage accumulates significantly. The model accurately reproduces burst behavior across a wide range of internal pressures (1–10 MPa) and heating rates (5–100 °C/s). The newly developed correlation improves predictive capability in accident analysis tools and can be directly implemented into safety analysis codes for Indian pressurized heavy water reactors (PHWRs), contributing to enhanced reactor safety evaluations. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

19 pages, 2445 KB  
Article
Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process
by Sandeep Kumar, Subramanian Dhanabalan, Wilma Polini and Andrea Corrado
Appl. Sci. 2025, 15(19), 10445; https://doi.org/10.3390/app151910445 - 26 Sep 2025
Viewed by 278
Abstract
Electric discharge machining processes are prominent in the fastest-growing industries because of their accuracy, achievable complex workpiece shapes, and cost-effectiveness. Furthermore, the machining of high-quality difficult-to-machine alloys is becoming critical in the aerospace, manufacturing, and defence industries. While the optimisation of EDM parameters [...] Read more.
Electric discharge machining processes are prominent in the fastest-growing industries because of their accuracy, achievable complex workpiece shapes, and cost-effectiveness. Furthermore, the machining of high-quality difficult-to-machine alloys is becoming critical in the aerospace, manufacturing, and defence industries. While the optimisation of EDM parameters is essential for improving machining outcomes, it is also important to consider the trade-offs between different performances metrics, such as material removal rate and part accuracy. Part accuracy in terms of dimensional and geometric deviations from nominal values was rarely considered in the literature, if not by the authors. Balancing these factors remains a challenge in the field of EDM. Therefore, this work aims to carry out a multi-objective optimisation of both MRR and part accuracy. A Ni-based alloy (Inconel-625) was used that is widely used in creep-resistant turbine blades and vanes and turbine disks in gas turbine engines for aerospace and defence industries. Four performance indices were optimised simultaneously: two related to the performance of the EDM process and two connected with the form deviations of the manufactured surfaces. Multi-hole copper electrodes having different diameters and three process parameters were varied during the experimental tests. Grey relational analysis and the Adaptive Neuro-Fuzzy Inference System method were used for optimisation. Grey relational analysis found that the following values of the process parameter—0.16 mm of multi-hole electrode diameter, 12 Amperes of Peak current, 200 µs of pulse on time and 0.2 kg/m2 as dielectric pressure—produce the optimal performance, i.e., a material removal rate of 0.099 mm3/min, an electrode wear rate of 0.0002 g/min, a circularity deviation of 0.0043 mm and a cylindricity deviation of 0.027 mm. From the experimental examination using multi-hole electrodes, it is concluded that the material removal rate increases and the electrode wear rate decreases because of the availability of higher spark discharge areas between the electrode and work material interface. The Adaptive Neuro-Fuzzy Inference System models showed minimum mean percentage error and, therefore, better performance in comparison with regression models. Full article
Show Figures

Figure 1

17 pages, 2322 KB  
Article
Bifurcation in Stick–Slip-Induced Low-Frequency Brake Noises: Experimental and Numerical Study
by Deborah Audretsch, Daniel Wallner, Michael Frey and Frank Gauterin
Acoustics 2025, 7(4), 61; https://doi.org/10.3390/acoustics7040061 - 26 Sep 2025
Viewed by 488
Abstract
The term honk noise describes a low-frequency brake noise from approximately 400 Hz to 500 Hz which arises at extremely low speeds and low brake pressures. Manoeuvres like slowly releasing the brake at a hill or gently braking against the drag torque of [...] Read more.
The term honk noise describes a low-frequency brake noise from approximately 400 Hz to 500 Hz which arises at extremely low speeds and low brake pressures. Manoeuvres like slowly releasing the brake at a hill or gently braking against the drag torque of an automatic gearbox lead to honk noise. Under the same conditions, we observed creep groan at about 80 Hz. It has been shown that honk noise usually occurs after or alternates with creep groan. For this reason, it is assumed that honk noise—like creep groan—is a stick–slip-induced phenomenon and therefore shows highly nonlinear behaviour. In this paper, we present an approach for explaining the onset of honk noise under stick–slip excitation. A minimal model consisting of coupled mass oscillators excited by stick–slip is investigated. The model was able to reproduce the phenomena observed in the experiments. Thus, it is suitable for explaining the mechanisms leading to honk and estimate the influence of basic parameter variations. The lessons learned are a crucial step towards more realistic finite element or multi-body simulation methods, which have high potential for saving costs in the noise, vibration, and harshness (NVH) development process of brake systems. Full article
Show Figures

Figure 1

Back to TopTop