Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (973)

Search Parameters:
Keywords = crystal plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6955 KB  
Article
Recycling of Waste PET into Terephthalic Acid in Neutral Media Catalyzed by the Cracking Zeolite/Alumina Binder Acidic Catalyst
by Shaddad S. Alhamedi, Waheed Al-Masry, Ahmed S Al-Fatesh, Sajjad Haider, Asif Mahmood, Lahssen El Blidi and Abdulrahman Bin Jumah
Catalysts 2025, 15(11), 1072; https://doi.org/10.3390/catal15111072 - 12 Nov 2025
Abstract
This study addresses the critical issue of environmental pollution from plastic waste by investigating an effective chemical recycling method for polyethylene terephthalate (PET) via neutral catalytic hydrolysis. We utilized a recoverable and regenerable composite catalyst based on cracking zeolite and γ-Al2O [...] Read more.
This study addresses the critical issue of environmental pollution from plastic waste by investigating an effective chemical recycling method for polyethylene terephthalate (PET) via neutral catalytic hydrolysis. We utilized a recoverable and regenerable composite catalyst based on cracking zeolite and γ-Al2O3, which possesses both Brønsted and Lewis acidic sites that facilitate the depolymerization of PET into its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). This investigation reveals that the catalytic performance is strongly dependent on the total acid site concentration and the specific nature of these sites. A key finding is that a balanced acidic profile with a high proportion of Brønsted acid sites is crucial for enhancing PET hydrolysis attributed to a significant decrease in the activation energy of the reaction. The experiments were conducted in a stirred stainless-steel autoclave reactor, where key parameters such as temperature (210–230 °C), the PET-to-water ratio (1:2 to 1:5), and reaction time were systematically varied. Under optimal conditions of 210 °C and a 6 h reaction time, the process achieved near-complete PET depolymerization (99.5%) and a high TPA yield (90.24%). The catalyst demonstrated remarkable recyclability, maintained its activity over multiple cycles and was easily regenerated. Furthermore, the recovered TPA was of high quality, with a purity of 98.74% as confirmed by HPLC, and exhibited a melt crystallization temperature 14 °C lower than that of the commercial standard. These results not only demonstrate the efficiency and sustainability of neutral catalytic hydrolysis using zeolite/alumina composites but also provide valuable insights for designing advanced catalysts with tunable acidic properties. By demonstrating the importance of tuning acidic properties, specifically the balance between Brønsted and Lewis sites, this work lays a foundation for developing more effective catalysts that can advance circular economy goals for PET recycling. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

23 pages, 7340 KB  
Article
Monocrystalline Sapphire Stress Field Analysis with Orthorhombic Crystal Orientation Under Vickers Indentation
by Zhongyang Li, Zhaohui Deng, Weiye Yang and Jimin Ge
Materials 2025, 18(22), 5136; https://doi.org/10.3390/ma18225136 - 12 Nov 2025
Abstract
As an irreplaceable optical ceramic material in energy, aviation, and commerce, sapphire is making a further expansion of its application boundaries. Owing to the anisotropy of sapphire, the material properties analysis in the fabrication process is hard but essential. Hence, aiming at investigating [...] Read more.
As an irreplaceable optical ceramic material in energy, aviation, and commerce, sapphire is making a further expansion of its application boundaries. Owing to the anisotropy of sapphire, the material properties analysis in the fabrication process is hard but essential. Hence, aiming at investigating the damage behavior of sapphire with different crystal orientations during machining, the nucleation and propagation of cracks in the orthogonal a, c, and m orientations of sapphire under Vickers indentation were explored experimentally and numerically. Firstly, the indentation morphology and indentation cracks of sapphire with different crystal orientations under different loads were studied based on a Vickers indentation tester. In general, the relative errors of the three characteristic parameters, including the half-length of indentation diagonal, the length of crack, and the maximum depth of indentation, are all within 20% between the simulation model and the indentation test results. Then, the nucleation critical loads of different cracks in sapphire under Vickers indentation are determined on the basis of the ceramic materials’ fracture mechanics theory. The critical load value of the median crack of sapphire in both A- and M-planes is less than 0.1 kgf experimentally and simulatively, while C-plane sapphire is between 1 kgf and 2 kgf. Finally, the stress field, displacement–load curve, plastic piling-up height, and dynamic propagation process during Vickers indentation are analyzed, combining the experimental results with a numerical calculation approach. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

29 pages, 15539 KB  
Article
Multifunctional Performance of Bacterial Cellulose Membranes in Saline and Oily Emulsion Filtration
by Alexandre D’Lamare Maia de Medeiros, Cláudio José Galdino da Silva Junior, Yasmim de Farias Cavalcanti, Matheus Henrique Castanha Cavalcanti, Maryana Rogéria dos Santos, Ana Helena Mendonça Resende, Ivison Amaro da Silva, Julia Didier Pedrosa de Amorim, Andréa Fernanda de Santana Costa and Leonie Asfora Sarubbo
Fermentation 2025, 11(11), 635; https://doi.org/10.3390/fermentation11110635 - 7 Nov 2025
Viewed by 298
Abstract
The separation of oil-in-water emulsions from industrial wastewater remains a significant challenge, particularly under saline conditions. This study evaluated bacterial cellulose (BC) membranes from Komagataeibacter hansenii for filtering synthetic effluents with high oil content (ES1) and saline oil-in-water emulsions (ES2). FTIR confirmed the [...] Read more.
The separation of oil-in-water emulsions from industrial wastewater remains a significant challenge, particularly under saline conditions. This study evaluated bacterial cellulose (BC) membranes from Komagataeibacter hansenii for filtering synthetic effluents with high oil content (ES1) and saline oil-in-water emulsions (ES2). FTIR confirmed the incorporation of lipophilic compounds into the BC matrix. Crystallinity decreased from 78.8% to 40% following ES1 filtration, while a new peak at 2θ ≈ 31.8° appeared in ES2, indicating salt deposition. TGA revealed increased mass loss in the oil-saturated membrane (BCO), whereas the saline-exposed membrane (BCOS) exhibited higher thermal stability. SEM showed fiber compaction and localized deposition of oil and salt, corroborated by EDS, which identified Na, Cl, Ca, and elevated oxygen levels. Mechanical testing indicated that oil acted as a plasticizer, increasing the elongation at break of BCO, while salt crystallization enhanced BCOS stiffness. The membranes removed up to 98% of organic load (BOD and COD), 69% of oils and greases, and reduced turbidity and apparent color by 92%. Partial salt retention (~23%) and a significant decrease in dissolved oxygen were also observed. These results demonstrate the potential of BC membranes as an effective and sustainable solution for the treatment of complex oily and saline wastewater. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

18 pages, 10615 KB  
Review
Acoustic Emission Mechanisms During Polymer Processing and Chain Orientation: From Amorphous to Crystalline
by Guowei Chen and Tizazu Mekonnen
Polymers 2025, 17(21), 2948; https://doi.org/10.3390/polym17212948 - 5 Nov 2025
Viewed by 349
Abstract
Acoustic emission (AE) technology has emerged as a highly sensitive and non-destructive method for the real-time monitoring of defect formation and microstructural changes during the manufacturing and early service life of polymeric materials and composites. This review highlights the fundamental principles and applications [...] Read more.
Acoustic emission (AE) technology has emerged as a highly sensitive and non-destructive method for the real-time monitoring of defect formation and microstructural changes during the manufacturing and early service life of polymeric materials and composites. This review highlights the fundamental principles and applications of AE in detecting crystallization-induced defects, such as cavities, dislocations, and microcracks, as well as plastic deformation mechanisms, including chain orientation, cavitation, and stress release. It is shown that AE activity correlates strongly with crystallinity and processing conditions, providing critical insights into microstructure–property relationships. The possible mechanisms can be the friction between grain boundaries, the local stress release, chain movement, phase changing, and fiber/filler debonding, among others. A comprehensive understanding can help with the prediction/prevention of early defects in the crystalline polymer processing. Furthermore, integrating AE with artificial intelligence and multi-sensor data fusion offers promising pathways toward smart, adaptive manufacturing systems capable of real-time quality control and early defect diagnosis in high-performance polymer composites. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

23 pages, 9932 KB  
Article
Explicit Crystal Plasticity Modeling of Texture Evolution in Nonlinear Twist Extrusion
by Ülke Şimşek, Hiroyuki Miyamoto and Tuncay Yalçınkaya
Crystals 2025, 15(11), 950; https://doi.org/10.3390/cryst15110950 - 2 Nov 2025
Viewed by 336
Abstract
The Nonlinear Twist Extrusion (NLTE) method, a novel severe plastic deformation (SPD) technique, aims to enhance grain refinement and achieve a more uniform plastic strain distribution. Grain size and its uniform distribution strongly influence the physical properties of metals. Therefore, predicting texture evolution [...] Read more.
The Nonlinear Twist Extrusion (NLTE) method, a novel severe plastic deformation (SPD) technique, aims to enhance grain refinement and achieve a more uniform plastic strain distribution. Grain size and its uniform distribution strongly influence the physical properties of metals. Therefore, predicting texture evolution during processing is essential for optimizing forming parameters and improving material performance. In this study, a rate-dependent crystal plasticity formulation is implemented in an explicit framework in Abaqus finite element software, based on a finite strain approach with multiplicative decomposition of the deformation gradient. Crystal plasticity finite element (CPFEM) simulations are conducted on single-crystal copper under boundary conditions representing the NLTE process. The influence of dynamic friction coefficients on texture evolution is systematically investigated, and the results are compared with experimental observations. The study provides new insights into deformation mechanisms during NLTE and highlights the strong correlation between texture development and forming parameters. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

17 pages, 2234 KB  
Article
Sustainable Plastics: Effect of Bio-Based Plasticizer on Crystallization Kinetics of PLA
by David Alberto D’Amico, Liliana Beatriz Manfredi, Norma Esther Marcovich, Mirna Alejandra Mosiewicki and Viviana Paola Cyras
Polymers 2025, 17(21), 2935; https://doi.org/10.3390/polym17212935 - 1 Nov 2025
Viewed by 407
Abstract
This work investigates the effect of a bio-based plasticizer derived from used sunflower oil on the crystallization behavior of poly (lactic acid) (PLA), comparing it with that of the conventional plasticizer tributyrin. This study aims to explore biodegradable alternatives to petroleum-based materials and [...] Read more.
This work investigates the effect of a bio-based plasticizer derived from used sunflower oil on the crystallization behavior of poly (lactic acid) (PLA), comparing it with that of the conventional plasticizer tributyrin. This study aims to explore biodegradable alternatives to petroleum-based materials and to evaluate their potential in modulating PLA crystallization kinetics without altering the crystalline structure of the resulting sustainable material solutions with tailored performance. PLA-based films containing 5%, 10%, and 15% plasticizer were prepared and characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-Ray diffraction (XRD). DSC analysis showed a decrease in the glass transition temperatures upon plasticization, with tributyrin producing a more pronounced effect than the recycled sunflower oil plasticizer. XRD patterns confirmed that the crystalline form of PLA remained unchanged regardless of plasticizer type or content. POM revealed that both plasticizers influenced crystallization kinetics, with the bio-plasticizer promoting larger and more sparsely distributed spherulites than tributyrin, indicating differences in nucleation efficiency and crystal growth. Crystallization kinetics were further analyzed using the Avrami model, the Lauritzen-Hoffman theory, and the isoconversional method. Avrami analysis indicated that nucleation mechanisms were largely unaffected, although the overall crystallization rate increased upon plasticization. Lauritzen-Hoffman analysis confirmed crystallization in Regime III, controlled by nucleation, while isoconversional analysis showed reduced activation energy in plasticized PLA. These findings highlight the ability of bio-derived plasticizers to modulate PLA crystallization, promoting the valorization of a food industry residue as a sustainable plasticizer. This study hopes to contribute relevant knowledge to emerging areas of polymer processing, such as 3D printing, to develop sustainable and high-performance PLA-based materials. Full article
(This article belongs to the Special Issue Polymeric Materials in Food Science)
Show Figures

Graphical abstract

13 pages, 12024 KB  
Article
Crystal Plasticity Modeling of Mechanical Anisotropy for TiAl Alloy Under Uniaxial and Biaxial Loading
by Wenya Peng, Chunling Zhao, Kun Leng, Kanghe Jiang, Weihua Meng, Bin Ding, Qinghu Meng and Wencheng Liu
Crystals 2025, 15(11), 943; https://doi.org/10.3390/cryst15110943 - 31 Oct 2025
Viewed by 201
Abstract
TiAl alloys are widely used in aerospace applications due to their low density and good mechanical properties. However, their pronounced mechanical anisotropy resulting from the preferred orientations of lamellar crystals remains an important issue. This study investigates the plastic anisotropy of TiAl alloys [...] Read more.
TiAl alloys are widely used in aerospace applications due to their low density and good mechanical properties. However, their pronounced mechanical anisotropy resulting from the preferred orientations of lamellar crystals remains an important issue. This study investigates the plastic anisotropy of TiAl alloys under various stress states using full-field crystal plasticity modeling based on electron backscatter diffraction data. The crystal plasticity simulations successfully reproduce the experimental mechanical anisotropy in uniaxial and biaxial tests. The research combines crystal plasticity simulations with Yld2004-18p anisotropic yield function to develop a predictive model that accurately characterizes the anisotropic yielding behavior of the TiAl alloys under various stress states. The findings demonstrate that the Yld2004-18p anisotropic yield function effectively describes the macroscopic anisotropic response obtained from crystal plasticity simulations, providing an important theoretical foundation for predicting the anisotropic behavior of TiAl alloys in engineering structures. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 4678 KB  
Article
Dislocation Behavior in TiVTa Multi-Principal Element Alloys: A Nanoindentation Simulation Study
by Shumin Wang, Jin Wang, Jinli Cao, Xinfu He and Yankun Dou
Crystals 2025, 15(11), 941; https://doi.org/10.3390/cryst15110941 - 31 Oct 2025
Viewed by 117
Abstract
Molecular dynamics simulations of nanoindentation were conducted to compare the dislocation behavior in a pure V and a TiVTa multi-principal element alloy (MPEA) with [100] and [111] crystal orientations. It is found that the significant resistance to dislocation motion and loop formation in [...] Read more.
Molecular dynamics simulations of nanoindentation were conducted to compare the dislocation behavior in a pure V and a TiVTa multi-principal element alloy (MPEA) with [100] and [111] crystal orientations. It is found that the significant resistance to dislocation motion and loop formation in the TiVTa MPEA compared to pure V, attributed to its substantial lattice distortion. While dislocation nucleation was heterogeneous in both materials with similar activation volumes and nucleation stresses (approximately 0.2 G), the dislocation density and plastic zone volume in TiVTa were substantially lower. Under standard indentation conditions, independent dislocation loops readily formed in pure V but were absent in TiVTa. With a larger indenter size and a greater nanoindentation depth, the results demonstrated that forming loops in TiVTa requires significantly higher force, directly linking this effect to the hindrance of dislocation glide by chemical disorder and lattice distortion. This study provides atomic-scale insights into the deformation mechanisms of TiVTa MPEAs, offering guidelines for future alloy design. Full article
Show Figures

Figure 1

19 pages, 4246 KB  
Article
Development of a Machine Learning Interatomic Potential for Zirconium and Its Verification in Molecular Dynamics
by Yuxuan Wan, Xuan Zhang and Liang Zhang
Nanomaterials 2025, 15(21), 1611; https://doi.org/10.3390/nano15211611 - 22 Oct 2025
Viewed by 590
Abstract
Molecular dynamics (MD) can dynamically reveal the structural evolution and mechanical response of Zirconium (Zr) at the atomic scale under complex service conditions such as high temperature, stress, and irradiation. However, traditional empirical potentials are limited by their fixed function forms and parameters, [...] Read more.
Molecular dynamics (MD) can dynamically reveal the structural evolution and mechanical response of Zirconium (Zr) at the atomic scale under complex service conditions such as high temperature, stress, and irradiation. However, traditional empirical potentials are limited by their fixed function forms and parameters, making it difficult to accurately describe the multi-body interactions of Zr under conditions such as multi-phase structures and strong nonlinear deformation, thereby limiting the accuracy and generalization ability of simulation results. This paper combines high-throughput first-principles calculations (DFT) with the machine learning method to develop the Deep Potential (DP) for Zr. The developed DP of Zr was verified by performing molecular dynamic simulations on lattice constants, surface energies, grain boundary energies, melting point, elastic constants, and tensile responses. The results show that the DP model achieves high consistency with DFT in predicting multiple key physical properties, such as lattice constants and melting point. Also, it can accurately capture atomic migration, local structural evolution, and crystal structural transformations of Zr under thermal excitation. In addition, the DP model can accurately capture plastic deformation and stress softening behavior in Zr under large strains, reproducing the characteristics of yielding and structural rearrangement during tensile loading, as well as the stress-induced phase transition of Zr from HCP to FCC, demonstrating its strong physical fidelity and numerical stability. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

22 pages, 2340 KB  
Article
Glass Transition and Crystallization of Chitosan Investigated by Broadband Dielectric Spectroscopy
by Massimiliano Labardi, Margherita Montorsi, Sofia Papa, Laura M. Ferrari, Francesco Greco, Giovanni Scarioni and Simone Capaccioli
Polymers 2025, 17(20), 2758; https://doi.org/10.3390/polym17202758 - 15 Oct 2025
Viewed by 438
Abstract
Chitosan films obtained by solution casting were investigated by broadband dielectric spectroscopy (BDS) to explore both their glass transition and the effects of thermal annealing on molecular dynamics, deriving from residual water content as well as from cold crystallization. Glass transition at low [...] Read more.
Chitosan films obtained by solution casting were investigated by broadband dielectric spectroscopy (BDS) to explore both their glass transition and the effects of thermal annealing on molecular dynamics, deriving from residual water content as well as from cold crystallization. Glass transition at low temperatures could be evidenced in as-produced as well as thermally annealed films, where non-Arrhenian dielectric relaxation processes, consistent with a structural (α) relaxation, could be detected. The process detected at low temperatures could reflect the dynamics of residual water slaved by the polymer matrix. Secondary (β) relaxations, along with a slow process ascribed to interfacial polarization at the amorphous/crystalline interfaces, were concurrently detected. In most cases, a further Arrhenian process at intermediate temperatures (αc) was present, also indicative of crystallization. Notably, the α processes, due to the primary relaxation of the polymer matrix plasticized by water, could be discriminated from other processes, present in the same frequency range, thanks to improvements in the dielectric fitting strategy. All relaxation processes showed the expected dependence on Ta. The more accurate exploration of the glass transition for chitosan helps to better rationalize its crystallization behavior, in view of an optimized application of this biopolymer. Full article
Show Figures

Graphical abstract

16 pages, 2244 KB  
Article
Scalable Biosynthesis and Recovery of Poly-3-Hydroxybutyrate Produced from Cotton-Derived Glucose by Cupriavidus necator
by Ashley M. Clark, Lucia E. Gargano, Gabriella M. Fioravanti, Hannah M. Schapiro and Ronald G. Kander
Polymers 2025, 17(20), 2745; https://doi.org/10.3390/polym17202745 - 14 Oct 2025
Viewed by 420
Abstract
To combat the growing issue of petroleum plastic waste, alternative bio-based polymers are being developed. Many of these biopolymers are made from bio-derived materials, or are biodegradable, but the most promising polymers fall in both categories. Polyhydroxyalkanoates (PHAs) are one such class of [...] Read more.
To combat the growing issue of petroleum plastic waste, alternative bio-based polymers are being developed. Many of these biopolymers are made from bio-derived materials, or are biodegradable, but the most promising polymers fall in both categories. Polyhydroxyalkanoates (PHAs) are one such class of polymers, and poly-3-hydroxybutyrate (P3HB), the most popular PHA, has shown great potential. This study utilized two types of cotton-derived glucose, alongside commercial glucose, as a feedstock for the biosynthesis of P3HB by Cupriavidus necator (also known as Ralstonia eutropha). The fermentation took place in a 2-L bioreactor, showing potential for scale-up. A single-solvent extraction method was created and utilized to reduce process complexity and chemical consumption of the polymer extraction. Both cotton-derived glucoses were shown to produce more P3HB than commercial glucose. The resulting P3HB samples were compared to each other and to the literature based on polymer yield and thermal characteristics. While all samples averaged a smaller yield than seen in the literature (indicating the need for optimization of the bacterial growth and metabolism with a growth curve in our future work), the cotton-derived glucose was shown to yield more P3HB than commercial glucose. Further, cotton-derived P3HB had very similar thermal properties to the commercial glucose-derived P3HB (and to values from the literature) with onset of thermal degradation ranging from 185 °C to 263 °C, cold crystallization temperatures ranging from 24 °C to 28 °C, and melting temperatures ranging from 147 °C to 151 °C. Lastly, all samples were shown to have a similar percentage crystallinity, ranging from 38% to 45%, which is slightly lower than that reported in the literature. P3HB made from cotton-derived glucose was shown to have potential as a scalable, sustainable alternative process. Full article
(This article belongs to the Special Issue Bioplastics from Renewable Sources)
Show Figures

Figure 1

19 pages, 9405 KB  
Article
Gleeble-Simulated Ultra-Fast Cooling Unlocks Strength–Ductility Synergy in Fully Martensitic Ti-6Al-4V
by Yaohong Xiao, Hongling Zhou, Pengwei Liu and Lei Chen
Materials 2025, 18(19), 4572; https://doi.org/10.3390/ma18194572 - 1 Oct 2025
Cited by 1 | Viewed by 672
Abstract
In additively manufactured (AM) Ti-6Al-4V, the role of martensitic α′ in governing brittleness versus toughness remains debated, largely because complex thermal histories and other intertwined physical factors complicate interpretation. To isolate and clarify the intrinsic effect of cooling rate, we employed a Gleeble [...] Read more.
In additively manufactured (AM) Ti-6Al-4V, the role of martensitic α′ in governing brittleness versus toughness remains debated, largely because complex thermal histories and other intertwined physical factors complicate interpretation. To isolate and clarify the intrinsic effect of cooling rate, we employed a Gleeble thermal simulator, which enables precisely controllable cooling rates while simultaneously achieving ultra-fast quenching comparable to AM (up to ~7000 °C/s). By varying the cooling rate only, three distinct microstructures were obtained: α/β, αm/α′, and fully α′. Compression tests revealed that the ultra-fast-cooled fully martensitic Ti-6Al-4V attained both higher strength and larger fracture strain, with densely distributed elongated dimples indicative of ductile failure. Three-dimensional microstructures reconstructed from microscopy, analyzed using an EVP-FFT crystal plasticity model, demonstrated that refined α′ laths and abundant high-angle boundaries promote more homogeneous strain partitioning and reduce stress triaxiality, thereby delaying fracture. These results provide potential evidence that extreme-rate martensitic transformation can overcome the conventional strength–ductility trade-off in Ti-6Al-4V, offering a new paradigm for processing titanium alloys and AM components with superior performance. Full article
Show Figures

Figure 1

24 pages, 3215 KB  
Article
Biaxial Stretching of PBAT/PLA Blends for Improved Mechanical Properties
by Nikki Rodriguez, Osnat Gillor, Murat Guvendiren and Lisa Axe
Polymers 2025, 17(19), 2651; https://doi.org/10.3390/polym17192651 - 30 Sep 2025
Viewed by 669
Abstract
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer [...] Read more.
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer domains, thereby altering the mechanical performance of polymer blends. In this study, we employed a design of experiment (DoE) approach to investigate the effects of biaxial stretching at three drawing temperatures (Tds) and draw ratios (λs) on a biodegradable blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT), aiming to optimize both the strength and ductility. The DoE analysis revealed that the composition, the λ, the interaction between the λ and composition, and the interaction between the Td and composition significantly affect the elongation at break (εBreak). For the stress at break (σBreak), the most influential factors were the interaction between the λ and PLA concentration; a three-way interaction among the λ, PLA, and Td; the Td; the λ; and finally the PLA concentration alone. The optimal εBreak and σBreak were achieved at a λ = 5 × 5 and Td = 110 °C, with a composition of 10% PLA and 90% PBAT. The stretched samples exhibited higher crystallinity compared to the pressed samples across all compositions. This work demonstrates that in addition to the composition, the processing parameters, such as the λ and Td, critically influence the mechanical properties, enabling performance enhancements without the need for compatibilizers or toxic additives. Full article
Show Figures

Graphical abstract

9 pages, 4977 KB  
Article
A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators
by Francesco Dimiccoli, Francesco Maria Follega, Luigi Ernesto Ghezzer, Roberto Iuppa, Alessandro Lega, Riccardo Nicolaidis, Francesco Nozzoli, Ester Ricci, Enrico Verroi and Paolo Zuccon
Particles 2025, 8(4), 82; https://doi.org/10.3390/particles8040082 - 30 Sep 2025
Viewed by 552
Abstract
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with [...] Read more.
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with their non-linear behavior at low-energy X-rays, has been extensively investigated in previous studies, revealing potential systematic effects in existing measurements. In this work, light quenching in both scintillators is measured under charged-particle excitation. The results are interpreted using the modified Birks–Onsager model, which provides a theoretical framework for understanding the underlying quenching mechanisms, as well as a generalized logistic parametrization, offering experimentalists a useful tool to characterize the detector’s light yield and associated uncertainties. Full article
Show Figures

Figure 1

18 pages, 4933 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Cited by 1 | Viewed by 421
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

Back to TopTop