Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = eastern red bat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4899 KB  
Article
The Bat Signal: An Ultraviolet Light Lure to Increase Acoustic Detection of Bats
by Samuel R. Freeze, Sabrina M. Deeley, Amber S. Litterer, J. Mark Freeze and W. Mark Ford
Animals 2025, 15(16), 2458; https://doi.org/10.3390/ani15162458 - 21 Aug 2025
Viewed by 1256
Abstract
Bats are a taxa of high conservation concern and are facing numerous threats including widespread mortality due to White-Nose Syndrome (WNS) in North America. With this decline comes increasing difficulty in monitoring imperiled bat species due to lower detection probabilities of both mist-netting [...] Read more.
Bats are a taxa of high conservation concern and are facing numerous threats including widespread mortality due to White-Nose Syndrome (WNS) in North America. With this decline comes increasing difficulty in monitoring imperiled bat species due to lower detection probabilities of both mist-netting and acoustic surveys. Lure technology shows promise to increase detection while decreasing sampling effort; however, to date research has primarily focused on increasing physical captures during mist-net surveys using sound lures. Because much bat monitoring is now performed using acoustic detection, there is a similar need to increase detection probabilities during acoustic surveys. Ultraviolet (UV) lights anecdotally have been shown to attract insects and thereby attract foraging bats for observational studies and to experimentally provide a food source for WNS-impacted bats before and after hibernation. Therefore, we constructed a field-portable and programmable UV lure device to determine the value of lures for increasing acoustic detection of bats. We tested if the lure device increased both the echolocation passes and feeding activity (feeding buzzes) across a transect of bat detectors. There was an increase in feeding activity around the UV light, with a nuanced, species-specific and positionally dependent effect on echolocation passes received. The UV light lure increased echolocation passes for the eastern red bat (Lasiurus borealis), little brown bat (Myotis lucifugus), and evening bat (Nycticeius humeralis), but decreased passes of the North American hoary bat (Lasiurus cinereus). The northern long-eared bat (Myotis septentrionalis) showed a negative response within the illuminated area but increased echolocation activity outside the illuminated area during lure treatment and activity was elevated at all positions after the lure was deactivated. Our study demonstrates some potential utility of UV lures in increasing the feeding activity and acoustic detection of bats. Additional research and development of UV lure technology may be beneficial, including alternating on and off periods to improve detection of light-averse species, and improving echolocation call quality along with the increase in received passes. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

19 pages, 1721 KB  
Review
Systematic Review of Crop Pests in the Diets of Four Bat Species Found as Wind Turbine Fatalities
by Amanda M. Hale, Cecily Foo, John Lloyd and Jennifer Stucker
Diversity 2025, 17(8), 590; https://doi.org/10.3390/d17080590 - 21 Aug 2025
Viewed by 1464
Abstract
Although the ultimate drivers of bat fatalities at wind turbines are still not well understood, the foraging behavior of insectivorous bats puts them at increased risk of collision with rotating blades. Wind energy facilities are commonly located in agriculture fields where bats can [...] Read more.
Although the ultimate drivers of bat fatalities at wind turbines are still not well understood, the foraging behavior of insectivorous bats puts them at increased risk of collision with rotating blades. Wind energy facilities are commonly located in agriculture fields where bats can exploit periodic superabundant insect emergence events in the late summer and early autumn. Thermal imaging, acoustic monitoring, and bat carcass stomach content analyses show that bats prey upon insects on and near wind turbine towers. Studies have shown a positive association between insect abundance and bat activity, including in agricultural systems. We conducted a systematic review of bat diets for four common bat species in the Midwest and northern Great Plains to synthesize existing knowledge across species, assess the extent to which these bat focal species consume crop pests, and evaluate the potential for crop pest emergence models to predict temporal and spatial patterns of bat fatalities in this region. Big brown bats and eastern red bats consumed a variety of crop pests, including some for which emergence models may be available. In contrast, there were few studies for hoary bats or silver-haired bats, and the dietary evidence available has insufficient taxonomic resolution to conclude that crop pests were consumed. To augment existing data and illuminate relationships, we recommend that genetic diet analyses for bats, specifically hoary and silver-haired, be conducted in the late summer and autumn in this region. The results of these studies may provide additional candidate insect models to evaluate for predicting bat fatalities at wind turbines and clarify if the superabundant insect emergence hypothesis warrants further investigation. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

18 pages, 2111 KB  
Article
Detection of Spotted Lanternfly (Lycorma delicatula) by Bats: A qPCR Approach to Forest Pest Surveillance
by Erin McHale, Robert Kwait, Kathleen Kerwin, Kathleen Kyle, Christian Crosby and Brooke Maslo
Forests 2025, 16(3), 443; https://doi.org/10.3390/f16030443 - 28 Feb 2025
Cited by 1 | Viewed by 7236
Abstract
Invasive insect pests pose a significant threat to forest ecosystems. Effective pest management relies on detecting these pests, which can be challenging when populations are sparse, newly introduced, or not easily observable. The spotted lanternfly (Lycorma delicatula White), a recent invader to [...] Read more.
Invasive insect pests pose a significant threat to forest ecosystems. Effective pest management relies on detecting these pests, which can be challenging when populations are sparse, newly introduced, or not easily observable. The spotted lanternfly (Lycorma delicatula White), a recent invader to North America, has caused extensive damage across the eastern United States since its introduction in 2014. Conventional monitoring methods, such as traps or visual inspections, are limited in their spatial coverage and may not reliably attract or capture target species. In this study, we explored the potential of bat guano as an additional tool for invasive insect detection. We collected guano samples from five bat species across three forested sites in New Jersey, USA, between 2018 and 2022 and used species-specific quantitative PCR (qPCR) to detect spotted lanternfly DNA. Spotted lanternfly DNA was detected in guano from two bat species: big brown bats (Eptesicus fuscus) and eastern red bats (Lasiurus borealis). Detection probability was strongly influenced by spotted lanternfly phenology, with higher detection rates occurring during the adult life stage. The detection of spotted lanternfly DNA in bat guano demonstrates the feasibility of using guano analysis as a complementary tool for insect pest surveillance. Integrating guano-based monitoring with traditional methods could enhance insect pest detection efforts across diverse forested and agricultural landscapes. Full article
(This article belongs to the Special Issue Monitoring and Control of Forest Pests)
Show Figures

Figure 1

16 pages, 1851 KB  
Article
Predator-Prey Relationship between Urban Bats and Insects Impacted by Both Artificial Light at Night and Spatial Clutter
by Han Li and Kenneth T. Wilkins
Biology 2022, 11(6), 829; https://doi.org/10.3390/biology11060829 - 27 May 2022
Cited by 12 | Viewed by 5102
Abstract
Predators respond to the increase of prey by aggregation in space or foraging more often. However, foraging habitat suitability limits predators’ responses. For nocturnal insectivorous bats, artificial light at night (ALAN) can trigger insect prey aggregation. It is not clear how ALAN might [...] Read more.
Predators respond to the increase of prey by aggregation in space or foraging more often. However, foraging habitat suitability limits predators’ responses. For nocturnal insectivorous bats, artificial light at night (ALAN) can trigger insect prey aggregation. It is not clear how ALAN might affect predator-prey relationships in the urban setting, where urban bats could have adapted to the city, and novel spatial complexity introduced by man-made objects might alter foraging habitat suitability. We strategically selected sites to represent different levels of ALAN and spatial complexity. We recorded bat commuting and foraging activities and collected aerial insects to examine how ALAN and spatial complexity affected bat-insect relationships. We found that insect biomass was positively correlated with ALAN, but was not affected by spatial complexity. Large-sized big brown bats and hoary bats positively responded to change of prey in open sites whereas small-sized eastern red bats and silver-haired bats positively responded in cluttered sites, suggesting that the impact of ALAN could vary when ALAN is coupled with urban spatial complexity. Our study demonstrates that foraging habitat suitability can alter which species might benefit from ALAN. Predator-prey relationships in cities are complex, but general ecological principles still apply in novel urban ecosystems. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

19 pages, 1388 KB  
Article
Habitat Associations of Overwintering Bats in Managed Pine Forest Landscapes
by Brett R. Andersen, Liam P. McGuire, Thomas Bently Wigley, Darren A. Miller and Richard D. Stevens
Forests 2022, 13(5), 803; https://doi.org/10.3390/f13050803 - 20 May 2022
Cited by 12 | Viewed by 3797
Abstract
Research Highlights: Seasonal variation in environmental conditions coinciding with reproductive and energetic demands might result in seasonal differences in species-specific habitat use. We studied a winter assemblage of insectivorous bats and found that species acted as habitat generalists during winter compared to expectations [...] Read more.
Research Highlights: Seasonal variation in environmental conditions coinciding with reproductive and energetic demands might result in seasonal differences in species-specific habitat use. We studied a winter assemblage of insectivorous bats and found that species acted as habitat generalists during winter compared to expectations based on the summer active season. Background and Objectives: In temperate regions, seasonal fluctuations in resource availability might restructure local bat assemblages. Initially perceived to only hibernate or migrate to avoid adverse winter conditions, temperate insectivorous bats appear to also employ intermediate overwintering strategies, as a growing body of literature suggests that winter activity is quite prevalent and even common in some lower latitude areas. However, to date, most studies have exclusively assessed habitat associations during summer. Because habitat use during summer is strongly influenced by reproduction, we hypothesized that habitat associations might differ during the non-reproductive winter period. We used acoustic monitoring to assess the habitat associations of bats across a managed pine landscape in the southeastern United States. Materials and Methods: During the winters of 2018 and 2019, we deployed acoustic detectors at 72 unique locations to monitor bat activity and characterized vegetation conditions at two scales (microhabitat and landscape). We used linear mixed models to characterize species-specific activity patterns associated with different vegetation conditions. Results: We found little evidence of different activity patterns during winter. The activity of three species (hoary bat: Lasiurus cinereus; southeastern myotis: Myotis austroriparius; and tricolored bat: Perimyotis subflavus) was not related to vegetation variables and only modest relationships were evident for four other species/groups (big brown bat: Eptesicus fuscus; eastern red bat: L. borealis; Seminole bat: L. seminolus; evening bat: Nycticeius humeralis; and Brazilian free-tailed bat: Tadarida brasiliensis). Conclusions: During winter, the bats in our study were active across the landscape in various cover types, suggesting that they do not exhibit the same habitat associations as in summer. Therefore, seasonal differences in distributions and habitat associations of bat populations need to be considered so that effective management strategies can be devised that help conserve bats year round. Full article
Show Figures

Figure 1

12 pages, 2058 KB  
Article
Unique Land Cover Classification to Assess Day-Roost Habitat Selection of Northern Long-Eared Bats on the Coastal Plain of North Carolina, USA
by Jesse L. De La Cruz, Michael C. True, Hila Taylor, Dorothy C. Brown and W. Mark Ford
Forests 2022, 13(5), 792; https://doi.org/10.3390/f13050792 - 19 May 2022
Cited by 2 | Viewed by 3182
Abstract
Reproductively successful and over-wintering populations of the endangered northern long-eared bat (Myotis septentrionalis) have recently been discovered on the Coastal Plain of North Carolina. Empirical data on resource selection within the region is limited, likely hindering management of these coastal forests. [...] Read more.
Reproductively successful and over-wintering populations of the endangered northern long-eared bat (Myotis septentrionalis) have recently been discovered on the Coastal Plain of North Carolina. Empirical data on resource selection within the region is limited, likely hindering management of these coastal forests. Our objectives were to determine roosting home range size, selection of day-roost tree species, second- and third-order roosting habitat selection, and to quantify the overall availability of resources in the surrounding landscape. We found core and peripheral roosting home range estimates were large, yet similar to observations from other areas of contiguous forests. Prior to juvenile volancy, female northern long-eared bats appear to select red maple (Acer rubrum), water ash (Fraxinus caroliniana), and loblolly pine (Pinus taeda) as day-roosts, but then use sweetgum (Liquidambar styraciflua), swamp bay (Persea palustris), and water tupelo (Nyssa aquatica) after juvenile volancy. At the second-order spatial scale, roosting home ranges were associated with woody wetlands farther from anthropogenic development and open water. However, within the third-order scale, northern long-eared bats were associated with undeveloped woody wetlands and upland forests, areas containing shorter trees and occurring proximal to open water. Peripheral and core areas were predicted to comprise approximately 20% of the local landscape. Our results show that complex and large tracts of woody wetlands juxtaposed with upland forests in this part of the Coastal Plain may be important for northern long-eared bats locally, results largely consistent with species management efforts in eastern North America. Full article
Show Figures

Figure 1

10 pages, 2411 KB  
Article
Mid-Atlantic Big Brown and Eastern Red Bats: Relationships between Acoustic Activity and Reproductive Phenology
by Sabrina Deeley, W. Mark Ford, Nicholas J. Kalen, Samuel R. Freeze, Michael St. Germain, Michael Muthersbaugh, Elaine Barr, Andrew Kniowski, Alexander Silvis and Jesse De La Cruz
Diversity 2022, 14(5), 319; https://doi.org/10.3390/d14050319 - 21 Apr 2022
Cited by 4 | Viewed by 3054
Abstract
Acoustic data are often used to describe bat activity, including habitat use within the summer reproductive period. These data inform management activities that potentially impact bats, currently a taxa of high conservation concern. To understand the relationship between acoustic and reproductive timing, we [...] Read more.
Acoustic data are often used to describe bat activity, including habitat use within the summer reproductive period. These data inform management activities that potentially impact bats, currently a taxa of high conservation concern. To understand the relationship between acoustic and reproductive timing, we sampled big brown bats (Eptesicus fuscus) and eastern red bats (Lasiurus borealis) on 482 mist-netting and 35,410 passive acoustic sampling nights within the District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia, 2015–2018. We documented the proportion of female, pregnant, lactating, and juvenile big brown and eastern red bats within each mist-net sampling event and calculated locally estimated non-parametric scatterplot smoothing (LOESS) lines for each reproductive and acoustic dataset. We compared the peak in acoustic activity with the peaks of each reproductive condition. We determined that the highest levels of acoustic activity within the maternity season were most associated with the period wherein we captured the highest proportions of lactating bats, not juvenile bats, as often assumed. Full article
Show Figures

Figure 1

11 pages, 912 KB  
Article
Winter Roosting by Eastern Red Bats in Ozark Mountain Forests of Missouri
by Joshua R. Flinn, Roger W. Perry and Lynn W. Robbins
Forests 2021, 12(12), 1769; https://doi.org/10.3390/f12121769 - 14 Dec 2021
Cited by 2 | Viewed by 2809
Abstract
The eastern red bat (Lasiurus borealis Müller, 1776) is a widespread species that roosts in evergreen or dead foliage suspended in trees during winter but retreats to leaf litter during colder periods. Roosting in leaf litter by eastern red bats makes them [...] Read more.
The eastern red bat (Lasiurus borealis Müller, 1776) is a widespread species that roosts in evergreen or dead foliage suspended in trees during winter but retreats to leaf litter during colder periods. Roosting in leaf litter by eastern red bats makes them vulnerable to prescribed fires in winter. Using radio telemetry, we tracked 33 male eastern red bats to 101 winter (November–February) roosts and quantified roost locations, habitat surrounding roosts, and landscape attributes of roost locations. When roosting in trees, bats preferred oaks but generally avoided other tree species; they used pines in proportion to their availability. During colder periods, bats retreated to roosts in leaf litter where 21% suffered mortality either from predation/scavenging or unknown causes while roosting on the ground. Models of roost selection indicated that southerly aspect was the most important factor determining roost selection, and both tree- and leaf-litter roosts were predominately (≥94%) on upper south-facing slopes. Prescribed burning in late morning/early afternoon on clear days when temperatures under leaf litter are warmest in winter could reduce potential mortality by allowing faster arousal time for hibernating bats. Full article
Show Figures

Figure 1

12 pages, 1374 KB  
Article
Timing and Weather Offer Alternative Mitigation Strategies for Lowering Bat Mortality at Wind Energy Facilities in Ontario
by Kelly A. Squires, Bethany G. Thurber, J. Ryan Zimmerling and Charles M. Francis
Animals 2021, 11(12), 3503; https://doi.org/10.3390/ani11123503 - 8 Dec 2021
Cited by 6 | Viewed by 4269
Abstract
Relatively high mortality of migratory bats at wind energy facilities has prompted research to understand the underlying spatial and temporal factors, with the goal of developing more effective mitigation approaches. We examined acoustic recordings of echolocation calls at 12 sites and post-construction carcass [...] Read more.
Relatively high mortality of migratory bats at wind energy facilities has prompted research to understand the underlying spatial and temporal factors, with the goal of developing more effective mitigation approaches. We examined acoustic recordings of echolocation calls at 12 sites and post-construction carcass survey data collected at 10 wind energy facilities in Ontario, Canada, to quantify the degree to which timing and regional-scale weather predict bat activity and mortality. Rain and low temperatures consistently predicted low mortality and activity of big brown bats (Eptesicus fuscus) and three species of migratory tree bats: hoary bat (Lasiurus cinereus), eastern red bat (L. borealis), and silver-haired bat (Lasionycteris noctivagans). Bat activity occurred in waves with distinct peaks through the season; regardless of seasonal timing, most activities occurred in the first half of the night. We conclude that wind energy facilities could adopt a novel and more effective curtailment strategy based on weather and seasonal and nocturnal timing that would minimize mortality risks for bats while increasing the opportunities for power generation, relative to the mitigation strategy of increasing cut-in wind speed to 5.5 m/s. Full article
(This article belongs to the Special Issue Bat Biology in Relation to Wind Energy Development)
Show Figures

Figure 1

13 pages, 7491 KB  
Article
Eastern Red Bat Responses to Fire during Winter Torpor
by Jason T. Layne, Dana Green, Anna Scesny and Lynn W. Robbins
Forests 2021, 12(10), 1347; https://doi.org/10.3390/f12101347 - 2 Oct 2021
Cited by 6 | Viewed by 3465
Abstract
Prescribed fires are a forest management tool used to improve natural areas for a variety of benefits including increased plant diversity, reduced competition for desired species, decreased fuel loads, and improved wildlife habitat. The post-fire results in landscapes have shown positive benefits for [...] Read more.
Prescribed fires are a forest management tool used to improve natural areas for a variety of benefits including increased plant diversity, reduced competition for desired species, decreased fuel loads, and improved wildlife habitat. The post-fire results in landscapes have shown positive benefits for bat populations. However, prescribed fires set in the winter may cause direct mortality of eastern red bat (Lasiurus borealis) populations that use leaf litter for roosting during periods of colder (<10 °C) temperatures. Therefore, we used controlled laboratory techniques to explore if eastern red bats arouse from torpor when exposed to cues associated with fire (i.e., smoke and the sound of fire). Through subsequent field trials, we confirmed latencies of first response (i.e., movement or increased respiration), arousal, and flight behaviors to the stimuli of fire. We provide evidence of smoke influencing eastern red bat first response and arousal through laboratory and field trial results. Latencies of all behaviors were negatively correlated with temperatures and wind speeds prior to and during field trials. We recommend prescribing winter fires on days when temperatures are >10 °C to provide eastern red bats with a better chance to passively rewarm and react to an approaching fire. Full article
Show Figures

Figure 1

17 pages, 5640 KB  
Article
Sympatric Bat Species Prey Opportunistically on a Major Moth Pest of Pecans
by Elizabeth C. Braun de Torrez, Veronica A. Brown, Gary F. McCracken and Thomas H. Kunz
Sustainability 2019, 11(22), 6365; https://doi.org/10.3390/su11226365 - 13 Nov 2019
Cited by 6 | Viewed by 4325
Abstract
Native predators provide undervalued pest suppression services to agriculture. Studies of pest consumption by insectivorous bats tend to focus upon single species in large, centralized colonies, while bats dispersed in small groups within the agricultural matrix often go unnoticed. Pecan trees, Carya illinoinensis [...] Read more.
Native predators provide undervalued pest suppression services to agriculture. Studies of pest consumption by insectivorous bats tend to focus upon single species in large, centralized colonies, while bats dispersed in small groups within the agricultural matrix often go unnoticed. Pecan trees, Carya illinoinensis, and the destructive pecan nut casebearer (PNC) moth, Acrobasis nuxvorella, comprise a tightly linked host–parasite system in a widespread agroecosystem native to North America. Here we use a quantitative polymerase chain reaction (qPCR) assay of fecal DNA to document predation on PNC moths by an assemblage of sympatric bat species across episodic peaks in PNC abundance. Although five species of bats consume PNC moths, greater predation by a solitary tree-roosting bat (eastern red bat, Lasiurus borealis) than other species is suggested by a higher frequency of PNC occurrence and quantity of PNC gene copies in fecal samples. Consumption of PNC by bats during all documented peaks in moth activity suggests that predation pressure occurs throughout the PNC season. Our results highlight the need to consider multi-species assemblages and different foraging strategies when assessing pest suppression services, particularly in agroforestry or tree crops. Assessing the diet of only common or easily captured species limits our ability to accurately document pest consumption by bats. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop