Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = electric commercial light vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 554 KB  
Article
The Potential of Light Electric Vehicles to Substitute Car Trips in Commercial Transport in Germany
by Robert Seiffert, Mascha Brost and Laura Gebhardt
World Electr. Veh. J. 2025, 16(10), 547; https://doi.org/10.3390/wevj16100547 - 23 Sep 2025
Viewed by 545
Abstract
Achieving climate protection goals in the transport sector requires the adoption of innovative mobility solutions and new vehicle concepts. In Germany, commercial transport accounts for one-quarter of the total car mileage. Many of these trips are comparatively short, often involve a single passenger, [...] Read more.
Achieving climate protection goals in the transport sector requires the adoption of innovative mobility solutions and new vehicle concepts. In Germany, commercial transport accounts for one-quarter of the total car mileage. Many of these trips are comparatively short, often involve a single passenger, and require the transport of only small or lightweight goods—yet they are typically carried out by car. Substituting cars with small and light electric vehicles (LEVs) wherever feasible could make commercial transport more efficient and environmentally friendly. LEVs combine a favorable weight-to-payload ratio with the high efficiency of electric drivetrains. This study estimates the share of car trips in commercial transport in Germany that could theoretically be substituted by LEVs. The analysis is based on a comparison of trip characteristics from a national travel survey with the technical capabilities of selected LEV categories. Our results indicate that up to 73% of commercial car trips and 44% of mileage could theoretically be covered by LEVs, with particularly high potential for trips in commercial passenger transport. Although limitations in range and payload restrict the universal applicability of LEVs, the findings reveal substantial opportunities to make commercial transport cleaner and more sustainable. These insights highlight the relevance of LEVs for sustainable commercial transport and offer a data-driven basis for further discussion of their potential and for guiding targeted policy and planning. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
Show Figures

Figure 1

27 pages, 2531 KB  
Article
Cross-Country Assessment of Total Cost of Ownership for Light Commercial Vehicles: Insights from Italy and Pakistan
by Arsalan Muhammad Khan Niazi, Romeo Danielis, Mariangela Scorrano and Manuela Masutti
Future Transp. 2025, 5(3), 126; https://doi.org/10.3390/futuretransp5030126 - 17 Sep 2025
Viewed by 918
Abstract
Achieving global carbon neutrality by 2050 requires active decarbonization efforts from both developed and developing countries, with the latter being responsible for most greenhouse gas (GHG) emissions. This study examines the potential of low-carbon mobility transitions, focusing on the electrification of light commercial [...] Read more.
Achieving global carbon neutrality by 2050 requires active decarbonization efforts from both developed and developing countries, with the latter being responsible for most greenhouse gas (GHG) emissions. This study examines the potential of low-carbon mobility transitions, focusing on the electrification of light commercial vehicles (LCVs)—a rapidly expanding segment with high emissions in urban freight. While Total Cost of Ownership (TCO) analyses show electric powertrains to be cost-effective in developed markets, there is limited empirical evidence for developing economies. To address this gap in the research, this paper compares the TCO for electric LCVs (eLCVs) in Italy and Pakistan, representing contrasting stages of electric mobility adoption. Using a bottom-up model for Pakistan and robust datasets for Italy, this study assesses how macroeconomic conditions, tax structures, and policy frameworks shape lifecycle costs. The TCO assessment underscores a stark geographic divergence: in Italy, eLCVs (0.359 EUR/km) are currently 19.7% more expensive than their diesel counterparts (0.300 EUR/km). In contrast, Pakistan demonstrates favorable competitiveness for eLCVs, with a TCO of 0.119 EUR/km compared to 0.136 EUR/km for diesel equivalents. The analysis reveals stark contextual differences in cost components, infrastructure, annual distance travelled, and policy effects, highlighting the need for context-specific strategies. The findings offer practical guidance for policymakers and fleet operators, supporting more equitable and effective decarbonization strategies globally. Full article
Show Figures

Figure 1

35 pages, 5528 KB  
Review
Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations
by Parag Biswas, Abdur Rashid, A. K. M. Ahasan Habib, Md Mahmud, S. M. A. Motakabber, Sagar Hossain, Md. Rokonuzzaman, Altaf Hossain Molla, Zambri Harun, Md Munir Hayet Khan, Wan-Hee Cheng and Thomas M. T. Lei
World Electr. Veh. J. 2025, 16(3), 142; https://doi.org/10.3390/wevj16030142 - 3 Mar 2025
Cited by 14 | Viewed by 11408
Abstract
Electric vehicles (EVs) must be used as the primary mode of transportation as part of the gradual transition to more environmentally friendly clean energy technology and cleaner power sources. Vehicle-to-grid (V2G) technology has the potential to improve electricity demand, control load variability, and [...] Read more.
Electric vehicles (EVs) must be used as the primary mode of transportation as part of the gradual transition to more environmentally friendly clean energy technology and cleaner power sources. Vehicle-to-grid (V2G) technology has the potential to improve electricity demand, control load variability, and improve the sustainability of smart grids. The operation and principles of V2G and its varieties, the present classifications and types of EVs sold on the market, applicable policies for V2G and business strategy, implementation challenges, and current problem-solving techniques have not been thoroughly examined. This paper exposes the research gap in the V2G area and more accurately portrays the present difficulties and future potential in V2G deployment globally. The investigation starts by discussing the advantages of the V2G system and the necessary regulations and commercial representations implemented in the last decade, followed by a description of the V2G technology, charging communication standards, issues related to V2G and EV batteries, and potential solutions. A few major issues were brought to light by this investigation, including the lack of a transparent business model for V2G, the absence of stakeholder involvement and government subsidies, the excessive strain that V2G places on EV batteries, the lack of adequate bidirectional charging and standards, the introduction of harmonic voltage and current into the grid, and the potential for unethical and unscheduled V2G practices. The results of recent studies and publications from international organizations were altered to offer potential answers to these research constraints and, in some cases, to highlight the need for further investigation. V2G holds enormous potential, but the plan first needs a lot of financing, teamwork, and technological development. Full article
(This article belongs to the Special Issue Electric Vehicles and Smart Grid Interaction)
Show Figures

Figure 1

23 pages, 2029 KB  
Article
The Cost Competitiveness of Electric Refrigerated Light Commercial Vehicles: A Total Cost of Ownership Approach
by Muhammad Asees Awan and Mariangela Scorrano
Future Transp. 2025, 5(1), 10; https://doi.org/10.3390/futuretransp5010010 - 24 Jan 2025
Cited by 4 | Viewed by 5176
Abstract
This article aims to investigate the economic feasibility of renewing a fleet of diesel light commercial vehicles (LCVs) with equivalent more environmentally friendly vehicles in the distribution of frozen and chilled foods. A Total Cost of Ownership (TCO) approach is proposed that includes [...] Read more.
This article aims to investigate the economic feasibility of renewing a fleet of diesel light commercial vehicles (LCVs) with equivalent more environmentally friendly vehicles in the distribution of frozen and chilled foods. A Total Cost of Ownership (TCO) approach is proposed that includes all pertinent expenses to compare the cost competitiveness of battery electric, fuel-cell electric, and bio-diesel LCVs with respect to their conventional diesel counterparts, and to perform policy scenarios. We adopt both a private and a social perspective by also accounting for the external costs of transportation. We found that electric LCVs outperform their rivals in the city and panel LCV categories even in the absence of government subsidies while being cost competitive in box LCV segment, while FCEVs require the development of refueling infrastructure and government subsidies to compete with diesel counterparts. Full article
Show Figures

Figure 1

27 pages, 2409 KB  
Article
Supply Chain Management in Smart City Manufacturing Clusters: An Alternative Approach to Urban Freight Mobility with Electric Vehicles
by Agnieszka Deja, Wojciech Ślączka, Magdalena Kaup, Jacek Szołtysek, Lyudmyla Dzhuguryan and Tygran Dzhuguryan
Energies 2024, 17(21), 5284; https://doi.org/10.3390/en17215284 - 24 Oct 2024
Cited by 6 | Viewed by 2445
Abstract
The development of green production types such as personalized production and shared manufacturing, which use additive technologies in city multifloor manufacturing clusters (CMFMCs), has led to an increase in last-mile parcel delivery (LMPD) activity. This study investigates the integration of electric vehicles and [...] Read more.
The development of green production types such as personalized production and shared manufacturing, which use additive technologies in city multifloor manufacturing clusters (CMFMCs), has led to an increase in last-mile parcel delivery (LMPD) activity. This study investigates the integration of electric vehicles and crowdshipping systems into smart CMMCs to improve urban logistics operations related to the distribution of products to consumers. The aim of this study is to improve the LMPD performance of these integrated systems and to provide alternative solutions for sustainable city logistics using the potential of crowdshipping and vehicle sharing fleets (VSFs) in the city logistics nodes (CLNs) of CMFMCs. The issues presented by the loading–unloading operations and sustainable crowdshipping scenarios for LMPD in CMFMCs are considered. This paper presents a new performance evaluation model for crowdshipping LMPD in CMFMCs using VSFs. The case study shows that the proposed model enables the analysis of LMPD performance in CMFMCs, taking into account their finite production capacity, and that it facilitates the planning of cargo turnover and the structure of VSFs consisting of e-bicycles, e-cars, and e-light commercial vehicles (e-LCVs). The model is verified based on a case study for sustainable LMPD scenarios using VSFs. The proposed model enables the planning of both short- and long-term logistics operations with the specified performance indicator of VSF usage in CMFMCs. The validity of using the integrated potential of crowdshipping and vehicle sharing services for LMPD under demand uncertainty in CMFMCs is discussed. This study should prove useful for decision-making and planning processes related to LMPD in CMFMCs and large cities. Full article
(This article belongs to the Special Issue Blockchain, IoT and Smart Grids Challenges for Energy II)
Show Figures

Figure 1

35 pages, 8234 KB  
Review
Optimal Electric Motor Designs of Light Electric Vehicles: A Review
by Zbigniew Gmyrek
Energies 2024, 17(14), 3462; https://doi.org/10.3390/en17143462 - 14 Jul 2024
Cited by 5 | Viewed by 5070
Abstract
This paper summarizes the results of numerous studies aimed at improving the operating characteristics of electric motors used in light electric vehicles (LEVs). This review focuses on four types of electric motors that can be installed in the drive wheel rims of LEVs. [...] Read more.
This paper summarizes the results of numerous studies aimed at improving the operating characteristics of electric motors used in light electric vehicles (LEVs). This review focuses on four types of electric motors that can be installed in the drive wheel rims of LEVs. Due to the availability of new magnetic materials and the use of advanced techniques for optimizing the design of electric motors, new motor topologies have emerged. The latest generation motors have been shown to be more efficient, have higher torque density, and generate less torque ripple. This paper indicates and discusses current trends in the topology of electric motors designed for LEV drives. In this context, the effectiveness of the proposed design modifications in terms of selected motor operational characteristics was assessed. The proposed new topologies were compared with commercial solutions, also in terms of the possibility of improving their operational parameters. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

18 pages, 36541 KB  
Article
Driving Profiles of Light Commercial Vehicles of Craftsmen and the Potential of Battery Electric Vehicles When Charging on Company Premises
by Oliver Heilmann, Britta Bocho, Alexander Frieß, Sven Cortès, Ulrich Schrade, André Casal Kulzer and Michael Schlick
World Electr. Veh. J. 2024, 15(5), 211; https://doi.org/10.3390/wevj15050211 - 10 May 2024
Cited by 2 | Viewed by 1951
Abstract
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position [...] Read more.
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position data of 22 craft vehicles with combustion engines from eleven companies over the duration of one working week. Within this paper, various assumptions (battery capacity and average consumption) are made for battery electric vehicles and the charging power on the company premises. The potential of battery electric vehicles is evaluated based on the assumption that they are charged only on company premises. Using the collected data and the assumptions made, theoretical state of charge curves are calculated for the vehicles. The driving profiles of the individual vehicles differ greatly, and the suitability of battery electric vehicles should be considered individually. Battery capacity, vehicle energy consumption and charging power at the company have a substantial influence on the suitability of battery electric vehicles. Furthermore, there are differences between vehicles that can charge on the company premises at night and those that cannot or can only do so on some days. Full article
Show Figures

Figure 1

13 pages, 927 KB  
Article
Economic and Environmental Assessment of Technologies Optimizing the Execution of Long Trips for Electric Vehicles
by Léa D’amore, Daniele Costa and Maarten Messagie
World Electr. Veh. J. 2024, 15(4), 128; https://doi.org/10.3390/wevj15040128 - 22 Mar 2024
Viewed by 2392
Abstract
Further advances in hardware and software features are needed to optimize battery and thermal management systems to allow for the execution of longer trips in electric vehicles. This paper assesses the economic and environmental impacts of the following features: eco-charging, eco-driving, smart fast [...] Read more.
Further advances in hardware and software features are needed to optimize battery and thermal management systems to allow for the execution of longer trips in electric vehicles. This paper assesses the economic and environmental impacts of the following features: eco-charging, eco-driving, smart fast charging, predictive thermal powertrain and cabin conditioning, and an advanced heat pump system. A Total Cost of Ownership (TCO) and externalities calculation is carried out on two passenger cars and one light commercial vehicle (LCV). The energy consumption data from the vehicles are based on experiments. The analysis shows more benefits for the LCV, while the smart fast-charging feature on the car shows a slight increase in TCO. However, negative results did not contribute significantly compared to the ability to install a smaller battery capacity for similar use. Full article
Show Figures

Figure 1

28 pages, 2422 KB  
Article
Electrification of Last-Mile Delivery: A Fleet Management Approach with a Sustainability Perspective
by Oscar Castillo and Roberto Álvarez
Sustainability 2023, 15(24), 16909; https://doi.org/10.3390/su152416909 - 16 Dec 2023
Cited by 5 | Viewed by 5256
Abstract
Light commercial vehicles that operate in last-mile deliveries are significant contributors to greenhouse gas emissions. For this reason, carbon footprint mitigation actions have become a key issue for companies involved in urban freight transport to put the organization in line with the future [...] Read more.
Light commercial vehicles that operate in last-mile deliveries are significant contributors to greenhouse gas emissions. For this reason, carbon footprint mitigation actions have become a key issue for companies involved in urban freight transport to put the organization in line with the future EU legislative framework. In this sense, the electrification of the delivery fleets is one of the actions carried out to improve the sustainability of transport operations. To this end, fleet managers have to explore several fleet renewal strategies over a finite planning horizon, evaluating different types of electric powertrains for light commercial vehicles. To address this concern, this paper presents a purpose-built analysis to assist and boost the fleet managers’ decisions when transitioning to electrified vans, intending to maximize cost savings and reduce corporate greenhouse gas emissions inventory. The model developed for this research work is a Multi-Objective Linear Programming analysis for the optimization of the total cost of ownership and the organizational transport-related emissions reported from all scope categories according to the Greenhouse Gas Protocol standards. This analysis is applied to three types of electric vans (battery electric, hydrogen fuel cell, and range extender hybrid electric/hydrogen fuel cell), and they are compared with an internal combustion van propelled with natural gas. From this perspective, the conducted research offers a novel approximation to fleet replacement problems considering organization emission reporting and long-term budgetary objectives for vehicles and their respective refueling infrastructure. The comprehensive numerical simulations carried out over different study scenarios in Spain demonstrate that the optimization approach not only shows effective fleet renewal strategies but also identifies critical factors that impact the fleet’s competitiveness, offering valuable insights for fleet managers and policymakers. The findings indicate that in Spain, battery electric and hydrogen range extender light commercial vehicles stand as a competitive option. Substituting a natural gas-powered van with an electrified alternative can reduce an organization’s inventory emissions by up to 77% and total costs by up to 24%. Additionally, this study also points out the influence of energy supply pathways and the emissions from relevant scope 3 categories. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

18 pages, 2581 KB  
Article
Is a Carbon-Neutral Pathway in Road Transport Possible? A Case Study from Slovakia
by Ján Horváth and Janka Szemesová
Sustainability 2023, 15(16), 12246; https://doi.org/10.3390/su151612246 - 10 Aug 2023
Cited by 11 | Viewed by 3175
Abstract
Transformation of European transport belongs among the key challenges to achieve a reduction of 55% by 2030 and climate neutrality by 2050. This study focuses on GHG emissions in road transport in Slovakia, as it currently accounts for 19% of total GHG emissions [...] Read more.
Transformation of European transport belongs among the key challenges to achieve a reduction of 55% by 2030 and climate neutrality by 2050. This study focuses on GHG emissions in road transport in Slovakia, as it currently accounts for 19% of total GHG emissions (road transport emissions account for 99% of transport emissions). The main driver for this study was the preparation of Slovakia’s Climate Act and investigation of where are the limits of greenhouse gas emission reduction by 2050. With the aim of achieving maximum reduction in emissions by 2050 compared to 2005 levels, various scenarios were developed using the COPERT model to explore emission reduction strategies. The scenarios considered different subsectors of road transport, including passenger cars, light-commercial vehicles, heavy-duty vehicles (buses and trucks), and L-category vehicles and examined encompassed reduction of transport demand, improving energy efficiency, and utilizing advanced technologies with alternative fuels (hybrids, PHEV, CNG, LNG or LPG). However, the economic aspects of specific mitigation options were not considered in this analysis. The results show that there is a possibility of 77% GHG emission reduction by 2050 in comparison with the 2005 level. This reduction is accompanied by a shift in vehicle technologies to alternative fuels like electricity, hydrogen, and to a smaller extent biofuels and biomethane. This study shows that it will be possible to achieve 86.7% zero-emission cars and an additional 12.9% low emission and alternative fueled cars by 2050. By identifying and assessing these scenarios, policymakers and stakeholders can gain insights into the possibilities, challenges, and potential solutions for meeting the climate targets set by the European Union’s Fit for 55 climate package. Full article
Show Figures

Figure 1

14 pages, 2633 KB  
Article
Use of a Hybrid Approach to Estimate Greenhouse Gas Emissions from the Transport Sector in Palestine
by Hanan A. Jafar, Isam Shahrour and Hussein Mroueh
Climate 2023, 11(8), 170; https://doi.org/10.3390/cli11080170 - 10 Aug 2023
Cited by 5 | Viewed by 3996
Abstract
The transport sector is the second leading emitter of greenhouse gas emissions (GHGEs) from fuel combustion activities on a global scale. Reducing emissions related to this sector requires detailed data about the emissions by vehicle type and traveled distance. Generally, these data are [...] Read more.
The transport sector is the second leading emitter of greenhouse gas emissions (GHGEs) from fuel combustion activities on a global scale. Reducing emissions related to this sector requires detailed data about the emissions by vehicle type and traveled distance. Generally, these data are missing in developing countries, which makes difficult the establishment of effective policies for the reduction of these emissions. This paper presents a hybrid method to estimate these emissions using the IPCC 2006 guidelines. The method combines bottom-up and top-down approaches to estimate vehicular emissions using data about the vehicle type, vehicle kilometers traveled, and fuel consumption. This method is applied for the first time for the Palestinian territory. Data have been collected from the administration, official reports, and papers. The results show a significant increase in the total vehicles in Palestine, particularly diesel vehicles. Emissions from the on-road transport system were approximately 2,207,834 tons of CO2eq in 2019. Diesel vehicles were responsible for about 75% of these emissions. Private cars were the most significant contributor to these emissions, with a share exceeding 50% of the total emissions, followed by commercial vehicles and light trucks (20%), public taxis (9%), and buses (7%). These results show clearly that the GHGEs reduction policies in Palestine should focus on diesel and private vehicles by developing the public transport systems and replacing diesel and gasoline vehicles with more environmentally friendly vehicles, such as hybrid and electric cars. Full article
Show Figures

Figure 1

19 pages, 6448 KB  
Article
Optimal Control Design and Online Controller-Area-Network Bus Data Analysis for a Light Commercial Hybrid Electric Vehicle
by Aminu Babangida, Chiedozie Maduakolam Light Odazie and Péter Tamás Szemes
Mathematics 2023, 11(15), 3436; https://doi.org/10.3390/math11153436 - 7 Aug 2023
Cited by 9 | Viewed by 4056
Abstract
In this article, a hybrid powertrain for the Volkswagen (VW) Crafter is designed using the Model-In-The-Loop (MIL) method. An enhanced Proportional-Integral (PI) control technique based on integral cost functions is developed by carrying out a time-based simulation in MATLAB/Simulink software to realize the [...] Read more.
In this article, a hybrid powertrain for the Volkswagen (VW) Crafter is designed using the Model-In-The-Loop (MIL) method. An enhanced Proportional-Integral (PI) control technique based on integral cost functions is developed by carrying out a time-based simulation in MATLAB/Simulink software to realize the optimal fuel economy of the vehicle. Moreover, a comparative study is conducted between the vehicle’s hybrid and pure electric versions to assess the optimal battery energy consumption per unit distance traveled. Communication within our vehicles’ Electronic Control Units (ECUs) is facilitated by a message-based protocol called a Controller Area Network (CAN). Consequently, this paper presents an online CAN Bus data analysis using the Hardware-In-The-Loop (HIL) method. This method uses a standard frame, J1939 CAN protocol, implemented with Net CAN Plus 110 hardware. A graphical user interface is developed on a host Personal Computer (PC) using LabVIEW for decoding the acquired raw CAN data to physical values. The simulation results reveal that the proposed controller is promising and suitable for realizing optimal performance over the HIL method. Full article
(This article belongs to the Special Issue Dynamics and Control Theory with Applications)
Show Figures

Figure 1

13 pages, 5937 KB  
Article
Power Quality Analysis for Light-Duty Electric Vehicles: A Case Study in Malta
by Kris Scicluna, Brian Azzopardi and Kurt Spiteri
Energies 2023, 16(15), 5673; https://doi.org/10.3390/en16155673 - 28 Jul 2023
Cited by 1 | Viewed by 2290
Abstract
This paper presents a power quality analysis for multiple electric vehicle charging stations of the AC-Level 2 type in a real-life case study. The data was collected with a power quality analyzer that measured the main distribution system feeding nine 7 kW charging [...] Read more.
This paper presents a power quality analysis for multiple electric vehicle charging stations of the AC-Level 2 type in a real-life case study. The data was collected with a power quality analyzer that measured the main distribution system feeding nine 7 kW charging stations in a commercial site with light-duty vehicles in Malta, Europe. The relevance of this study to the specific case of Malta is accentuated by the topological challenges of the country; high density of road vehicles, with 18,000 vehicles for each square kilometer; and ambitious targets of reaching carbon neutrality by 2050. Data were collected over six days on an actual charging system with real-life charging patterns. Various results are presented in this paper, including three-phase system voltages and currents, individual harmonic voltage and current components, total harmonic distortion and total current demand distortion. These measurements were compared with standardized thresholds for low-voltage equipment used in public spaces, mainly as stated in IEEE 519-2014. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

25 pages, 2109 KB  
Review
A Survey on the State-of-the-Art and Future Trends of Multilevel Inverters in BEVs
by Alenka Hren, Mitja Truntič and Franc Mihalič
Electronics 2023, 12(13), 2993; https://doi.org/10.3390/electronics12132993 - 7 Jul 2023
Cited by 14 | Viewed by 7168
Abstract
All electric vehicles are the only way to decarbonize transport quickly and substantially. Although multilevel inverters have already been used in some transportation modes, they are rarely used in road transportation, especially in light-duty passenger BEVs. With the transition to a high 800-V [...] Read more.
All electric vehicles are the only way to decarbonize transport quickly and substantially. Although multilevel inverters have already been used in some transportation modes, they are rarely used in road transportation, especially in light-duty passenger BEVs. With the transition to a high 800-V DC link to extend the driving range and enable extreme fast charging, the possibility of using multilevel inverters in commercial light-duty passenger BEVs becomes feasible. Higher efficiency, higher power density, better waveform quality, lower switching frequency, the possibility of using low-rated switches, and inherent fault tolerance are known advantages of multilevel inverters that make them an efficient option for replacing 2-level inverters in high DC link passenger BEVs. This paper discusses high DC link voltage benefits in light-duty passenger BEVs, presents the state-of-the-art of different conventional multilevel inverter topologies used in BEVs, and compares them with conventional 2-level inverters from different aspects and limitations. Based on commercial upper-class passengers’ BEV data and a review of multilevel inverters on the market, future trends and possible research areas are identified. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

17 pages, 11541 KB  
Article
Performance Validation of High-Speed Motor for Electric Turbochargers Using Various Test Methods
by Tae-Woo Lee and Do-Kwan Hong
Electronics 2023, 12(13), 2937; https://doi.org/10.3390/electronics12132937 - 4 Jul 2023
Cited by 3 | Viewed by 3581
Abstract
As environmental regulations on automotive exhaust gas are gradually strengthened to cope with climate change, internal combustion engines, including those in hybrid electric vehicles, are continuously being downsized. Supercharging technologies are essential to compensate for the reduced engine power. One of the supercharging [...] Read more.
As environmental regulations on automotive exhaust gas are gradually strengthened to cope with climate change, internal combustion engines, including those in hybrid electric vehicles, are continuously being downsized. Supercharging technologies are essential to compensate for the reduced engine power. One of the supercharging technologies, the turbocharger, has a response delay in the low-speed region, which is known as turbo lag. Various technologies have emerged to reduce turbo lag. Recently, electric supercharging technologies capable of reducing turbo lag using high-speed motors have been developed and commercialized. However, they are difficult to obtain for high-speed motors because of the cost of load performance test equipment. For this reason, many previous studies have compared analysis and experiment results under no-load conditions, or they have estimated performance in the high-speed region from results at low speed with light loads. This makes it difficult to know exactly how the performance of the motor is affected under loads applied to an actual system. In this study, performance test evaluation was conducted using a high-speed torque sensor, eddy current brake, and inertial dynamometer. Input/output power and efficiency were calculated using the measured voltage, current and output side torque and speed, and the results were compared. Full article
Show Figures

Figure 1

Back to TopTop