Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = endmember spectral variability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3532 KB  
Article
The AMEE-PPI Method to Extract Typical Outcrop Endmembers from GF-5 Hyperspectral Images
by Lin Hu, Jiankai Hu, Shu Gan, Xiping Yuan, Yu Lu, Hailong Zhao and Guang Han
Sensors 2025, 25(19), 6143; https://doi.org/10.3390/s25196143 - 4 Oct 2025
Viewed by 327
Abstract
Mixed pixels remain a central obstacle to reliable endmember extraction from hyperspectral imagery. We present AMEE–PPI, a hybrid method that embeds the Pure Pixel Index (PPI) within morphological structuring elements and propagates spectral purity via dilation/erosion, thereby coupling spatial context with spectral cues [...] Read more.
Mixed pixels remain a central obstacle to reliable endmember extraction from hyperspectral imagery. We present AMEE–PPI, a hybrid method that embeds the Pure Pixel Index (PPI) within morphological structuring elements and propagates spectral purity via dilation/erosion, thereby coupling spatial context with spectral cues while avoiding a user-fixed number of projections. On GaoFen-5 (GF-5) AHSI data from a geologically complex outcrop region, we benchmark AMEE–PPI against four widely used algorithms—PPI, OSP, VCA, and AMEE. The pipeline uses HySime for noise estimation and signal-subspace inference to set the endmember count prior to extraction and applies morphological elements spanning 3 × 3 to 15 × 15 to balance spatial support with local heterogeneity. Quantitatively, AMEE–PPI achieves the lowest spectral angle distance (SAD) for all outcrop types—purple–red: 0.135; yellow–brown: 0.316; gray: 0.191—surpassing the competing methods. It also attains the lowest spectral information divergence (SID)—purple–red: 0.028; yellow–brown: 0.184; gray: 0.055—confirming superior similarity to field reference spectra across materials. Visually, AMEE–PPI avoids the vegetation endmember leakage observed with several baselines on purple–red and gray outcrops, yielding cleaner, more representative endmembers. These results indicate that integrating spatial morphology with spectral purity improves robustness to illumination, mixing, and local variability in GF-5 imagery, with direct benefits for downstream unmixing, classification, and geological interpretation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

24 pages, 8871 KB  
Article
Satellite-Derived Multi-Temporal Palm Trees and Urban Cover Changes to Understand Drivers of Changes in Agroecosystem in Al-Ahsa Oasis Using a Spectral Mixture Analysis (SMA) Model
by Abdelrahim Salih, Abdalhaleem Hassaballa and Abbas E. Rahma
Agriculture 2025, 15(19), 2043; https://doi.org/10.3390/agriculture15192043 - 29 Sep 2025
Viewed by 409
Abstract
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, [...] Read more.
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, has placed enormous pressure on the palm-growing area and led to the loss of productive land. These challenges highlight the need for robust, integrative methods to assess their impact on the agroecosystem. Here, we analyze spatiotemporal fluctuations in vegetation cover and its effect on the agroecosystem to determine the potential influencing factors. Data from Landsat satellites, including TM (Thematic mapper of Landsat 5), ETM+ (Enhanced Thematic mapper plus of Landsat 7), and OIL (Landsat 8) and Sentinel-2A imageries were used for analysis, while GeoEye-1 satellite images as well as socioeconomic data were applied for result validation. Principal Component Analysis (PCA) was applied to extract pure endmembers, facilitating Spectral Mixture Analysis (SMA) for mapping vegetation and urban fractions. The spatiotemporal change patterns were analyzed using time- and space-oriented detection algorithms. Results indicated that vegetation fraction patterns differed significantly; pixels with high fraction values declined significantly from 1990 to 2020. The mean vegetation fraction value varied from 0.79 to 0.37. This indicates that a reduction in palm trees was quickly occurring at a decreasing rate of −14.24%. Results also suggest that vegetation fractions decreased significantly between 1990 and 2020, and this decrease had the greatest effect on the agroecosystem situation of the Oasis. We assessed urban sprawl, and our results indicated substantial variability in average urban fractions: 0.208%, 0.247%, 0.699%, and 0.807% in 1990, 2000, 2010, and 2020, respectively. Overall, the data revealed an association between changes in palm tree fractions and urban ones, supporting strategic vegetation and/or agricultural management to enhance the agroecosystem in an arid Oasis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 14766 KB  
Article
PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing
by Yiliang Zeng, Na Meng, Jinlin Zou and Wenbin Liu
Remote Sens. 2025, 17(5), 869; https://doi.org/10.3390/rs17050869 - 28 Feb 2025
Cited by 1 | Viewed by 1086
Abstract
Transformers have performed favorably in recent hyperspectral unmixing studies in which the self-attention mechanism possesses the ability to retain spectral information and spatial details. However, the lack of reliable prior information for correction guidance has resulted in an inadequate accuracy and robustness of [...] Read more.
Transformers have performed favorably in recent hyperspectral unmixing studies in which the self-attention mechanism possesses the ability to retain spectral information and spatial details. However, the lack of reliable prior information for correction guidance has resulted in an inadequate accuracy and robustness of the network. To benefit from the advantages of the Transformer architecture and to improve the interpretability and robustness of the network, a dual-branch network with prior information correction, incorporating a Transformer network (PICT-Net), is proposed. The upper branch utilizes pre-extracted endmembers to provide pure pixel prior information. The lower branch employs a Transformer structure for feature extraction and unmixing processing. A weight-sharing strategy is employed between the two branches to facilitate information sharing. The deep integration of prior knowledge into the Transformer architecture effectively reduces endmember variability in hyperspectral unmixing and enhances the model’s generalization capability and accuracy across diverse scenarios. Experimental results from experiments conducted on four real datasets demonstrate the effectiveness and superiority of the proposed model. Full article
Show Figures

Figure 1

25 pages, 8293 KB  
Article
Estimating Grassland Biophysical Parameters in the Cantabrian Mountains Using Radiative Transfer Models in Combination with Multiple Endmember Spectral Mixture Analysis
by José Manuel Fernández-Guisuraga, Iván González-Pérez, Ana Reguero-Vaquero and Elena Marcos
Remote Sens. 2024, 16(23), 4547; https://doi.org/10.3390/rs16234547 - 4 Dec 2024
Cited by 2 | Viewed by 1311
Abstract
Grasslands are one of the most abundant and biodiverse ecosystems in the world. However, in southern European countries, the abandonment of traditional management activities, such as extensive grazing, has caused many semi-natural grasslands to be invaded by shrubs. Therefore, there is a need [...] Read more.
Grasslands are one of the most abundant and biodiverse ecosystems in the world. However, in southern European countries, the abandonment of traditional management activities, such as extensive grazing, has caused many semi-natural grasslands to be invaded by shrubs. Therefore, there is a need to characterize semi-natural grasslands to determine their aboveground primary production and livestock-carrying capacity. Nevertheless, current methods lack a realistic identification of vegetation assemblages where grassland biophysical parameters can be accurately retrieved by the inversion of turbid-medium radiative transfer models (RTMs) in fine-grained landscapes. To this end, in this study we proposed a novel framework in which multiple endmember spectral mixture analysis (MESMA) was implemented to realistically identify grassland-dominated pixels from Sentinel-2 imagery in heterogeneous mountain landscapes. Then, the inversion of PROSAIL RTM (coupled PROSPECT and SAIL leaf and canopy models) was implemented separately for retrieving grassland biophysical parameters, including the leaf area index (LAI), fractional vegetation cover (FCOVER), and aboveground biomass (AGB), from grassland-dominated Sentinel-2 pixels while accounting for non-vegetated areas at the subpixel level. The study region was the southern slope of the Cantabrian Mountains (Spain), with a high spatial variability of fine-grained land covers. The MESMA grassland fraction image had a high accuracy based on validation results using centimetric resolution aerial orthophotographs (R2 = 0.74, and RMSE = 0.18). The validation with field reference data from several mountain passes of the southern slope of the Cantabrian Mountains featured a high accuracy for LAI (R2 = 0.74, and RMSE = 0.56 m2·m−2), FCOVER (R2 = 0.78 and RMSE = 0.07), and AGB (R2 = 0.67, and RMSE = 43.44 g·m−2). This study provides a reliable method to accurately identify and estimate grassland biophysical variables in highly diverse landscapes at a regional scale, with important implications for the management and conservation of threatened semi-natural grasslands. Future studies should investigate the PROSAIL inversion over the endmember signatures and subpixel fractions depicted by MESMA to adequately address the parametrization of the underlying background reflectance by using prior information and should also explore the scalability of this approach to other heterogeneous landscapes. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 7749 KB  
Article
Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery
by John Waczak and David J. Lary
Remote Sens. 2024, 16(22), 4316; https://doi.org/10.3390/rs16224316 - 19 Nov 2024
Cited by 1 | Viewed by 1639
Abstract
We introduce a new model for non-linear endmember extraction and spectral unmixing of hyperspectral imagery called Generative Simplex Mapping (GSM). The model represents endmember mixing using a latent space of points sampled within a (n1)-simplex corresponding to n [...] Read more.
We introduce a new model for non-linear endmember extraction and spectral unmixing of hyperspectral imagery called Generative Simplex Mapping (GSM). The model represents endmember mixing using a latent space of points sampled within a (n1)-simplex corresponding to n unique sources. Barycentric coordinates within this simplex are naturally interpreted as relative endmember abundances satisfying both the abundance sum-to-one and abundance non-negativity constraints. Points in this latent space are mapped to reflectance spectra via a flexible function combining linear and non-linear mixing. Due to the probabilistic formulation of the GSM, spectral variability is also estimated by a precision parameter describing the distribution of observed spectra. Model parameters are determined using a generalized expectation-maximization algorithm, which guarantees non-negativity for extracted endmembers. We first compare the GSM against three varieties of non-negative matrix factorization (NMF) on a synthetic data set of linearly mixed spectra from the USGS spectral database. Here, the GSM performed favorably for both endmember accuracy and abundance estimation with all non-linear contributions driven to zero by the fitting procedure. In a second experiment, we apply the GTM to model non-linear mixing in real hyperspectral imagery captured over a pond in North Texas. The model accurately identified spectral signatures corresponding to near-shore algae, water, and rhodamine tracer dye introduced into the pond to simulate water contamination by a localized source. Abundance maps generated using the GSM accurately track the evolution of the dye plume as it mixes into the surrounding water. Full article
Show Figures

Figure 1

24 pages, 15074 KB  
Article
The Standardized Spectroscopic Mixture Model
by Christopher Small and Daniel Sousa
Remote Sens. 2024, 16(20), 3768; https://doi.org/10.3390/rs16203768 - 11 Oct 2024
Cited by 5 | Viewed by 1476
Abstract
The standardized spectral mixture model combines the specificity of a physically based representation of a spectrally mixed pixel with the generality and portability of a spectral index. Earlier studies have used spectrally and geographically diverse collections of broadband and spectroscopic imagery to show [...] Read more.
The standardized spectral mixture model combines the specificity of a physically based representation of a spectrally mixed pixel with the generality and portability of a spectral index. Earlier studies have used spectrally and geographically diverse collections of broadband and spectroscopic imagery to show that the reflectance of the majority of ice-free landscapes on Earth can be represented as linear mixtures of rock and soil substrates (S), photosynthetic vegetation (V) and dark targets (D) composed of shadow and spectrally absorptive/transmissive materials. However, both broadband and spectroscopic studies of the topology of spectral mixing spaces raise questions about the completeness and generality of the Substrate, Vegetation, Dark (SVD) model for imaging spectrometer data. This study uses a spectrally diverse collection of 40 granules from the EMIT imaging spectrometer to verify the generality and stability of the spectroscopic SVD model and characterize the SVD topology and plane of substrates to assess linearity of spectral mixing. New endmembers for soil and non-photosynthetic vegetation (NPV; N) allow the planar SVD model to be extended to a tetrahedral SVDN model to better accommodate the 3D topology of the mixing space. The SVDN model achieves smaller misfit than the SVD, but does so at the expense of implausible fractions beyond [0, 1]. However, a refined spectroscopic SVD model still achieves small (<0.03) RMS misfit, negligible sensitivity to endmember variability and strongly linear scaling over more than an order of magnitude range of spatial resolution. Full article
Show Figures

Figure 1

32 pages, 14893 KB  
Article
Mapping of Clay Montmorillonite Abundance in Agricultural Fields Using Unmixing Methods at Centimeter Scale Hyperspectral Images
by Etienne Ducasse, Karine Adeline, Audrey Hohmann, Véronique Achard, Anne Bourguignon, Gilles Grandjean and Xavier Briottet
Remote Sens. 2024, 16(17), 3211; https://doi.org/10.3390/rs16173211 - 30 Aug 2024
Cited by 2 | Viewed by 2840
Abstract
The composition of clay minerals in soils, and more particularly the presence of montmorillonite (as part of the smectite family), is a key factor in soil swell–shrinking as well as off–road vehicle mobility. Detecting these topsoil clay minerals and quantifying the montmorillonite abundance [...] Read more.
The composition of clay minerals in soils, and more particularly the presence of montmorillonite (as part of the smectite family), is a key factor in soil swell–shrinking as well as off–road vehicle mobility. Detecting these topsoil clay minerals and quantifying the montmorillonite abundance are a challenge since they are usually intimately mixed with other minerals, soil organic carbon and soil moisture content. Imaging spectroscopy coupled with unmixing methods can address these issues, but the quality of the estimation degrades the coarser the spatial resolution is due to pixel heterogeneity. With the advent of UAV-borne and proximal hyperspectral acquisitions, it is now possible to acquire images at a centimeter scale. Thus, the objective of this paper is to evaluate the accuracy and limitations of unmixing methods to retrieve montmorillonite abundance from very-high-resolution hyperspectral images (1.5 cm) acquired from a camera installed on top of a bucket truck over three different agricultural fields, in Loiret department, France. Two automatic endmember detection methods based on the assumption that materials are linearly mixed, namely the Simplex Identification via Split Augmented Lagrangian (SISAL) and the Minimum Volume Constrained Non-negative Matrix Factorization (MVC-NMF), were tested prior to unmixing. Then, two linear unmixing methods, the fully constrained least square method (FCLS) and the multiple endmember spectral mixture analysis (MESMA), and two nonlinear unmixing ones, the generalized bilinear method (GBM) and the multi-linear model (MLM), were performed on the images. In addition, several spectral preprocessings coupled with these unmixing methods were applied in order to improve the performances. Results showed that our selected automatic endmember detection methods were not suitable in this context. However, unmixing methods with endmembers taken from available spectral libraries performed successfully. The nonlinear method, MLM, without prior spectral preprocessing or with the application of the first Savitzky–Golay derivative, gave the best accuracies for montmorillonite abundance estimation using the USGS library (RMSE between 2.2–13.3% and 1.4–19.7%). Furthermore, a significant impact on the abundance estimations at this scale was in majority due to (i) the high variability of the soil composition, (ii) the soil roughness inducing large variations of the illumination conditions and multiple surface scatterings and (iii) multiple volume scatterings coming from the intimate mixture. Finally, these results offer a new opportunity for mapping expansive soils from imaging spectroscopy at very high spatial resolution. Full article
(This article belongs to the Special Issue Remote Sensing for Geology and Mapping)
Show Figures

Figure 1

18 pages, 9929 KB  
Article
Inversion of Cotton Soil and Plant Analytical Development Based on Unmanned Aerial Vehicle Multispectral Imagery and Mixed Pixel Decomposition
by Bingquan Tian, Hailin Yu, Shuailing Zhang, Xiaoli Wang, Lei Yang, Jingqian Li, Wenhao Cui, Zesheng Wang, Liqun Lu, Yubin Lan and Jing Zhao
Agriculture 2024, 14(9), 1452; https://doi.org/10.3390/agriculture14091452 - 25 Aug 2024
Cited by 6 | Viewed by 1786
Abstract
In order to improve the accuracy of multispectral image inversion of soil and plant analytical development (SPAD) of the cotton canopy, image segmentation methods were utilized to remove the background interference, such as soil and shadow in UAV multispectral images. UAV multispectral images [...] Read more.
In order to improve the accuracy of multispectral image inversion of soil and plant analytical development (SPAD) of the cotton canopy, image segmentation methods were utilized to remove the background interference, such as soil and shadow in UAV multispectral images. UAV multispectral images of cotton bud stage canopies at three different heights (30 m, 50 m, and 80 m) were acquired. Four methods, namely vegetation index thresholding (VIT), supervised classification by support vector machine (SVM), spectral mixture analysis (SMA), and multiple endmember spectral mixture analysis (MESMA), were used to segment cotton, soil, and shadows in the multispectral images of cotton. The segmented UAV multispectral images were used to extract the spectral information of the cotton canopy, and eight vegetation indices were calculated to construct the dataset. Partial least squares regression (PLSR), Random forest (FR), and support vector regression (SVR) algorithms were used to construct the inversion model of cotton SPAD. This study analyzed the effects of different image segmentation methods on the extraction accuracy of spectral information and the accuracy of SPAD modeling in the cotton canopy. The results showed that (1) The accuracy of spectral information extraction can be improved by removing background interference such as soil and shadows using four image segmentation methods. The correlation between the vegetation indices calculated from MESMA segmented images and the SPAD of the cotton canopy was improved the most; (2) At three different flight altitudes, the vegetation indices calculated by the MESMA segmentation method were used as the input variable, and the SVR model had the best accuracy in the inversion of cotton SPAD, with R2 of 0.810, 0.778, and 0.697, respectively; (3) At a flight altitude of 80 m, the R2 of the SVR models constructed using vegetation indices calculated from images segmented by VIT, SVM, SMA, and MESMA methods were improved by 2.2%, 5.8%, 13.7%, and 17.9%, respectively, compared to the original images. Therefore, the MESMA mixed pixel decomposition method can effectively remove soil and shadows in multispectral images, especially to provide a reference for improving the inversion accuracy of crop physiological parameters in low-resolution images with more mixed pixels. Full article
(This article belongs to the Special Issue Application of UAVs in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

18 pages, 54275 KB  
Article
Unsupervised Characterization of Water Composition with UAV-Based Hyperspectral Imaging and Generative Topographic Mapping
by John Waczak, Adam Aker, Lakitha O. H. Wijeratne, Shawhin Talebi, Ashen Fernando, Prabuddha M. H. Dewage, Mazhar Iqbal, Matthew Lary, David Schaefer, Gokul Balagopal and David J. Lary
Remote Sens. 2024, 16(13), 2430; https://doi.org/10.3390/rs16132430 - 2 Jul 2024
Cited by 2 | Viewed by 2188
Abstract
Unmanned aerial vehicles equipped with hyperspectral imagers have emerged as an essential technology for the characterization of inland water bodies. The high spectral and spatial resolutions of these systems enable the retrieval of a plethora of optically active water quality parameters via band [...] Read more.
Unmanned aerial vehicles equipped with hyperspectral imagers have emerged as an essential technology for the characterization of inland water bodies. The high spectral and spatial resolutions of these systems enable the retrieval of a plethora of optically active water quality parameters via band ratio algorithms and machine learning methods. However, fitting and validating these models requires access to sufficient quantities of in situ reference data which are time-consuming and expensive to obtain. In this study, we demonstrate how Generative Topographic Mapping (GTM), a probabilistic realization of the self-organizing map, can be used to visualize high-dimensional hyperspectral imagery and extract spectral signatures corresponding to unique endmembers present in the water. Using data collected across a North Texas pond, we first apply GTM to visualize the distribution of captured reflectance spectra, revealing the small-scale spatial variability of the water composition. Next, we demonstrate how the nodes of the fitted GTM can be interpreted as unique spectral endmembers. Using extracted endmembers together with the normalized spectral similarity score, we are able to efficiently map the abundance of nearshore algae, as well as the evolution of a rhodamine tracer dye used to simulate water contamination by a localized source. Full article
(This article belongs to the Topic Hyperspectral Imaging and Signal Processing)
Show Figures

Figure 1

26 pages, 9310 KB  
Article
Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation
by Angela Gabrielly Pires Silva, Lênio Soares Galvão, Laerte Guimarães Ferreira Júnior, Nathália Monteiro Teles, Vinícius Vieira Mesquita and Isadora Haddad
Remote Sens. 2024, 16(13), 2256; https://doi.org/10.3390/rs16132256 - 21 Jun 2024
Cited by 8 | Viewed by 2674
Abstract
Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation [...] Read more.
Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation to discriminate between five classes of pasture degradation: non-degraded pasture (NDP); pastures with low- (LID) and moderate-intensity degradation (MID); severe agronomic degradation (SAD); and severe biological degradation (SBD). Using a set of 259 cloud-free images acquired in 2022 across five sites located in central Brazil, the study aims to: (i) identify the most suitable period for discriminating between various degradation classes; (ii) evaluate the Random Forest (RF) classification performance of different SuperDove attributes; and (iii) compare metrics of accuracy derived from two predicted scenarios of pasture degradation: a more challenging one involving five classes (NDP, LID, MID, SAD, and SBD), and another considering only non-degraded and severely degraded pastures (NDP, SAD, and SBD). The study assessed individual and combined sets of SuperDove attributes, including band reflectance, vegetation indices, endmember fractions from spectral mixture analysis (SMA), and image texture variables from Gray-level Co-occurrence Matrix (GLCM). The results highlighted the effectiveness of the transition from the rainy to the dry season and the period towards the beginning of a new seasonal rainy cycle in October for discriminating pasture degradation. In comparison to the dry season, more favorable discrimination scenarios were observed during the rainy season. In the dry season, increased amounts of non-photosynthetic vegetation (NPV) complicate the differentiation between NDP and SBD, which is characterized by high soil exposure. Pastures exhibiting severe biological degradation showed greater sensitivity to water stress, manifesting earlier reflectance changes in the visible and near-infrared bands of SuperDove compared to other classes. Reflectance-based classification yielded higher overall accuracy (OA) than the approaches using endmember fractions, vegetation indices, or texture metrics. Classifications using combined attributes achieved an OA of 0.69 and 0.88 for the five-class and three-class scenarios, respectively. In the five-class scenario, the highest F1-scores were observed for NDP (0.61) and classes of agronomic (0.71) and biological (0.88) degradation, indicating the challenges in separating low and moderate stages of pasture degradation. An initial comparison of RF classification results for the five categories of degraded pastures, utilizing reflectance data from MultiSpectral Instrument (MSI)/Sentinel-2 (400–2500 nm) and SuperDove (400–900 nm), demonstrated an enhanced OA (0.79 versus 0.66) with Sentinel-2 data. This enhancement is likely to be attributed to the inclusion of shortwave infrared (SWIR) spectral bands in the data analysis. Our findings highlight the potential of satellite constellation data, acquired at high spatial resolution, for remote identification of pasture degradation. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

25 pages, 12707 KB  
Article
Unsupervised Nonlinear Hyperspectral Unmixing with Reduced Spectral Variability via Superpixel-Based Fisher Transformation
by Zhangqiang Yin and Bin Yang
Remote Sens. 2023, 15(20), 5028; https://doi.org/10.3390/rs15205028 - 19 Oct 2023
Cited by 3 | Viewed by 2182
Abstract
In hyperspectral unmixing, dealing with nonlinear mixing effects and spectral variability (SV) is a significant challenge. Traditional linear unmixing can be seriously deteriorated by the coupled residuals of nonlinearity and SV in remote sensing scenarios. For the simplification of calculation, current unmixing studies [...] Read more.
In hyperspectral unmixing, dealing with nonlinear mixing effects and spectral variability (SV) is a significant challenge. Traditional linear unmixing can be seriously deteriorated by the coupled residuals of nonlinearity and SV in remote sensing scenarios. For the simplification of calculation, current unmixing studies usually separate the consideration of nonlinearity and SV. As a result, errors individually caused by the nonlinearity or SV still persist, potentially leading to overfitting and the decreased accuracy of estimated endmembers and abundances. In this paper, a novel unsupervised nonlinear unmixing method accounting for SV is proposed. First, an improved Fisher transformation scheme is constructed by combining an abundance-driven dynamic classification strategy with superpixel segmentation. It can enlarge the differences between different types of pixels and reduce the differences between pixels corresponding to the same class, thereby reducing the influence of SV. Besides, spectral similarity can be well maintained in local homogeneous regions. Second, the polynomial postnonlinear model is employed to represent observed pixels and explain nonlinear components. Regularized by a Fisher transformation operator and abundances’ spatial smoothness, data reconstruction errors in the original spectral space and the transformed space are weighed to derive the unmixing problem. Finally, this problem is solved by a dimensional division-based particle swarm optimization algorithm to produce accurate unmixing results. Extensive experiments on synthetic and real hyperspectral remote sensing data demonstrate the superiority of the proposed method in comparison with state-of-the-art approaches. Full article
(This article belongs to the Special Issue Advances in Hyperspectral Remote Sensing Image Processing)
Show Figures

Graphical abstract

19 pages, 4977 KB  
Article
Hyperspectral Unmixing Network Accounting for Spectral Variability Based on a Modified Scaled and a Perturbed Linear Mixing Model
by Ying Cheng, Liaoying Zhao, Shuhan Chen and Xiaorun Li
Remote Sens. 2023, 15(15), 3890; https://doi.org/10.3390/rs15153890 - 5 Aug 2023
Cited by 11 | Viewed by 3492
Abstract
Spectral unmixing is one of the prime topics in hyperspectral image analysis, as images often contain multiple sources of spectra. Spectral variability is one of the key factors affecting unmixing accuracy, since spectral signatures are affected by variations in environmental conditions. These and [...] Read more.
Spectral unmixing is one of the prime topics in hyperspectral image analysis, as images often contain multiple sources of spectra. Spectral variability is one of the key factors affecting unmixing accuracy, since spectral signatures are affected by variations in environmental conditions. These and other factors interfere with the accurate discrimination of source type. Several spectral mixing models have been proposed for hyperspectral unmixing to address the spectral variability problem. The interpretation for the spectral variability of these models is usually insufficient, and the unmixing algorithms corresponding to these models are usually classic unmixing techniques. Hyperspectral unmixing algorithms based on deep learning have outperformed classic algorithms. In this paper, based on the typical extended linear mixing model and the perturbed linear mixing model, the scaled and perturbed linear mixing model is constructed, and a spectral unmixing network based on this model is constructed using fully connected neural networks and variational autoencoders to update the abundances, scales, and perturbations involved in the variable endmembers. Adding spatial smoothness constraints to the scale and adding regularization constraints to the perturbation improve the robustness of the model, and adding sparseness constraints to the abundance determination prevents overfitting. The proposed approach is evaluated on both synthetic and real data sets. Experimental results show the superior performance of the proposed method against other competitors. Full article
(This article belongs to the Special Issue Advances in Hyperspectral Data Exploitation II)
Show Figures

Graphical abstract

21 pages, 19287 KB  
Article
A Multi-Attention Autoencoder for Hyperspectral Unmixing Based on the Extended Linear Mixing Model
by Lijuan Su, Jun Liu, Yan Yuan and Qiyue Chen
Remote Sens. 2023, 15(11), 2898; https://doi.org/10.3390/rs15112898 - 2 Jun 2023
Cited by 16 | Viewed by 4021
Abstract
Hyperspectral unmixing, which decomposes mixed pixels into the endmembers and corresponding abundances, is an important image process for the further application of hyperspectral images (HSIs). Lately, the unmixing problem has been solved using deep learning techniques, particularly autoencoders (AEs). However, the majority of [...] Read more.
Hyperspectral unmixing, which decomposes mixed pixels into the endmembers and corresponding abundances, is an important image process for the further application of hyperspectral images (HSIs). Lately, the unmixing problem has been solved using deep learning techniques, particularly autoencoders (AEs). However, the majority of them are based on the simple linear mixing model (LMM), which disregards the spectral variability of endmembers in different pixels. In this article, we present a multi-attention AE network (MAAENet) based on the extended LMM to address the issue of the spectral variability problem in real scenes. Moreover, the majority of AE networks ignore the global spatial information in HSIs and operate pixel- or patch-wise. We employ attention mechanisms to design a spatial–spectral attention (SSA) module that can deal with the band redundancy in HSIs and extract global spatial features through spectral correlation. Moreover, noticing that the mixed pixels are always present in the intersection of different materials, a novel sparse constraint based on spatial homogeneity is designed to constrain the abundance and abstract local spatial features. Ablation experiments are conducted to verify the effectiveness of the proposed AE structure, SSA module, and sparse constraint. The proposed method is compared with several state-of-the-art unmixing methods and exhibits competitiveness on both synthetic and real datasets. Full article
(This article belongs to the Special Issue Deep Learning for the Analysis of Multi-/Hyperspectral Images)
Show Figures

Figure 1

22 pages, 21669 KB  
Article
Sub-Pixel Surface Water Mapping for Heterogeneous Areas from Sentinel-2 Images: A Case Study in the Jinshui Basin, China
by Lai Jiang, Chi Zhou and Xiaodong Li
Water 2023, 15(8), 1446; https://doi.org/10.3390/w15081446 - 7 Apr 2023
Cited by 10 | Viewed by 3051
Abstract
Mapping high-spatial-resolution surface water bodies in urban and suburban areas is crucial in understanding the spatial distribution of surface water. Although Sentinel-2 images are popular in mapping water bodies, they are impacted by the mixed-pixel problem. Sub-pixel mapping can predict finer-spatial-resolution maps from [...] Read more.
Mapping high-spatial-resolution surface water bodies in urban and suburban areas is crucial in understanding the spatial distribution of surface water. Although Sentinel-2 images are popular in mapping water bodies, they are impacted by the mixed-pixel problem. Sub-pixel mapping can predict finer-spatial-resolution maps from the input remote sensing image and reduce the mixed-pixel problem to a great extent. This study proposes a sub-pixel surface water mapping method based on morphological dilation and erosion operations and the Markov random field (DE_MRF) to predict a 2 m resolution surface water map for heterogeneous regions from Sentinel-2 imagery. DE_MRF first segments the normalized difference water index image to extract water pixels and then detects the mixed pixels by using combined morphological dilation and erosion operations. For the mixed pixels, DE_MRF considers the intra-pixel spectral variability by extracting multiple water endmembers and multiple land endmembers within a local window to generate the water fraction images through spectral unmixing. DE_MRF was evaluated in the Jinshui Basin, China. The results suggested that DE_MRF generated a lower commission error rate for water pixels compared to the comparison methods. Because DE_MRF considers the intra-class spectral variabilities in the unmixing, it is better in mapping sub-pixel water distribution in heterogeneous regions where different water bodies with distinct spectral reflectance are present. Full article
(This article belongs to the Special Issue Inland Surface Water and Deep Learning)
Show Figures

Figure 1

22 pages, 6163 KB  
Article
Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability
by Salah Eddine Brezini and Yannick Deville
Sensors 2023, 23(4), 2341; https://doi.org/10.3390/s23042341 - 20 Feb 2023
Cited by 10 | Viewed by 4200
Abstract
The aim of fusing hyperspectral and multispectral images is to overcome the limitation of remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this end, several hypersharpening methods have been [...] Read more.
The aim of fusing hyperspectral and multispectral images is to overcome the limitation of remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this end, several hypersharpening methods have been developed, however most of them do not consider the spectral variability phenomenon; therefore, neglecting this phenomenon may cause errors, which leads to reducing the spatial and spectral quality of the sharpened products. Recently, new approaches have been proposed to tackle this problem, particularly those based on spectral unmixing and using parametric models. Nevertheless, the reported methods need a large number of parameters to address spectral variability, which inevitably yields a higher computation time compared to the standard hypersharpening methods. In this paper, a new hypersharpening method addressing spectral variability by considering the spectra bundles-based method, namely the Automated Extraction of Endmember Bundles (AEEB), and the sparsity-based method called Sparse Unmixing by Variable Splitting and Augmented Lagrangian (SUnSAL), is introduced. This new method called Hyperspectral Super-resolution with Spectra Bundles dealing with Spectral Variability (HSB-SV) was tested on both synthetic and real data. Experimental results showed that HSB-SV provides sharpened products with higher spectral and spatial reconstruction fidelities with a very low computational complexity compared to other methods dealing with spectral variability, which are the main contributions of the designed method. Full article
(This article belongs to the Special Issue Hyperspectral Sensors, Algorithms and Task Performance)
Show Figures

Figure 1

Back to TopTop