Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = earth embankment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7354 KB  
Article
Experimental Study on the Mechanism of Overtopping Failure and Breach Development in Homogeneous Earth Dams
by Peisheng Yang, Fugang Xu, Xixi Ye, Folin Li, Xiaohua Xu, Yang Wu and Lingyu Ouyang
Water 2025, 17(23), 3352; https://doi.org/10.3390/w17233352 - 23 Nov 2025
Viewed by 351
Abstract
According to statistics, between 1954 and 2021, China experienced 3558 dam failures in reservoirs, with flood overtopping accounting for 51.04% of these incidents. Once an earth-rock dam fails, it not only directly threatens the lives and property of surrounding residents and disrupts normal [...] Read more.
According to statistics, between 1954 and 2021, China experienced 3558 dam failures in reservoirs, with flood overtopping accounting for 51.04% of these incidents. Once an earth-rock dam fails, it not only directly threatens the lives and property of surrounding residents and disrupts normal living order, but also damages infrastructure such as farmland, transportation, and power systems, resulting in enormous economic losses. To investigate the mechanisms of overtopping failure and breach evolution in homogeneous earthen embankments during flood seasons, this study conducted seven sets of laboratory model tests with the Changkai Embankment in Fuzhou City, Jiangxi Province, as a prototype. The tests considered various operational conditions, including different crest widths, embankment heights, channel water depths, and river flow velocities. The test results are as follows: Overtopping failure of earth embankments can be categorised into three distinct stages. The breach formation process can be categorised into three stages: vertical erosion (stage I), breach expansion (stage II) and breach stabilisation (stage III). River water levels and inflow rates were identified as pivotal factors influencing the final morphology of the breach and the flow velocity within it. Conversely, the height of the dike was found to have little influence on the shape of the breach and the flow velocity. The breach width ranges from 6 cm to 12 cm. An increase in water depth, corresponding to a greater difference in water levels on both sides of the river, has been observed to result in a deeper breach and faster widening rate. Elevated water levels have been shown to increase the potential energy of the water, which is subsequently converted into greater kinetic energy during breach formation. This, in turn, increases the flow velocity at the breach. However, a negative correlation has been observed between inflow velocity and flow at the breach. This paper combines the material properties of the embankment to discuss the overtopping failure mechanism and the breach evolution law of homogeneous earth embankments. This provides a basis for preventing and controlling embankment failure disasters. Full article
(This article belongs to the Special Issue Disaster Risks and Resilience in Water Conservancy Projects)
Show Figures

Figure 1

19 pages, 4909 KB  
Article
Monitoring Landform Changes in a Mining Area in Mexico Using Geomatic Techniques
by Saúl Dávila-Cisneros, Ana G. Castañeda-Miranda, Carlos Francisco Bautista-Capetillo, Erick Dante Mattos-Villarroel, Víktor Iván Rodríguez-Abdalá, Cruz Octavio Robles Rovelo, Laura Alejandra Pinedo-Torres, Alejandro Rodríguez-Trejo and Salvador Ibarra-Delgado
Geomatics 2025, 5(4), 63; https://doi.org/10.3390/geomatics5040063 - 13 Nov 2025
Viewed by 308
Abstract
Mining activities are conducted to extract valuable minerals from the Earth, which are used to manufacture many objects. However, these operations generate landform alterations, such as deep excavations, artificial embankments, and landscape reshaping. In this study, landform changes were monitored in a mining [...] Read more.
Mining activities are conducted to extract valuable minerals from the Earth, which are used to manufacture many objects. However, these operations generate landform alterations, such as deep excavations, artificial embankments, and landscape reshaping. In this study, landform changes were monitored in a mining area in Mazapil, Zacatecas, Mexico, using geomatic techniques. Multitemporal Landsat satellite images and digital elevation models (DEMs) from different years were used to detect and quantify landform alterations and estimate the volumes of removed material. The results show ground depressions greater than −333 m and waste material accumulations greater than +152 m, with an average standard deviation of ±3.6 m. A total excavation volume of 413.524 million m3 and a total fill volume of 431.194 million m3 were quantified, with an estimated standard deviation of ±810 m3. The proposed methodology proved effective for the remote quantification of large-scale relief disturbances in open-pit mining areas. It can also be used for environmental monitoring and hydrological risk assessment in active and inactive mining areas. Full article
Show Figures

Graphical abstract

17 pages, 8985 KB  
Article
Assessing Geomorphological Changes and Oil Extraction Impacts in Abandoned Yellow River Estuarine Tidal Flats Using Cloud Coverage in Region of Interest (CCROI) and WDM
by Lianjie Zhang, Jishun Yan, Pan Zhang, Bo Zhao, Xia Lin and Quanming Wang
Appl. Sci. 2025, 15(16), 9097; https://doi.org/10.3390/app15169097 - 18 Aug 2025
Viewed by 595
Abstract
Waterline extraction is a key step in applying the Waterline Detection Method (WDM) to Digital Elevation Model (DEM) generation. Cloud interference remains a major challenge for achieving high-quality extraction of waterlines. This study developed an image filtering method termed “Cloud Coverage in Region [...] Read more.
Waterline extraction is a key step in applying the Waterline Detection Method (WDM) to Digital Elevation Model (DEM) generation. Cloud interference remains a major challenge for achieving high-quality extraction of waterlines. This study developed an image filtering method termed “Cloud Coverage in Region of Interest” (CCROI). By integrating the CCROI method with the Otsu algorithm and noise smoothing techniques, this study enabled high-quality batch and automated extraction of waterlines within the Google Earth Engine (GEE) platform. Using the WDM, DEMs were established to evaluate recent geomorphological changes in the estuarine tidal flats of the abandoned Diaokou Course (ETFADC). The results confirm that the erosional trend of the ETFADC has persisted throughout nearly 50 years of natural adjustment. In areas distant from oil extraction zones, erosion dominates the high-tide zone, while accretion prevails in the low-tide zone, indicating a slope-flattening process. However, in areas near the oil extraction zone, tree-shaped embankments have acted to inhibit erosion rather than exacerbate it, with strong accretion even occurring in wave-sheltered areas. By enhancing the quality of the selected images and reducing the waterline false detection rate, the CCROI method demonstrates significant potential for time-series studies of small regions. Full article
(This article belongs to the Special Issue New Technologies for Observation and Assessment of Coastal Zones)
Show Figures

Figure 1

31 pages, 8947 KB  
Article
Research on Super-Resolution Reconstruction of Coarse Aggregate Particle Images for Earth–Rock Dam Construction Based on Real-ESRGAN
by Shuangping Li, Lin Gao, Bin Zhang, Zuqiang Liu, Xin Zhang, Linjie Guan and Junxing Zheng
Sensors 2025, 25(13), 4084; https://doi.org/10.3390/s25134084 - 30 Jun 2025
Viewed by 685
Abstract
This paper investigates the super-resolution reconstruction technology of coarse granular particle images for embankment construction in earth/rock dams based on Real-ESRGAN, aiming to improve the quality of low-resolution particle images and enhance the accuracy of particle shape analysis. The paper begins with a [...] Read more.
This paper investigates the super-resolution reconstruction technology of coarse granular particle images for embankment construction in earth/rock dams based on Real-ESRGAN, aiming to improve the quality of low-resolution particle images and enhance the accuracy of particle shape analysis. The paper begins with a review of traditional image super-resolution methods, introducing Generative Adversarial Networks (GAN) and Real-ESRGAN, which effectively enhance image detail recovery through perceptual loss and adversarial training. To improve the generalization ability of the super-resolution model, the study expands the morphological database of earth/rock dam particles by employing a multi-modal data augmentation strategy, covering a variety of particle shapes. The paper utilizes a dual-stage degradation model to simulate the image degradation process in real-world environments, providing a diverse set of degraded images for training the super-resolution reconstruction model. Through wavelet transform methods, the paper analyzes the edge and texture features of particle images, further improving the precision of particle shape feature extraction. Experimental results show that Real-ESRGAN outperforms other traditional super-resolution algorithms in terms of edge clarity, detail recovery, and the preservation of morphological features of particle images, particularly under low-resolution conditions, with significant improvement in image reconstruction. In conclusion, Real-ESRGAN demonstrates excellent performance in the super-resolution reconstruction of coarse granular particle images for embankment construction in earth/rock dams. It can effectively restore the details and morphological features of particle images, providing more accurate technical support for particle shape analysis in civil engineering. Full article
Show Figures

Figure 1

15 pages, 14470 KB  
Article
Target Detection Method for Soil-Dwelling Termite Damage Based on MCD-YOLOv8
by Peidong Jiang, Lai Jiang, Fengyan Wu, Tengteng Che, Ming Wang and Chuandong Zheng
Sensors 2025, 25(7), 2199; https://doi.org/10.3390/s25072199 - 31 Mar 2025
Cited by 1 | Viewed by 1134
Abstract
With global climate change and the deterioration of the ecological environment, the safety of hydraulic engineering faces severe challenges, among which soil-dwelling termite damage has become an issue that cannot be ignored. Reservoirs and embankments in China, primarily composed of earth and rocks, [...] Read more.
With global climate change and the deterioration of the ecological environment, the safety of hydraulic engineering faces severe challenges, among which soil-dwelling termite damage has become an issue that cannot be ignored. Reservoirs and embankments in China, primarily composed of earth and rocks, are often affected by soil-dwelling termites, such as Odontotermes formosanus and Macrotermes barneyi. Identifying soil-dwelling termite damage is crucial for implementing monitoring, early warning, and control strategies. This study developed an improved YOLOv8 model, named MCD-YOLOv8, for identifying traces of soil-dwelling termite activity, based on the Monte Carlo random sampling algorithm and a lightweight module. The Monte Carlo attention (MCA) module was introduced in the backbone part to generate attention maps through random sampling pooling operations, addressing cross-scale issues and improving the recognition accuracy of small targets. A lightweight module, known as dimension-aware selective integration (DASI), was added in the neck part to reduce computation time and memory consumption, enhancing detection accuracy and speed. The model was verified using a dataset of 2096 images from the termite damage survey in hydraulic engineering within Hubei Province in 2024, along with images captured by drone. The results showed that the improved YOLOv8 model outperformed four traditional or enhanced models in terms of precision and mean average precision for detecting soil-dwelling termite damage, while also exhibiting fewer parameters, reduced redundancy in detection boxes, and improved accuracy in detecting small targets. Specifically, the MCD-YOLOv8 model achieved increases in precision and mean average precision of 6.4% and 2.4%, respectively, compared to the YOLOv8 model, while simultaneously reducing the number of parameters by 105,320. The developed model is suitable for the intelligent identification of termite damage in complex environments, thereby enhancing the intelligent monitoring of termite activity and providing strong technical support for the development of termite control technologies. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

38 pages, 3832 KB  
Review
An Integrated Approach for Earth Infrastructure Monitoring Using UAV and ERI: A Systematic Review
by Udochukwu ThankGod Ikechukwu Igwenagu, Rahul Debnath, Ahmed Abdelmoamen Ahmed and Md Jobair Bin Alam
Drones 2025, 9(3), 225; https://doi.org/10.3390/drones9030225 - 20 Mar 2025
Cited by 6 | Viewed by 4595
Abstract
The integrity of earth infrastructure, encompassing slopes, dams, pavements, and embankments, is fundamental to the functioning of transportation networks, energy systems, and urban development. However, these infrastructures are increasingly threatened by a range of natural and anthropogenic factors. Conventional monitoring techniques, including inclinometers [...] Read more.
The integrity of earth infrastructure, encompassing slopes, dams, pavements, and embankments, is fundamental to the functioning of transportation networks, energy systems, and urban development. However, these infrastructures are increasingly threatened by a range of natural and anthropogenic factors. Conventional monitoring techniques, including inclinometers and handheld instruments, often exhibit limitations in spatial coverage and operational efficiency, rendering them insufficient for comprehensive evaluation. In response, Uncrewed Aerial Vehicles (UAVs) and Electrical Resistivity Imaging (ERI) have emerged as pivotal technological advancements, offering high-resolution surface characterization and critical subsurface diagnostics, respectively. UAVs facilitate the detection of deformations and geomorphological dynamics, while ERI is instrumental in identifying zones of water saturation and geological structures, detecting groundwater, characterizing vadose zone hydrology, and assessing subsurface soil and rock properties and potential slip surfaces, among others. The integration of these technologies enables multidimensional monitoring capabilities, enhancing the ability to predict and mitigate infrastructure instabilities. This article focuses on recent advancements in the integration of UAVs and ERI through data fusion frameworks, which synthesize surface and subsurface data to support proactive monitoring and predictive analytics. Drawing on a synthesis of contemporary research, this study underscores the potential of these integrative approaches to advance early-warning systems and risk mitigation strategies for critical infrastructure. Furthermore, it identifies existing research gaps and proposes future directions for the development of robust, integrated monitoring methodologies. Full article
Show Figures

Figure 1

10 pages, 3646 KB  
Article
Non-Destructive Methods for Assessing the Condition of Reinforcement Materials in Soil
by Naoki Tatta and Hideo Sakai
Geosciences 2024, 14(10), 261; https://doi.org/10.3390/geosciences14100261 - 1 Oct 2024
Viewed by 1361
Abstract
A reinforced earth wall is a structure in which reinforcement materials are placed in an embankment to build a vertical or nearly vertical wall surface. Such walls have been widely used in roads and in developed land since around 1960. Reinforcement materials have [...] Read more.
A reinforced earth wall is a structure in which reinforcement materials are placed in an embankment to build a vertical or nearly vertical wall surface. Such walls have been widely used in roads and in developed land since around 1960. Reinforcement materials have a set service life of 100 years and fall into two types: steel and geosynthetics. To ensure long-term durability, steel reinforcement materials are plated, while geosynthetics are designed with a limit strength designed to resist fracture for 100 years under the conditions of a given load placed on the reinforcement materials. However, owing to the difficulty of assessing the condition of reinforcement materials in soil, this paper proposes solutions based on non-destructive methods. Specifically, it proposes a method of assessing the amount of strain through an embedded optical fiber in the case of geosynthetic reinforcement materials, or magnetic surveying to investigate the degree of corrosion in the case of steel reinforcement materials. This paper demonstrates that it is possible to non-destructively assess the state of either type of reinforcement material. Full article
(This article belongs to the Special Issue Computational Geodynamic, Geotechnics and Geomechanics)
Show Figures

Figure 1

16 pages, 4185 KB  
Article
Effectiveness of the Sustainable Manure Pile Model for Ammonia Emission and Soil
by Rolandas Bleizgys, Arvydas Povilaitis, Juozas Pekarskas and Vilma Naujokienė
Agronomy 2024, 14(7), 1475; https://doi.org/10.3390/agronomy14071475 - 8 Jul 2024
Cited by 2 | Viewed by 2071
Abstract
In order to reduce odor emissions and surface water pollution while storing manure in field heaps near a barn, there is a challenge in properly designing manure-storage areas. Therefore, it is important to assess what solutions and conditions, considering environmental requirements, should be [...] Read more.
In order to reduce odor emissions and surface water pollution while storing manure in field heaps near a barn, there is a challenge in properly designing manure-storage areas. Therefore, it is important to assess what solutions and conditions, considering environmental requirements, should be considered when storing manure in field heaps. The goal of the research is to determine the impact of various factors on the risk of nutrient leaching, soil, and gas emissions from solid manure heaps, considering climatic factors in the environment. Through various scientific studies, a manure pile model has been developed and evaluated for its impact on the risk of potential leaching and odor emissions (using hyperspectral gas emission analysis mass flow method) from manure and the dynamics of the 0–80 cm soil layer properties (nitrate (N-NO3) and nitrite (N-NO2), ammonia (NH3), mineral, and total N). Based on the research results, requirements for manure management and storage during the prohibited fertilization period were established, considering the requirements for nitrates from agricultural sources in Lithuania. An optimal new manure heap model has been identified—a layer of not less than 20 cm of compacted straw (density 150–200 kg m−3) or a 10 cm layer of peat for absorbing manure slurries is formed on the soil surface, the manure heap is surrounded by an earth embankment not less than 30 cm high, the manure heap is covered with a layer of finely chopped straw not less than 10 cm thick, or 5 cm of sawdust, or 5 cm of peat. The manure is stored in the heap for 6–12 months. Following the research results, requirements for manure management and storage during the prohibited fertilization period were established, considering the requirements for nitrates from agricultural sources in Lithuania, applicable to the northern part of the temperate climate zone and applying similar requirements to the relevant countries. Full article
Show Figures

Figure 1

18 pages, 4462 KB  
Article
Influence of Apparatus Scale on Geogrid Monotonic and Cyclic/Post-Cyclic Pullout Behavior in Cohesive Soils
by Sergio Rincón Barajas, Gabriel Orquizas Mattielo Pedroso, Fernanda Bessa Ferreira and Jefferson Lins da Silva
Appl. Sci. 2024, 14(13), 5861; https://doi.org/10.3390/app14135861 - 4 Jul 2024
Cited by 2 | Viewed by 1249
Abstract
Geosynthetics have increasingly been applied to geotechnical engineering works due to their numerous advantages, including cost-effectiveness and their significant role in sustainable development. When geosynthetics are used as reinforcement in earth structures, such as embankments, retaining walls and bridge abutments, soil–geosynthetic interface shear [...] Read more.
Geosynthetics have increasingly been applied to geotechnical engineering works due to their numerous advantages, including cost-effectiveness and their significant role in sustainable development. When geosynthetics are used as reinforcement in earth structures, such as embankments, retaining walls and bridge abutments, soil–geosynthetic interface shear behavior is a critical parameter involved in the design. This paper presents a series of monotonic and cyclic/post-cyclic pullout tests carried out to examine the apparatus scale effect on the pullout response of a geogrid embedded in two different soils. To assess the small-scale equipment feasibility, comparisons were made between pullout test parameters derived from small- and large-scale equipment. The test results indicate that, under a low confining stress of 25 kPa, using a smaller-sized apparatus results in lower values of geogrid pullout resistance and maximum mobilized shear stress, but higher values of confined tensile stiffness at low strains. On the other hand, as the confining stress increases (i.e., 50 kPa and 100 kPa), the difference between the results becomes less significant and similar trends are observed regardless of the equipment type. Adopting small-scale equipment enables obtaining soil–reinforcement interaction parameters using test procedures that are less time-consuming than those associated with large-scale pullout tests. However, proper scale effect correction factors may be considered for more consistent estimates of the interface strength parameters under low normal stress values. Full article
(This article belongs to the Special Issue Sustainability in Geotechnics)
Show Figures

Figure 1

41 pages, 10492 KB  
Review
Water Dams: From Ancient to Present Times and into the Future
by Andreas N. Angelakis, Alper Baba, Mohammad Valipour, Jörg Dietrich, Elahe Fallah-Mehdipour, Jens Krasilnikoff, Esra Bilgic, Cees Passchier, Vasileios A. Tzanakakis, Rohitashw Kumar, Zhang Min, Nicholas Dercas and Abdelkader T. Ahmed
Water 2024, 16(13), 1889; https://doi.org/10.3390/w16131889 - 1 Jul 2024
Cited by 18 | Viewed by 10463
Abstract
Since ancient times, dams have been built to store water, control rivers, and irrigate agricultural land to meet human needs. By the end of the 19th century, hydroelectric power stations arose and extended the purposes of dams. Today, dams can be seen as [...] Read more.
Since ancient times, dams have been built to store water, control rivers, and irrigate agricultural land to meet human needs. By the end of the 19th century, hydroelectric power stations arose and extended the purposes of dams. Today, dams can be seen as part of the renewable energy supply infrastructure. The word dam comes from French and is defined in dictionaries using words like strange, dike, and obstacle. In other words, a dam is a structure that stores water and directs it to the desired location, with a dam being built in front of river valleys. Dams built on rivers serve various purposes such as the supply of drinking water, agricultural irrigation, flood control, the supply of industrial water, power generation, recreation, the movement control of solids, and fisheries. Dams can also be built in a catchment area to capture and store the rainwater in arid and semi-arid areas. Dams can be built from concrete or natural materials such as earth and rock. There are various types of dams: embankment dams (earth-fill dams, rock-fill dams, and rock-fill dams with concrete faces) and rigid dams (gravity dams, rolled compacted concrete dams, arch dams, and buttress dams). A gravity dam is a straight wall of stone masonry or earthen material that can withstand the full force of the water pressure. In other words, the pressure of the water transfers the vertical compressive forces and horizontal shear forces to the foundations beneath the dam. The strength of a gravity dam ultimately depends on its weight and the strength of its foundations. Most dams built in ancient times were constructed as gravity dams. An arch dam, on the other hand, has a convex curved surface that faces the water. The forces generated by the water pressure are transferred to the sides of the structure by horizontal lines. The horizontal, normal, and shear forces resist the weight at the edges. When viewed in a horizontal section, an arch dam has a curved shape. This type of dam can also resist water pressure due to its particular shape that allows the transfer of the forces generated by the stored water to the rock foundations. This article takes a detailed look at hydraulic engineering in dams over the millennia. Lessons should be learned from the successful and unsuccessful applications and operations of dams. Water resource managers, policymakers, and stakeholders can use these lessons to achieve sustainable development goals in times of climate change and water crisis. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

19 pages, 4568 KB  
Article
Pore Water Pressure Prediction Based on Machine Learning Methods—Application to an Earth Dam Case
by Lu An, Daniel Dias, Claudio Carvajal, Laurent Peyras, Pierre Breul, Orianne Jenck and Xiangfeng Guo
Appl. Sci. 2024, 14(11), 4749; https://doi.org/10.3390/app14114749 - 31 May 2024
Cited by 3 | Viewed by 2301
Abstract
Pore water pressure (PWP) response is significant for evaluating the earth dams’ stability, and PWPs are, therefore, generally monitored. However, due to the soil heterogeneity and its non-linear behavior within earths, the PWP is usually difficult to estimate and predict accurately in order [...] Read more.
Pore water pressure (PWP) response is significant for evaluating the earth dams’ stability, and PWPs are, therefore, generally monitored. However, due to the soil heterogeneity and its non-linear behavior within earths, the PWP is usually difficult to estimate and predict accurately in order to detect a pathology or anomaly in the behavior of an embankment dam. This study endeavors to tackle this challenge through the application of diverse machine learning (ML) techniques in estimating the PWP within an existing earth dam. The methods employed include random forest (RF) combined with simulated annealing (SA), multilayer perceptron (MLP), standard recurrent neural networks (RNNs), and gated recurrent unit (GRU). The prediction capability of these techniques was gauged using metrics such as the coefficient of determination (R2), mean square error (MSE), and CPU training time. It was found that all the considered ML methods could give satisfactory results for the PWP estimation. Upon comparing these methods within the case study, the findings suggest that, in this study, multilayer perceptron (MLP) gives the most accurate PWP prediction, achieving the highest coefficient of determination (R2 = 0.99) and the lowest mean square error (MSE = 0.0087) metrics. A sensitivity analysis is then presented to evaluate the models’ robustness and the hyperparameter’s influence on the performance of the prediction model. Full article
(This article belongs to the Special Issue Data Science in Water Conservancy Engineering)
Show Figures

Figure 1

21 pages, 11900 KB  
Article
Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel
by Mamadou Pousga Junior Kaboré, Abdou Lawane, Roland Yonaba, Angelbert Chabi Biaou, Abdoulaye Nadjibou and Anne Pantet
Resources 2024, 13(6), 71; https://doi.org/10.3390/resources13060071 - 29 May 2024
Cited by 4 | Viewed by 2308
Abstract
In West Africa, the construction of small earth dams is common against water scarcity. Burkina Faso, an inland country in West Africa, is home to 1001 dams that serve agricultural and pastoral needs. These embankments are predominantly made of compacted laterite, a cost-effective [...] Read more.
In West Africa, the construction of small earth dams is common against water scarcity. Burkina Faso, an inland country in West Africa, is home to 1001 dams that serve agricultural and pastoral needs. These embankments are predominantly made of compacted laterite, a cost-effective material abundant in over 2/3 of the country. However, these dams degrade over time, hindering their functionality. This study aims to establish a catalog of typical degradation occurring on small dams in Burkina Faso, which is virtually non-existent in the region while identifying and analyzing the potential causes. The study uses a diagnostic analysis followed up with technical visits on a representative sample of 24 dams in the Centre and Centre-South regions as a basis for future studies. The results reveal that these dams were constructed between 1965 and 2018, with capacities ranging from 150,000 to 4,740,000 m3. 33% of these dams have undergone total failure, likely attributed to factors such as internal erosion, pore overpressures, settlement, and deformation. Although 67% of the dams remain functional, their structural integrity could be improved. Erosion observed in riprap indicates vulnerability during high flood periods. Additionally, the absence of proper maintenance, as shown by the vegetation development weakening embankments, contributes to deterioration. The analysis also suggests that variability in construction techniques and lateritic material properties across time and regions may further exacerbate degradation. These findings inform infrastructure improvements and policy development for sustainable water resource management in Burkina Faso and similar regions. Full article
Show Figures

Figure 1

19 pages, 9654 KB  
Article
Tidal Range Barrage Design and Construction
by David Vandercruyssen, Simon Baker, David Howard and George Aggidis
Appl. Sci. 2024, 14(11), 4592; https://doi.org/10.3390/app14114592 - 27 May 2024
Viewed by 3500
Abstract
The west coast of Great Britain has the potential for barrages to create tidal range reservoirs that both facilitate electricity generation and prevent flooding from sea level rise. Seawater flows into and out of the reservoir, or impoundment, through turbines and sluices. The [...] Read more.
The west coast of Great Britain has the potential for barrages to create tidal range reservoirs that both facilitate electricity generation and prevent flooding from sea level rise. Seawater flows into and out of the reservoir, or impoundment, through turbines and sluices. The impounded water follows the natural tidal sequence but with a delay which creates a head between the two bodies of water. Traditional designs for barrages use earth embankments, with impermeable cores and rockfill protection. More recently, breakwaters and jetties have been constructed using precast concrete vertical caissons. A novel design using horizontal precast caissons is described and evaluated. Wave forces are estimated using Goda’s method for a vertical breakwater to assess their impact on stability and ground-bearing pressures. The stability of the barrage is checked for hydrostatic and wave forces. The volumes of materials and relative costs are presented. Precast caissons are found to be viable financially and should be both quicker and easier to construct and install. The horizontal caissons show advantages over the vertical type, and although untried, they should be easier to construct than submerged tube tunnels. Further work is needed to validate the design, including dynamic modelling and detailed construction assessment to confirm the cost rates. Full article
Show Figures

Figure 1

17 pages, 9692 KB  
Article
The Impacts of River Channel Blockages Caused by Sliding Embankment Collapses during Earthquakes
by Norio Harada, Yoshifumi Satofuka and Takahisa Mizuyama
Water 2024, 16(6), 822; https://doi.org/10.3390/w16060822 - 12 Mar 2024
Cited by 2 | Viewed by 2727
Abstract
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially [...] Read more.
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially impacted by earthen embankment landslides during seismic events. This study evaluates the methods used to assess the potential damage caused by such landslides and previous research on the harm caused by embankment failures during earthquakes. We derived predictive equations based on statistical analyses of historical dam landslides that triggered river channel blockages when residential earth embankments failed in the Nigawa Yurino area. The equations describe the morphologies of landslide dams in river channels. The results indicated that the predictive equations were reasonably accurate. We built and validated a two-dimensional model of landslide dam overtopping and breaching using experimental data on a gently sloping dam. We derived the outflow volumes associated with residential earth embankment failures when full reservoirs breached in the Nigawa Yurino area. Our findings suggest that the peak outflow volumes after such embankments breach are generally lower than those associated with dam landslides or deep-seated dam failures, but higher than those of glacial lake outburst floods. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 7290 KB  
Article
Physical and Numerical Models of Mechanically Stabilized Earth Walls Using Self-Fabricated Steel Reinforcement Grids Applied to Cohesive Soil in Vietnam
by Truong-Linh Chau, Thu-Ha Nguyen and Van-Ngoc Pham
Appl. Sci. 2024, 14(3), 1283; https://doi.org/10.3390/app14031283 - 3 Feb 2024
Cited by 2 | Viewed by 3150
Abstract
Mechanically stabilized earth (MSE) walls have been widely applied in construction to maintain the stability of high embankments. In Vietnam, imported reinforcement materials are expensive; thus, finding locally available materials for MSE walls is beneficial. This study examines the behavior of an MSE [...] Read more.
Mechanically stabilized earth (MSE) walls have been widely applied in construction to maintain the stability of high embankments. In Vietnam, imported reinforcement materials are expensive; thus, finding locally available materials for MSE walls is beneficial. This study examines the behavior of an MSE wall using local reinforcement materials in Danang, Vietnam. The MSE was reinforced by self-fabricated galvanized steel grids using CB300V steel with 3 cm ribs. The backfill soil was sandy clay soil from the local area with a low cohesion. A full-scale model with full instrumentation was installed to investigate the distribution of tensile forces along the reinforcement layers. The highest load that caused the wall to collapse due to internal instability (reinforcement rupture) was 302 kN/m2, which is 15 times greater than the design load of 20 kN/m2. The failure surface within the reinforced soil had a parabolic sliding shape that was similar to the theoretical studies. At the failure load level, the maximum lateral displacement at the top of the wall facing was small (3.9 mm), significantly lower than the allowable displacement for a retaining wall. Furthermore, a numerical model using FLAC software 7.0 was applied to simulate the performance of the MSE wall. The modeling results were in good agreement with the physical model. Thus, self-fabricated galvanized steel grids could confidently be used in combination with the local backfill soil for MSE walls. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures)
Show Figures

Figure 1

Back to TopTop