Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,119)

Search Parameters:
Keywords = damaged zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 23211 KB  
Article
Performance Degradation Mechanism of New Grouting Filling Material Under Goaf Erosion Environment
by Han Yang, Junwu Xia, Yujing Wang, Yu Zhou, Kangjia Song and Siyong Tan
Materials 2025, 18(22), 5147; https://doi.org/10.3390/ma18225147 - 12 Nov 2025
Abstract
This study aims to resolve the “secondary activation” challenge when erecting structures over goaf zones by employing a novel grouting and filling material. It delves into the performance degradation of the innovative ECS soil grouting filling material (ESGF material) within the goaf’s ionic [...] Read more.
This study aims to resolve the “secondary activation” challenge when erecting structures over goaf zones by employing a novel grouting and filling material. It delves into the performance degradation of the innovative ECS soil grouting filling material (ESGF material) within the goaf’s ionic erosion context. Erosion tests were performed on ESGF material specimens with varying mix designs to mimic the sulfate and chloride erosion scenarios commonly encountered in practical engineering. The macro-mechanical properties and microstructural changes of ESGF materials under ionic erosion environment were systematically investigated by various testing methods, such as unconfined compressive strength (UCS), SEM, XRD, TG, FTIR, and Raman. The findings indicate that both sulfate and chloride erosion lead to a reduction in the strength of the ESGF material. As erosion progresses, the specimens experience a mass increase followed by a decrease, with their strength exhibiting a consistent downward trend. In sulfate erosion conditions, the buildup of expansion product like ettringite (AFt) and thaumasite (TSA) inflicts substantial internal structural damage. Conversely, Friedel’s salt, the primary product of chloride erosion, exhibits relatively weaker expansiveness, and chloride concentration exerts a less pronounced effect on material degradation. Moreover, the cementitious material content and the proportion of quick-setting component play a significant role in determining the ESGF material’s resistance to erosion. By adjusting the quick-setting components ratio in response to changes in the water content of soft soil, the anti-ion erosion performance of solidified soil can be effectively enhanced. Notably, curing with a 5% sulfate maintenance could significantly improve the erosion resistance of ESGF material. This suggests that ESGF materials can be used without concern for curing issues in high-salinity environments during grouting. The research addresses the root cause of goaf subsidence while facilitating the recycling of solid waste, offering an environmentally friendly solution. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

29 pages, 2796 KB  
Review
Firearm Injuries: A Review of Wound Ballistics and Related Emergency Management Considerations
by Panagiotis K. Stefanopoulos, Gustavo A. Breglia, Christos Bissias, Alexandra S. Nikita, Chrysovalantis Papageorgiou, Nikolaos E. Tsiatis, Efrem Serafetinides, Dimitrios A. Gyftokostas, Stavros Aloizos and Georgios Mikros
Emerg. Care Med. 2025, 2(4), 52; https://doi.org/10.3390/ecm2040052 - 12 Nov 2025
Abstract
Gunshot injuries are challenging conditions because of the unique characteristics of the wounding agents producing soft tissue damage that may be compounded by the formation of an expanding temporary cavity (cavitation). Variations in ballistic performance leading to higher energy transfer by the projectile, [...] Read more.
Gunshot injuries are challenging conditions because of the unique characteristics of the wounding agents producing soft tissue damage that may be compounded by the formation of an expanding temporary cavity (cavitation). Variations in ballistic performance leading to higher energy transfer by the projectile, including bullet tumbling, deformation, and fragmentation, cause increased soft tissue injury and may also lead to more extensive bone comminution compromising local blood supply. Once life-threatening injuries have been excluded or properly addressed, the emergency management of localized trauma from bullets and shotgun pellets may be complicated due to progressive tissue necrosis within the zone of injury. Additionally, the risk of infection should be tackled, especially in high energy bone injuries. War experience suggests a baseline separation between wounds with limited tissue destruction which can routinely be managed as simple penetrating injuries and those resulting from high energy transfer to the tissues involving a substantial amount of necrotic elements surrounding the wound channel which call for a more aggressive surgical approach. A further justification for such a distinction is the need for antibiotic therapy, which varies according to most studies depending on the wounding mechanism, the nature of the wound, and the extent of tissue injury. The emergency physician should also be aware of the possibility of “bizarre” bullet paths resulting in occult injuries of important anatomic structures. Full article
Show Figures

Figure 1

18 pages, 8743 KB  
Article
Unveiling the Role of Graphite Morphology in Ductile Iron: A 3D FEM-Based Micromechanical Framework for Damage Evolution and Mechanical Performance Prediction with Applicability to Multiphase Alloys
by Jing Tao, Yufei Jiang, Shuhui Xie, Yujian Wang, Ziyue Zhou, Lingxiao Fu, Chengrong Mao, Lingyu Li, Junrui Huang and Shichao Liu
Materials 2025, 18(22), 5128; https://doi.org/10.3390/ma18225128 - 11 Nov 2025
Abstract
The mechanical performance of cast iron is strongly governed by the morphology of its graphite phase, yet establishing a quantitative link between microstructure and macroscopic properties remains a challenge. In this study, a three-dimensional finite element method (FEM)-based micromechanical framework is proposed to [...] Read more.
The mechanical performance of cast iron is strongly governed by the morphology of its graphite phase, yet establishing a quantitative link between microstructure and macroscopic properties remains a challenge. In this study, a three-dimensional finite element method (FEM)-based micromechanical framework is proposed to analyze and predict the mechanical behavior of cast iron with representative graphite morphologies, spheroidal and flake graphite. Realistic representative volume elements (RVEs) are reconstructed based on experimental microstructural characterization and literature-based X-ray computed tomography data, ensuring geometric fidelity and statistical representativeness. Cohesive zone modeling (CZM) is implemented at the graphite/matrix interface and within the graphite phase to simulate interfacial debonding and brittle fracture, respectively. Full-field simulations of plastic strain and stress evolution under uniaxial tensile loading reveal that spheroidal graphite promotes uniform deformation, delayed damage initiation, and enhanced ductility through effective stress distribution and progressive plastic flow. In contrast, flake graphite induces severe stress concentration at sharp tips, leading to early microcrack nucleation and rapid crack propagation along the flake planes, resulting in brittle-like failure. The simulated stress–strain responses and failure modes are consistent with experimental observations, validating the predictive capability of the model. This work establishes a microstructure–property relationship in multiphase alloys through a physics-informed computational approach, demonstrating the potential of FEM-based modeling as a powerful tool for performance prediction and microstructure-guided design of cast iron and other heterogeneous materials. Full article
Show Figures

Figure 1

17 pages, 1865 KB  
Article
Towards Sedentarization of Cattle Farming Systems in Sudanian and Sudano-Guinean Zones of Benin: A Typological Analysis of Conflicts Between Farmers and Herders
by Massourou Tidjani, Alassan Assani Seidou, Christophe Iwaka, Abdel Raouf Adjib Agballa-Belrou, Maximilien Azalou, Erick Virgile Bertrand Azando, Jacob Yabi and Ibrahim Alkoiret Traore
World 2025, 6(4), 151; https://doi.org/10.3390/world6040151 - 11 Nov 2025
Abstract
Conflicts between farmers and herders are a persistent challenge in Sudanian and Sudano-Guinean zones of Benin, largely driven by competition over access to pastoral resources. This study aimed to characterize the prevalence, causes, and typology of such conflicts and to assess their implications [...] Read more.
Conflicts between farmers and herders are a persistent challenge in Sudanian and Sudano-Guinean zones of Benin, largely driven by competition over access to pastoral resources. This study aimed to characterize the prevalence, causes, and typology of such conflicts and to assess their implications for the sedentarization of cattle farming systems. Data were collected from 480 livestock farms across four municipalities (Materi and Gogounou in the Sudanian zone; Tchaourou and Djougou in the Sudano-Guinean zone) through surveys, mapping, and herd productivity assessments. Multiple Correspondence Factorial Analysis was used to classify the conflict types. The results revealed that 52.29% of herders had experienced conflicts, with a higher incidence in the Sudano-Guinean zone (36.88%). Four main categories of conflict were identified: (i) blows and injuries to people and animals (38.64%), (ii) displacement of herders and their farms (34.26%), (iii) property damage and animal slaughter (15.13%), and (iv) violent verbal altercations and animal poisoning (11.97%). These findings indicate that recurrent conflicts are accelerating the shift from transhumance towards sedentarization, underscoring the need for tailored conflict management strategies and sustainable livestock policies. Full article
Show Figures

Figure 1

21 pages, 4092 KB  
Article
Design and Experiment of a Roller-Brush Type Harvesting Device for Dry Safflower Based on Plant Clamping and Pose Adjustment
by Chunjiao Ma, Haifeng Zeng, Yun Ge, Guotao Li, Botao He and Yangyang Guo
Machines 2025, 13(11), 1039; https://doi.org/10.3390/machines13111039 - 11 Nov 2025
Abstract
To address the challenges of low efficiency and high damage rates in dryland safflower harvesting, a roller-brush type harvesting device was developed. The design was developed following a detailed analysis of the spatial distribution and mechanical characteristics of safflower plants. The pose adjustment [...] Read more.
To address the challenges of low efficiency and high damage rates in dryland safflower harvesting, a roller-brush type harvesting device was developed. The design was developed following a detailed analysis of the spatial distribution and mechanical characteristics of safflower plants. The pose adjustment process begins with helical grooves clamping and contacting the plant stem. The propulsion action of the helix then forces the stem to undergo a predetermined deflection displacement. The optimal picking pose occurs when the plant’s longitudinal axis is perpendicular to the rotational axis of the picking roller brush. In this position, the picking roller brush shears the filaments at the necking zone through gentle contact with the fruit balls. This mechanism transforms the traditional pull-off separation into a low-damage shear-separation mode. The Box–Behnken test was designed to find the optimal combination of parameters for picking: picking roller brush speed of 282.5 r/min, roller brush spacing of 3.7 mm, and brush bristle diameter of 0.1 mm. Verification tests showed the picking, damage and fruit injury rates were 92.4%, 7.1% and 1.2%, respectively, with standard deviations of 5.42%, 0.51%, and 0.08%. The harvesting efficiency reached 0.053 hm2/h, 8.48 to 12.01 times higher than manual harvesting. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

20 pages, 5151 KB  
Article
Experimental Analysis of Seismic Damage to the Frame Structure–Site System Crossing a Reverse Fault
by Jing Tian, Haonan Zhang, Shihang Qu, Jianyi Zhang, Hongjuan Chen, Zhijie Xu, Yijie Song and Ran Zhang
Sensors 2025, 25(22), 6866; https://doi.org/10.3390/s25226866 - 10 Nov 2025
Viewed by 140
Abstract
Buildings crossing active faults often suffer severe damage due to fault dislocation during direct-type urban earthquakes. This study employs physical model tests to systematically investigate the dynamic response mechanisms of the integrated “surface rupture zone–overburden–foundation–superstructure” system subjected to bedrock dislocation. A testing apparatus [...] Read more.
Buildings crossing active faults often suffer severe damage due to fault dislocation during direct-type urban earthquakes. This study employs physical model tests to systematically investigate the dynamic response mechanisms of the integrated “surface rupture zone–overburden–foundation–superstructure” system subjected to bedrock dislocation. A testing apparatus capable of simulating reverse faults with adjustable dip angles (45° and 70°) was developed. Using both sand and clay as representative overburden materials, the experiments simulated the processes of surface rupture evolution, foundation deformation, and structural response under varying fault dislocation magnitudes. Results indicate that the fault rupture pattern is governed by the bedrock dislocation magnitude, soil type, and fault dip angle. The failure process can be categorized into three distinct stages: initial rupture, rupture propagation, and rupture penetration. The severity and progression of structural damage are primarily determined by the building’s location relative to the fault trace. Structures located entirely on the hanging wall exhibited tilting angles that remained below the specified code limit throughout the dislocation process, demonstrating behavior dominated by rigid-body translation. In contrast, buildings crossing the fault exceeded this limit even at low dislocation levels, developing significant tilt and strain concentration due to differential foundation settlement. The most severe damage occurred in high-angle dip sand sites, where the maximum structural tilt reached 5.5°. This research elucidates the phased evolution of seismic damage in straddle-fault structures, providing experimental evidence and theoretical support for the seismic design of buildings in near-fault regions. The principal theoretical and methodological contributions are (1) developing a systematic “fault–soil–structure” testing methodology that reveals the propagation of fault dislocation through the system; (2) clarifying the distinct failure mechanisms between straddle-fault and hanging-wall structures, providing a quantitative basis for targeted seismic design; and (3) quantifying the controlling influence of fault dip angle and soil type combinations on structural damage severity, identifying high-angle dip sand sites as the most critical scenario. Full article
(This article belongs to the Special Issue Structural Health Monitoring and Smart Disaster Prevention)
Show Figures

Figure 1

17 pages, 1107 KB  
Article
Impact of Pickling Pretreatment on the Meat Quality of Frozen–Thawed Freshwater Drum (Aplodinotus grunniens)
by Wanwen Chen, Sharifa Mohamed Miraji, Lanxian Yang, Jian Wu, Xueyan Ma, Wu Jin, Liufu Wang, Yufeng Wang, Pao Xu, Hao Cheng and Haibo Wen
Foods 2025, 14(22), 3845; https://doi.org/10.3390/foods14223845 - 10 Nov 2025
Viewed by 161
Abstract
The freshwater drum (Aplodinotus grunniens) is a promising aquaculture species due to its strong environmental adaptability, tolerance to low temperatures, rapid growth rate, high nutritional value, high-quality texture (garlic-clove-shaped flesh), and absence of intermuscular bones. Nevertheless, processing technologies related to freshwater [...] Read more.
The freshwater drum (Aplodinotus grunniens) is a promising aquaculture species due to its strong environmental adaptability, tolerance to low temperatures, rapid growth rate, high nutritional value, high-quality texture (garlic-clove-shaped flesh), and absence of intermuscular bones. Nevertheless, processing technologies related to freshwater drum remain largely unexplored. Salting pretreatment serves as a viable strategy for enhancing the quality attributes of frozen fish products. This study investigated the effects of different sodium chloride (NaCl) pickling concentrations (0.25, 1, and 3 mol/L) on the physicochemical properties and quality attributes of frozen–thawed freshwater drum (Aplodinotus grunniens). Results indicated that elevated NaCl concentrations (1–3 mol/L) significantly (p < 0.05) shortened the transit time through the maximum ice crystal formation zone during freezing, effectively mitigating structural damage to myofibrillar networks. As the NaCl concentration increased from 0 to 3 mol/L, the water content decreased from 71.26 ± 0.22% to 68.64 ± 0.50%, while the salt content increased from 0.31 ± 0.01% to 8.46 ± 0.12%. Pickling pretreatment markedly enhanced water-holding capacity and improved texture profiles, including hardness, springiness, gumminess, and chewiness. Histological analysis revealed preserved myofibril integrity in high-salt-treated samples, supported by reduced fluorescence intensity of myofibrillar proteins, indicating mitigated freeze-induced denaturation. Low-field NMR confirmed salt-induced redistribution of water states, with decreased free water proportion. Our results identify that pretreatment with NaCl at concentrations ≥ 1 mol/L is an effective strategy to preserve the post-thaw quality. Due to 3 mol/L NaCl resulting in a relatively high salt content, 1 mol/L NaCl pretreatment is more suitable for maintaining the quality of freeze–thawed freshwater drums. Full article
Show Figures

Figure 1

21 pages, 5670 KB  
Article
Assessment of Soil Structural Stability of Coal Mine Roof Using Multidimensional Elliptical Copula and Data Augmentation
by Jiazeng Cao, Tao Wang, Chuanqi Zhu and Ying Xu
Sustainability 2025, 17(22), 10028; https://doi.org/10.3390/su172210028 - 10 Nov 2025
Viewed by 185
Abstract
Roof instability in coal mines is one of the primary causes of mining disasters, casualties, and environmental damage. Accurately assessing its reliability is crucial for achieving safe production and sustainable development in coal mining. Based on 192 small measured samples from multiple domestic [...] Read more.
Roof instability in coal mines is one of the primary causes of mining disasters, casualties, and environmental damage. Accurately assessing its reliability is crucial for achieving safe production and sustainable development in coal mining. Based on 192 small measured samples from multiple domestic coal mines (including Anhui, Shanxi, Shaanxi, and Inner Mongolia), this study constructs multidimensional Gaussian Copula and t Copula models to characterize the complex correlation structure of mechanical parameters. The hybrid adaptive multi-method data augmentation (HAMDA) method with three distinct weighting strategies is proposed. Through Monte Carlo Simulation (MCS), systematic reliability assessments are conducted for different roof locations. The results indicate that multidimensional elliptical Copulas effectively simulate the correlation structure of highly variable multidimensional coal mine roof mechanical parameters. Roof system instability is primarily triggered by failure in the bottom zone, accompanied by sidewall instability in approximately 60% of cases, while the top zone remains relatively secure. This provides crucial insights for optimizing support design. The HAMDA method significantly overcomes the limitations of small sample data, with its expanded statistical characteristics closely matching measured data. Failure probability estimates vary across different HAMDA schemes: conservative programs may underestimate risks, while diverse programs tend toward conservatism in lateral zones. These results provide theoretical support for refined roof support design in coal mines, holding significant theoretical and practical value for advancing safety, environmental sustainability, and sustainable development in the coal industry. Full article
Show Figures

Figure 1

20 pages, 4762 KB  
Article
TNFR1 Suppression by XPro1595 Reduces Peripheral Neuropathies Associated with Perineural Invasion in Female Mice
by Morgan Zhang, Naijiang Liu, Kesava Asam, Charles Meng, Bradley Aouizerat and Yi Ye
Cells 2025, 14(22), 1749; https://doi.org/10.3390/cells14221749 - 7 Nov 2025
Viewed by 197
Abstract
Perineural invasion (PNI), defined by cancer spreading or invading into the nerve, links to severe pain, recurrence, and poor prognosis. PNI contributes to nerve damage, Schwann cell activation, and sensory neuron dysfunction. Soluble tumor necrosis factor α (solTNFα) binds to TNFR1 to drive [...] Read more.
Perineural invasion (PNI), defined by cancer spreading or invading into the nerve, links to severe pain, recurrence, and poor prognosis. PNI contributes to nerve damage, Schwann cell activation, and sensory neuron dysfunction. Soluble tumor necrosis factor α (solTNFα) binds to TNFR1 to drive inflammation and nerve injury, playing a key role in cancer progression and pain. This study, using a mouse sciatic nerve PNI model, explored whether blocking solTNFα-TNFR1 signaling via TNFR1 knockout or pharmacological inhibition by XPro1595 could reduce PNI-associated pain. Data showed that XPro1595, but not TNFR1 knockout, reduced tumor burden, alleviated mechanical allodynia, and improved muscle function and locomotion, primarily in females. Histological analysis in females showed that XPro1595 increased the number of myelin and dendritic cells while reducing axonal damage that resulted from PNI. In the tumor zone outside the nerve truck, XPro1595 reduced T cell and increased macrophage and dendritic cell numbers. Transcriptomic analysis revealed that XPro1595 in females with PNI upregulated mitochondrial, myelination, motor function, and immune regulation gene pathways while it downregulated inflammatory, extracellular matrix, and tumor progression pathways. Overall, we demonstrated that XPro1595 exhibited antitumor, neuroprotective, and analgesic properties in female mice, likely by promoting neuronal regeneration and mitochondrial function, while reducing inflammation and extracellular remodeling. Full article
Show Figures

Figure 1

16 pages, 4641 KB  
Article
Application of MambaBDA for Building Damage Assessment in the 2025 Los Angeles Wildfire
by Yangyang Yang, Wanchao Bian, Jiayi Fang, Minghao Tang, Zhonghua He, Ying Li and Gaofeng Fan
Buildings 2025, 15(22), 4019; https://doi.org/10.3390/buildings15224019 - 7 Nov 2025
Viewed by 174
Abstract
Timely detection of the spatial distribution of building damage in the immediate aftermath of a disaster is essential for guiding emergency response and recovery strategies. In January 2025, a large-scale wildfire struck the Los Angeles metropolitan area, with Altadena as one of the [...] Read more.
Timely detection of the spatial distribution of building damage in the immediate aftermath of a disaster is essential for guiding emergency response and recovery strategies. In January 2025, a large-scale wildfire struck the Los Angeles metropolitan area, with Altadena as one of the most severely affected regions. A timely and comprehensive understanding of the spatial distribution of building damage is essential for guiding rescue and resource allocation. In this study, we adopted the MambaBDA framework, which is built upon Mamba, a recently proposed state space architecture in the computer vision domain, and tailored it for spatio-temporal modeling of disaster impacts. The model was trained on the publicly available xBD dataset and subsequently applied to evaluate wildfire-induced building damage in Altadena, with pre- and post-disaster data acquired from WorldView-3 imagery captured during the 2025 Los Angeles wildfire. The workflow consisted of building localization and damage grading, followed by optimization to improve boundary accuracy and conversion to individual building-level assessments. Results show that about 28% of the buildings in Altadena suffered Major or Destroyed levels of damage. Population impact analysis, based on GHSL data, estimated approximately 3241 residents living in Major damage zones and 31,975 in Destroyed zones. These findings highlight the applicability of MambaBDA to wildfire scenarios, demonstrating its capability for efficient and transferable building damage assessment. The proposed approach provides timely information to support post-disaster rescue and recovery decision-making. Full article
(This article belongs to the Special Issue Risks and Challenges of AI-Driven Construction Industry)
Show Figures

Figure 1

33 pages, 4557 KB  
Article
Climate Shocks and Residential Foreclosure Risk: Evidence from Property-Level Disaster and Transaction Data
by Juan Sebastián Herrera, Jasmina M. Buresch, Zachary M. Hirsch and Jeremy R. Porter
Int. J. Financial Stud. 2025, 13(4), 213; https://doi.org/10.3390/ijfs13040213 - 7 Nov 2025
Viewed by 253
Abstract
As climate disasters intensify, their financial shockwaves increasingly threaten residential stability and the resilience of the U.S. mortgage market. While prior research links natural disasters to payment delinquency, far less is known about foreclosure—the terminal outcome of housing distress. We construct a novel [...] Read more.
As climate disasters intensify, their financial shockwaves increasingly threaten residential stability and the resilience of the U.S. mortgage market. While prior research links natural disasters to payment delinquency, far less is known about foreclosure—the terminal outcome of housing distress. We construct a novel property-level panel covering 55 flood, wildfire, and hurricane events, integrating transactional, mortgage, and insurance data. A difference-in-differences framework compares foreclosure rates for damaged parcels with nearby undamaged controls within narrowly defined hazard perimeters. Results show that flooding substantially increases foreclosure risk: inundated properties experience a 0.29-percentage-point rise in foreclosure likelihood within three years, with effects concentrated outside federally mandated flood-insurance zones. In contrast, wildfire and hurricane wind damage are associated with lower foreclosure incidence, likely reflecting standard insurance coverage and rapid post-event price recovery. These findings suggest that physical destruction alone does not drive credit distress; rather, insurance liquidity and post-disaster equity dynamics mediate outcomes. Policy interventions that expand flood insurance coverage, stabilize insurance markets, and embed climate metrics in mortgage underwriting could reduce systemic exposure. Absent such measures, climate-driven foreclosures could account for nearly 30% of lender losses by 2035, posing growing risks to both household wealth and financial stability. Full article
(This article belongs to the Special Issue Risks and Uncertainties in Financial Markets)
Show Figures

Figure 1

22 pages, 7554 KB  
Article
Assessing the Performance of a Cascaded Composite Phase Change Material Roadway Cooling System Against Heat Hazard from Sustainable Mine Geothermal Energy
by Hengfeng Liu, Jiahao Guo, Baiyi Li, Alfonso Rodriguez-Dono, Peng Huang, Xinying Li, Erkan Topal and Shuqi Liu
Appl. Sci. 2025, 15(22), 11850; https://doi.org/10.3390/app152211850 - 7 Nov 2025
Viewed by 170
Abstract
Sustainable mine geothermal energy causes high-temperature hazards in mine roadways, severely endangering miners’ lives. There is an urgent need to enhance research on the performance of composite phase change material (CPCM) roadway cooling systems, as they can effectively control ambient temperatures. However, existing [...] Read more.
Sustainable mine geothermal energy causes high-temperature hazards in mine roadways, severely endangering miners’ lives. There is an urgent need to enhance research on the performance of composite phase change material (CPCM) roadway cooling systems, as they can effectively control ambient temperatures. However, existing research on CPCM roadway cooling system performance remains limited. This study innovatively establishes a numerical model for a novel cascade CPCM roadway cooling system and employs the control variable method to investigate the influence of multi-parameter regulation on system performance. The study reveals that the ring pipe radius ratio significantly impacts the system’s heat exchange efficiency and temperature distribution. The optimal comprehensive system performance is achieved at an annular tube radius ratio of 2:3, where the CPCM solid phase percentage for 89.03% and the average temperature of the monitoring surface decreases by 9.54 °C. Increasing the cascaded tube spacing enhances the overall cooling effect, but cooling efficiency diminishes when the spacing exceeds 0.5 m. The CPCM phase change temperature must align with the mine’s geothermal conditions, with CPCM utilization and cooling efficiency peaking at 25 °C. The air deflector structure effectively mitigates cooling lag in the lower roadway section. At an installation angle of 30°, the expansion distance of the lower low-temperature zone increased by up to 48.89% without compromising cooling efficiency in the upper roadway section, while also delaying the recovery rate of heat damage. Full article
Show Figures

Figure 1

21 pages, 1442 KB  
Article
From Forecasting to Prevention: Operationalizing Spatiotemporal Risk Decoupling in Gas Pipelines via Integrated Time-Series and Pattern Mining
by Shengli Liu
Processes 2025, 13(11), 3589; https://doi.org/10.3390/pr13113589 - 6 Nov 2025
Viewed by 207
Abstract
Accurate prediction of gas pipeline incidents through risk factor interdependencies is critical for proactive safety management. This study develops a hybrid SARIMA–association rule mining (ARM) framework integrating time-series forecasting with causal pattern decoding, using 60-month U.S. pipeline incident records (2010–2024) from the Pipeline [...] Read more.
Accurate prediction of gas pipeline incidents through risk factor interdependencies is critical for proactive safety management. This study develops a hybrid SARIMA–association rule mining (ARM) framework integrating time-series forecasting with causal pattern decoding, using 60-month U.S. pipeline incident records (2010–2024) from the Pipeline and Hazardous Materials Safety Administration (PHMSA) database, covering leaks, mechanical punctures, and ruptures. Seasonal Autoregressive Integrated Moving Average (SARIMA) modeling with six-month rolling-window validation achieves precise leak forecasts (MAPE = 14.13%, MASE = 0.27) and reasonable mechanical damage predictions (MAPE = 31.21%, MASE = 1.15), while ruptures exhibit pronounced stochasticity. Crucially, SARIMA incident probabilities feed Apriori-based ARM, revealing three failure-specific mechanisms: (1) ruptures predominantly originate from natural force damage, with underground cases causing economic losses (lift = 3.70) and aboveground class 3 incidents exhibiting winter daytime ignition risks (lift = 2.37); (2) leaks correlate with equipment degradation, where outdoor meter assemblies account for 69.7% of fire-triggering cases (108/155 incidents) and corrosion dominates >50-year-old pipelines; (3) mechanical punctures cluster in pipelines <20 years during spring excavation, predominantly occurring in class 2 zones due to heightened construction activity. These findings necessitate cause-specific maintenance protocols that integrate material degradation laws and dynamic failure patterns, providing a decision framework for pipe replacement prioritization and seasonal monitoring in high-risk zones. Full article
Show Figures

Figure 1

23 pages, 4455 KB  
Article
Application of the CPO-CNN-BILSTM Hybrid Model for Evaluation of Water Abundance of the Roof Aquifer—A Case Study of WoBei Mine in Huaibei Coalfield, China
by Yuchu Liu, Qiqing Wang, Jingzhong Zhu, Dongding Li and Wenping Li
Appl. Sci. 2025, 15(21), 11816; https://doi.org/10.3390/app152111816 - 5 Nov 2025
Viewed by 281
Abstract
With the gradual increase in coal production capacity, the problem of water damage from the coal seam roof is becoming more and more prominent. Neogene loose strata overlie coal seams in eastern China, and pressurized aquifers commonly lie at the bottom of the [...] Read more.
With the gradual increase in coal production capacity, the problem of water damage from the coal seam roof is becoming more and more prominent. Neogene loose strata overlie coal seams in eastern China, and pressurized aquifers commonly lie at the bottom of the loose strata. The aquifers are mainly composed of unconsolidated sand, gravel, and weakly consolidated marl, which has strong permeability and an extremely unfavorable impact on safe production. Identifying the target area to prevent and control roof water damage can reduce the likelihood of water damage accidents in mines. This study takes the 85 mining district of Wobei mine as an engineering case. The discriminant indexes are selected for aquifer thickness, gradation coefficient, marlstone thickness, permeability, grouting quantity, and grouting termination pressure. A model integrating the newly proposed Crowned Porcupine Optimization (CPO, 2024), Convolutional Neural Network (CNN), and Bidirectional Long Short-Term Memory (BiLSTM) was constructed to predict unit water influx. A zonal map was generated based on the expected unit water influx of the fourth aquifer after grouting. In addition, the prediction results are compared with those from other models. Results indicate that the CPO-CNN-BiLSTM model achieves a higher accuracy and fewer errors in water abundance prediction, with an RMSE of 2.58 × 10−5 and an R2 of 0.982 for the testing dataset. According to the prediction result, the fourth aquifer after grouting in the 85 mining district is divided into five water abundance zones. The strong and medium–strong water abundance zones are mainly distributed in the study area’s eastern region. A small portion of them is distributed in the northwestern and northern areas. This study provides a new insight for predicting the water abundance of thick loose aquifers and a theoretical basis for safe mining under thick loose aquifers. Full article
Show Figures

Figure 1

16 pages, 4731 KB  
Article
Effects of High Root-Zone Temperature on the Physiology and Growth of Pear (Pyrus communis L., cv. Bartlett) and Quince (Cydonia oblonga Mill., cv. BA29) Plants
by Kaies Mezrioui, Enrico Maria Lodolini, Veronica Giorgi and Davide Neri
Horticulturae 2025, 11(11), 1337; https://doi.org/10.3390/horticulturae11111337 - 5 Nov 2025
Viewed by 255
Abstract
Global warming, with rising average temperatures and increasingly frequent extreme heat events, poses a major threat to fruit production systems and food security. Understanding how fruit trees respond to soil thermal stress is therefore critical for developing climate-resilient orchards. In this study, we [...] Read more.
Global warming, with rising average temperatures and increasingly frequent extreme heat events, poses a major threat to fruit production systems and food security. Understanding how fruit trees respond to soil thermal stress is therefore critical for developing climate-resilient orchards. In this study, we investigated the physiological and growth responses of potted pear (Pyrus communis) and quince (Cydonia oblonga) plants to root-zone heating. Plants were exposed to different substrate heating regimes, and gas exchange, water status, chlorophyll content, shoot growth, and biomass allocation were assessed. Short-term extreme heating (50 °C for 36 h) caused immediate reductions in gas exchange, severe root and shoot damage, and rapid plant mortality in both species. By contrast, prolonged heating at 40/35 °C induced significant declines in gas exchange, shoot growth, and root biomass, with species-specific differences. Pear exhibited greater sensitivity than quince, showing lower shoot growth, root dry weight, and gas exchange. These findings highlight the vulnerability of pear trees to high root-zone temperatures and the limited contrast between the tested rootstocks. Accordingly, there is a clear need for targeted soil management practices that promote root growth and soil exploration to enhance orchard resilience under future climate scenarios. Full article
Show Figures

Graphical abstract

Back to TopTop