Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = edwardsiellosis in fish

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 749 KB  
Review
Advancements in Fish Vaccination: Current Innovations and Future Horizons in Aquaculture Health Management
by Garima S. Rathor and Banikalyan Swain
Appl. Sci. 2024, 14(13), 5672; https://doi.org/10.3390/app14135672 - 28 Jun 2024
Cited by 26 | Viewed by 11444
Abstract
Aquaculture is rapidly becoming one of the pivotal sectors in the farming economy, driven by the increasing demand for high-quality animal protein at an affordable cost, especially with the escalating human population. However, the expansion of high-density fish populations also brings forth a [...] Read more.
Aquaculture is rapidly becoming one of the pivotal sectors in the farming economy, driven by the increasing demand for high-quality animal protein at an affordable cost, especially with the escalating human population. However, the expansion of high-density fish populations also brings forth a challenge—the rapid transmission and spread of infectious disease agents among them. To combat this, vaccination is emerging as a reliable and standardized method for providing immunity against viral and bacterial outbreaks. The ideal vaccine is expected to be safe, effective, economical, and easily administered. The fish vaccination industry continually publishes new information on fish immunology and vaccinology, contributing to the improvement in vaccine formulation and efficacy. This review aims to offer insights into the current status of bacterial, viral, and parasitic diseases, discuss existing vaccinations, and address potential industry-threatening diseases like infectious edwardsiellosis, motile aeromonas septicemia (MAS), Tilapia Lake Virus (TiLV) disease, infectious salmon anemia (ISA), vibriosis, and white spot disease. Technological advancements have played a crucial role in enhancing our understanding of fish immunological mechanisms, leading to improved vaccine administration and the development of recombinant live attenuated, subunit, DNA, and RNA vaccines. However, challenges such as oral tolerance, vaccine degradation, and stressful environments persist, impacting vaccine efficacy. Addressing these challenges and gaining a deeper understanding of the fish immune system and host–pathogen interactions will be pivotal for future improvements, contributing to the sustainability of aquaculture and enhancing global food security. Full article
Show Figures

Figure 1

40 pages, 2035 KB  
Review
Expanding the Spectrum of Diseases and Disease Associations Caused by Edwardsiella tarda and Related Species
by J. Michael Janda and Muhammed Duman
Microorganisms 2024, 12(5), 1031; https://doi.org/10.3390/microorganisms12051031 - 20 May 2024
Cited by 21 | Viewed by 6143
Abstract
The genus Edwardsiella, previously residing in the family Enterobacteriaceae and now a member of the family Hafniaceae, is currently composed of five species, although the taxonomy of this genus is still unsettled. The genus can primarily be divided into two pathogenic [...] Read more.
The genus Edwardsiella, previously residing in the family Enterobacteriaceae and now a member of the family Hafniaceae, is currently composed of five species, although the taxonomy of this genus is still unsettled. The genus can primarily be divided into two pathogenic groups: E. tarda strains are responsible for almost all human infections, and two other species (E. ictaluri, E. piscicida) cause diseases in fish. Human infections predominate in subtropical habitats of the world and in specific geospatial regions with gastrointestinal disease, bloodborne infections, and wound infections, the most common clinical presentations in decreasing order. Gastroenteritis can present in many different forms and mimic other intestinal disturbances. Chronic gastroenteritis is not uncommon. Septicemia is primarily found in persons with comorbid conditions including malignancies and liver disease. Mortality rates range from 9% to 28%. Most human infections are linked to one of several risk factors associated with freshwater or marine environments such as seafood consumption. In contrast, edwardsiellosis in fish is caused by two other species, in particular E. ictaluri. Both E. ictaluri and E. piscicida can cause massive outbreaks of disease in aquaculture systems worldwide, including enteric septicemia in channel catfish and tilapia. Collectively, these species are increasingly being recognized as important pathogens in clinical and veterinary medicine. This article highlights and provides a current perspective on the taxonomy, microbiology, epidemiology, and pathogenicity of this increasingly important group. Full article
(This article belongs to the Special Issue Microorganisms and Diseases Associated with Aquatic Animals 2.0)
Show Figures

Figure 1

14 pages, 3411 KB  
Article
Edwardsiella tarda in Tambaqui (Colossoma macropomum): A Pathogenicity, Antimicrobial Susceptibility, and Genetic Analysis of Brazilian Isolates
by Francisco Yan Tavares Reis, Victória Pontes Rocha, Peter Charrie Janampa-Sarmiento, Henrique Lopes Costa, Renata Catão Egger, Naísa Cristine Passos, Carlos Henrique Santos de Assis, Sarah Portes Carneiro, Ágna Ferreira Santos, Brendhal Almeida Silva, Fernanda Alves Dorella, Márcia Pimenta Leibowitz, Ronald Kennedy Luz, Felipe Pierezan, Sílvia Umeda Gallani, Guilherme Campos Tavares and Henrique César Pereira Figueiredo
Animals 2023, 13(18), 2910; https://doi.org/10.3390/ani13182910 - 14 Sep 2023
Cited by 10 | Viewed by 4020
Abstract
Edwardsiella tarda is a crucial pathogenic bacterium in tropical aquaculture. This bacterium was recently isolated from tambaqui (Colossoma macropomum), a commercially important fish species in Brazil. This study assessed the antimicrobial susceptibility, pathogenicity, and genetic diversity of the tambaqui-derived E. tarda [...] Read more.
Edwardsiella tarda is a crucial pathogenic bacterium in tropical aquaculture. This bacterium was recently isolated from tambaqui (Colossoma macropomum), a commercially important fish species in Brazil. This study assessed the antimicrobial susceptibility, pathogenicity, and genetic diversity of the tambaqui-derived E. tarda isolates. Fourteen bacterial isolates isolated from tambaqui were identified as E. tarda by using matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry and dnaJ gene sequencing. Antimicrobial susceptibility tests were conducted against seven drugs using the disc diffusion assay. The pathogenicity test conducted by intraperitoneal injection of 2.4 × 107 colony-forming units (CFU) fish−1 of E. tarda (ED38-17) into tambaqui juveniles eventually revealed that neither clinical signs nor death were present. However, splenomegaly and whitish areas in the spleen and kidneys were observed. The histological investigation also revealed granulomatous splenitis, nephritis, and hepatitis occurring internally. Repetitive extragenic palindromic-PCR fingerprinting separated the 14 isolates into three genetic groups. The antibiogram revealed that all E. tarda isolates were wild-type (WT) to florfenicol (FLO), norfloxacin (NOR), neomycin (NEO), erythromycin (ERY), and oxytetracycline (OXY); however, some were non-wild-type to sulfamethoxazole/trimethoprim (7.1%) and amoxicillin (21.4%). Therefore, through experimental infection, E. tarda ED38-17 could induce pathogenic effects in C. macropomum. Additionally, three distinct genetic types were found, and the E. tarda isolates were WT to FLO, NOR, NEO, ERY, and OXY. These findings raise awareness of a bacteria causing unseen lesions, a pathogen that will potentially impact tambaqui aquaculture in the future. Full article
(This article belongs to the Special Issue Bacterial and Viral Diseases in Aquatic Animals)
Show Figures

Figure 1

17 pages, 2941 KB  
Article
Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc)
by Jicheng Yang, Yaoyao Lin, Zhaohui Wei, Zhenbing Wu, Qianqian Zhang, Jingwen Hao, Shuyi Wang and Aihua Li
Fishes 2023, 8(1), 30; https://doi.org/10.3390/fishes8010030 - 3 Jan 2023
Cited by 14 | Viewed by 4374
Abstract
To reveal the changes in the gut microbiota of yellow catfish after being infected by Edwardsiella ictaluri, 16S rRNA gene high-throughput sequencing technology was used to analyze the microbial composition and diversity of the healthy and diseased yellow catfish. The gut microbial [...] Read more.
To reveal the changes in the gut microbiota of yellow catfish after being infected by Edwardsiella ictaluri, 16S rRNA gene high-throughput sequencing technology was used to analyze the microbial composition and diversity of the healthy and diseased yellow catfish. The gut microbial richness and diversity of the diseased fish were significantly lower than those of healthy fish. The composition and predicted function of yellow catfish gut microbiota were drastically altered after infection by E. ictaluri. Fusobacteriota, Proteobacteria, and Firmicutes were the predominant bacterial phyla in the gut of the healthy fish, while Proteobacteria was the dominant phylum in the gut of the diseased fish. At the genus level, the gut of healthy fish was dominated by Cetobacterium, Plesiomonas, and Romboutsia, while the gut of diseased fish was overwhelmed by the pathogenic E. ictaluri (99.22 ± 0.85%), and Cetobacterium, Plesiomonas, and Romboutsia disappeared. This is the most characteristic feature of the intestinal microbiota composition of yellow catfish edwardsiellosis. The same sequence of E. ictaluri was detected in the intestine of the healthy fish and the liver and intestine of the diseased fish. The anaerobic and Gram-positive bacteria were significantly decreased, and the digestive system, immune system, and metabolic functions of the gut microbiota were significantly reduced in the diseased fish gut. This may be part of the pathogenesis of fish edwardsiellosis. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Graphical abstract

16 pages, 7131 KB  
Article
The Involvement of Thiamine Uptake in the Virulence of Edwardsiella piscicida
by Xin Liu, Xinhui Wang, Boguang Sun and Li Sun
Pathogens 2022, 11(4), 464; https://doi.org/10.3390/pathogens11040464 - 13 Apr 2022
Cited by 10 | Viewed by 2709
Abstract
Edwardsiella piscicida is a pathogenic bacterium, which can infect a number of fish species and cause a disease termed edwardsiellosis, threatening global fish farming with high prevalence and mortality. Thiamine (Vitamin B1), functioning in the form of thiamine pyrophosphate (TPP), is essential for [...] Read more.
Edwardsiella piscicida is a pathogenic bacterium, which can infect a number of fish species and cause a disease termed edwardsiellosis, threatening global fish farming with high prevalence and mortality. Thiamine (Vitamin B1), functioning in the form of thiamine pyrophosphate (TPP), is essential for almost all organisms. Bacteria acquire TPP by biosynthesis or by transportation of exogenous thiamine. TPP availability has been associated with bacterial pathogenicity, but the underlying mechanisms remain to be discovered. The role of thiamine in the pathogenicity of E. piscicida is unknown. In this study, we characterized a thiamine transporter (TT) operon in E. piscicida. The deletion of the TT operon resulted in an intracellular TPP lacking situation, which led to attenuated overall pathogenicity, impaired abilities associated with motility and host cell adhesion, as well as decreased expression of certain flagellar and adhesion genes. Moreover, TPP starvation led to intracellular c-di-GMP reduction, and introducing into the TPP-suppressed mutant strain an exogenous diguanylate cyclase for c-di-GMP synthesis restored the virulence loss. Taken together, this work reveals the involvement of thiamine uptake in the virulence regulation of E. piscicida, with c-di-GMP implicated in the process. These finding could be employed to explore potential drug targets against E. piscicida. Full article
(This article belongs to the Special Issue New Insights into Fish Pathogens in Aquaculture)
Show Figures

Figure 1

13 pages, 2290 KB  
Article
Phenotype, Virulence and Immunogenicity of Edwardsiella piscicida Cyclic AMP Receptor Protein (Crp) Mutants in Catfish Host
by Peng Zhou, Xueqing Han, Xiang Ye, Feifei Zheng, Ting Yan, Quan Xie, Yong-An Zhang, Roy Curtiss and Yang Zhou
Microorganisms 2020, 8(4), 517; https://doi.org/10.3390/microorganisms8040517 - 4 Apr 2020
Cited by 11 | Viewed by 4371
Abstract
Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large [...] Read more.
Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. Here we characterize the crp gene and report the effect of a crp deletion in E. piscicida. The crp-deficient mutant lost the capacity to utilize maltose, and showed significantly reduced motility due to the lack of flagella synthesis. We further constructed a ΔPcrp mutant to support that the phenotype above was caused by the crp deletion. Evidence obtained in fish serum killing assay and competitive infection assay strongly indicated that the inactivation of crp impaired the ability of E. piscicida to evade host immune clearance. More importantly, the virulence of the crp mutant was attenuated in both zebrafish and channel catfish, with reductions in mortality rates. In the end, we found that crp mutant could confer immune protection against E. piscicida infection to zebrafish and channel catfish, indicating its potential as a live attenuated vaccine. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop