Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = energetic coordination compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2994 KB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Viewed by 619
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

13 pages, 2535 KB  
Article
Synthesis and Properties of Energetic MOFs Based on Bis(3-Nitro-1H-1,2,4-triazole-5-yl) Amine: Advancing High Thermal Stability and Low Sensitivity
by Shiluo Chen, Jinxin Wang, Yuteng Cao, Kangcai Wang, Haijun Yang and Tianlin Liu
Molecules 2025, 30(12), 2478; https://doi.org/10.3390/molecules30122478 - 6 Jun 2025
Viewed by 1096
Abstract
Energetic metal–organic frameworks (E-MOFs) have recently emerged as a promising strategy to address the long-standing challenge of reconciling energy and sensitivity in energetic materials. Nitrogen-rich compounds, with their abundant nitrogen atoms and superior enthalpy of formation, are particularly beneficial for forming multiple coordination [...] Read more.
Energetic metal–organic frameworks (E-MOFs) have recently emerged as a promising strategy to address the long-standing challenge of reconciling energy and sensitivity in energetic materials. Nitrogen-rich compounds, with their abundant nitrogen atoms and superior enthalpy of formation, are particularly beneficial for forming multiple coordination bonds while simultaneously elevating the energy content. This makes them ideal ligand molecules for constructing E-MOFs. In this work, we report the synthesis and structural design of a novel series of E-MOFs, constructed from the nitrogen-rich energetic ligand BNTA and a range of alkali metals (Na–Rb, compounds 25). The research indicates that the synthesized E-MOFs exhibit high thermal stability and low sensitivity. Specifically, Compound 3 displays a high decomposition temperature of 285 °C, with impact sensitivity and friction sensitivity values exceeding 40 J and 360 N, respectively. Moreover, Compound 3 also exhibits excellent computational detonation performance. Significantly, this study demonstrates how the aromatic character, coordination chemistry, and intermolecular interactions work synergistically to enhance the stability and safety of E-MOFs, thereby establishing fundamental criteria for engineering the next generation of energetic frameworks. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Figure 1

21 pages, 7847 KB  
Article
Unusual Metal–organic Multicomponent Ni(II) and Mononuclear Zn(II) Compounds Involving Pyridine dicarboxylates: Supramolecular Assemblies and Theoretical Studies
by Kamal K. Dutta, Pranay Sharma, Subham Banik, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver and Manjit K. Bhattacharyya
Inorganics 2024, 12(10), 267; https://doi.org/10.3390/inorganics12100267 - 14 Oct 2024
Cited by 1 | Viewed by 1800
Abstract
In the present work, we reported the synthesis and characterization [single crystal X-ray diffraction technique, spectroscopic, etc.] of two new Ni(II) and Zn(II) coordination compounds, viz. [Ni(2,6-PDC)2]2[Ni(en)2(H2O)2]2[Ni(en)(H2O)4 [...] Read more.
In the present work, we reported the synthesis and characterization [single crystal X-ray diffraction technique, spectroscopic, etc.] of two new Ni(II) and Zn(II) coordination compounds, viz. [Ni(2,6-PDC)2]2[Ni(en)2(H2O)2]2[Ni(en)(H2O)4]·4H2O (1) and [Zn(2,6-PDC)(Hdmpz)2] (2) (where 2,6-PDC = 2,6-pyridinedicarboxylate, en = ethylene-1,2-diamine, and Hdmpz = 3,5-dimethyl pyrazole). Compound 1 is found to crystallize as a multicomponent Ni(II) compound with five discrete complex moieties, whereas compound 2 is isolated as a mononuclear Zn(II) compound. A deep analysis of the crystal structure of 1 unfolds unusual dual enclathration of guest complex cationic moieties within the supramolecular host cavity stabilized by anion–π, π-stacking, N–H⋯O, C–H⋯O, and O–H⋯O hydrogen bonding interactions. Again, the crystal structure of compound 2 is stabilized by the presence of unconventional C–H⋯π(chelate ring) interactions along with C–H⋯O, C–H⋯N hydrogen bonding, π-stacking, and C–H⋯π(pyridyl) interactions. These non-covalent interactions were further studied theoretically using density functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, non-covalent interaction (NCI) plot index, and quantum theory of atoms in molecules (QTAIM) computational tools. The computational study displays that π-stacking or H bonds greatly tune the directionality of compound 1, although non-directional electrostatic forces dominate energetically. For compound 2, a combined QTAIM/NCI plot analysis confirms the presence of unconventional C–H⋯π(chelate ring) interactions along with other weak interactions obtained from the crystal structure analysis. Further, the individual energy contributions of these weak yet significant non-covalent interactions have also been determined computationally. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 7783 KB  
Article
Energetic Coordination Compounds: Investigation of Aliphatic Ligands and Development of Prototype Detonators
by Klaudia Pawlus, Agnieszka Stolarczyk, Tomasz Jarosz, Mateusz Polis, Konrad Szydlo, Łukasz Hawełek, Sylwia Waśkiewicz and Mieczysław Łapkowski
Int. J. Mol. Sci. 2024, 25(16), 8645; https://doi.org/10.3390/ijms25168645 - 8 Aug 2024
Cited by 1 | Viewed by 1576
Abstract
In this work, energetic coordination compounds (ECCs) of transition metals (Fe, Ni, Cu, Zn) containing aliphatic amines as ligands were synthesized: ethylenediamine; 1,3-diaminopropane; tris(2-aminoethyl)amine; tris(3-aminopropyl)amine. The compounds were investigated in terms of ignition/explosion temperature, friction and impact sensitivity. For selected compounds, structural characterisation [...] Read more.
In this work, energetic coordination compounds (ECCs) of transition metals (Fe, Ni, Cu, Zn) containing aliphatic amines as ligands were synthesized: ethylenediamine; 1,3-diaminopropane; tris(2-aminoethyl)amine; tris(3-aminopropyl)amine. The compounds were investigated in terms of ignition/explosion temperature, friction and impact sensitivity. For selected compounds, structural characterisation was presented (IR-ATR spectroscopy, Raman spectroscopy) and their morphology was determined (SEM, powder XRD). They were also investigated by differential scanning calorimetry (DSC). In order to assess the potential application of selected ECCs in detonators, underwater explosion tests were carried out, determining energetic performance. The results achieved for detonators containing ECCs were compared with those for reference detonators (containing pentaerythritol tetranitrate, PETN), indicating their potential use as a “green” alternative to nitric acid esters. Full article
(This article belongs to the Special Issue Molecular Research on Energetic Materials)
Show Figures

Figure 1

19 pages, 4999 KB  
Article
Energetic Features of H-Bonded and π-Stacked Assemblies in Pyrazole-Based Coordination Compounds of Mn(II) and Cu(II): Experimental and Theoretical Studies
by Mridul Boro, Trishnajyoti Baishya, Antonio Frontera, Miquel Barceló-Oliver and Manjit K. Bhattacharyya
Crystals 2024, 14(4), 318; https://doi.org/10.3390/cryst14040318 - 29 Mar 2024
Cited by 5 | Viewed by 2040
Abstract
Two new coordination compounds comprising Mn(II) and Cu(II) viz. [Mn(bz)2(Hdmpz)2(H2O)] (1) and [Cu(crot)2(Hdmpz)2] (2) (where, bz = benzoate; crot = crotonate; Hdmpz = 3, 5-dimethyl pyrazole) were synthesized and [...] Read more.
Two new coordination compounds comprising Mn(II) and Cu(II) viz. [Mn(bz)2(Hdmpz)2(H2O)] (1) and [Cu(crot)2(Hdmpz)2] (2) (where, bz = benzoate; crot = crotonate; Hdmpz = 3, 5-dimethyl pyrazole) were synthesized and characterized. The characterization involved a single crystal X-ray diffraction technique, FT-IR spectroscopy, electronic spectroscopy, TGA, and elemental analyses. Compounds 1 and 2 crystallize as mononuclear entities of Hdmpz with penta-coordinated Mn(II) and hexa-coordinated Cu(II), respectively. These complexes exhibit distorted trigonal bipyramidal and distorted octahedral geometries, respectively. A crystal structure analysis of compound 1 elucidates the existence of C–H⋯π and π-stacking interactions alongside O–H⋯O, N–H⋯O, and C–H⋯O H-bonding interactions contributing to the stabilization of the compound’s layered assembly. Similarly, in compound 2, the crystal structure stability is attributed to the presence of hydrogen bonding in conjugation with π-stacking interactions. We conducted theoretical investigations to analyze π⋯π, H-bonding, and antiparallel CH···π non-covalent interactions observed in compounds 1 and 2. DFT calculations were performed to find out the strength of these interactions energetically. Moreover, QTAIM and non-covalent interaction (NCI) plot index theoretical tools were employed to characterize them and evaluate the contribution of the H-bonds. Full article
(This article belongs to the Special Issue Coordination Complexes: Synthesis, Characterization and Application)
Show Figures

Figure 1

24 pages, 7834 KB  
Article
CuAAC-Based Synthesis, Copper-Catalyzed Aldehyde-Forming Hydrolytic Fission and Antiproliferative Evaluation of Novel Ferrocenoylamino-Substituted Triazole-Tethered Quinine–Chalcone Hybrids
by António Dembo, Etelka Ferenczi, Tamás Jernei, Andrea Bor, Zsuzsanna Schelz, István Zupkó, Szilárd Varga and Antal Csámpai
Molecules 2024, 29(2), 375; https://doi.org/10.3390/molecules29020375 - 11 Jan 2024
Cited by 2 | Viewed by 2378
Abstract
A series of novel triazole-tethered ferrocenoylamino-substituted cinchona–chalcone hybrids along with two representative benzoylamino-substituted reference compounds were prepared by three methods of CuAAC chemistry. In line with the limited success or complete failure of attempted conversions with low catalyst loadings, by means of DFT [...] Read more.
A series of novel triazole-tethered ferrocenoylamino-substituted cinchona–chalcone hybrids along with two representative benzoylamino-substituted reference compounds were prepared by three methods of CuAAC chemistry. In line with the limited success or complete failure of attempted conversions with low catalyst loadings, by means of DFT modeling studies, we demonstrated that a substantial part of the Cu(I) ions can be chelated and thus trapped in the aroylamino-substituted cinchona fragment and all of the accessible coordinating sites of the chalcone residues. Accordingly, increased amounts of catalysts were used to achieve acceptable yields; however, the cycloadditions with para-azidochalcones were accompanied by partial or complete aldehyde-forming hydrolytic fission of the enone C=C bond in a substituent-, solvent- and copper load-dependent manner. The experienced hydrolytic stability of the hybrids obtained by cycloadditions with ortho-azidochalcones was interpreted in terms of relative energetics, DFT reactivity indices and MO analysis of simplified models of two isomer copper–enone complexes. The novel hybrids were evaluated on HeLa, MDA-MB-231 and A2780 cell lines and showed substantial activity at low-to-submicromolar concentrations. An organometallic model carrying 3,4,5-trimethoxyphenyl residue in the enone part with a para-disubstituted benzene ring in the central skeletal region was identified as the most potent antiproliferative lead, characterized by submicromolar IC50 values measured on the three investigated cells. The biological assays also disclosed that this ferrocenoylamino-containing lead compound displays a ca. two- to five-fold more substantial antiproliferative effect than its benzoylamino-substituted counterpart. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

11 pages, 3959 KB  
Communication
Construction of Energetic Complexes Based on LLM-105 and Transition Metal Cations (Ni, Co, Mn, and Cu)
by Yiyi Xiao, Hui Huang, Jinkun Guo, Mi Yan, Liyuan Wei, Yu Liu, Shiliang Huang, Rufang Peng and Bo Jin
Crystals 2023, 13(11), 1587; https://doi.org/10.3390/cryst13111587 - 15 Nov 2023
Cited by 2 | Viewed by 2218
Abstract
Energetic complexes represent a crucial research direction for the design and synthesis of novel energetic materials. In this work, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), a significant explosive compound with exceptional comprehensive properties, was selected as the ligand for coordinating with various metal ions. Four novel energetic [...] Read more.
Energetic complexes represent a crucial research direction for the design and synthesis of novel energetic materials. In this work, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), a significant explosive compound with exceptional comprehensive properties, was selected as the ligand for coordinating with various metal ions. Four novel energetic complexes, Ni(C4H3N6O5)2·DMF (1), Co(C4H3N6O5)2·2DMF (2), Mn(C4H3N6O5)3·3/2DMF (3), and Cu3(C4H2N6O5)3·3DMF (4) were successfully synthesized, and their crystal structures were identified by a single-crystal X-ray diffraction technique. The structural analyses illustrated that LLM-105 can form either a mononuclear metal complex after the deprotonation of one amino group or a trinuclear metal complex after the deprotonation of two amino groups. Compound 1 exhibits a planar quadrilateral geometry, while both compounds 2 and 3 display distorted octahedral configurations. Compound 4 has three metal centers and exhibits two coordination configurations of distorted tetragonal pyramid geometry and planar quadrilateral geometry. The detonation performances of compounds 14 were also theoretically calculated, revealing their favorable explosive properties. These findings emphasize the diverse coordination modes of LLM-105 and the structural variability and adjustability of its complexes, offering valuable insights for regulating both the structure and performance of the LLM-105 complex as well as researching its deprotonation. Full article
(This article belongs to the Special Issue Coordination Complexes: Synthesis, Characterization and Application)
Show Figures

Figure 1

20 pages, 7680 KB  
Article
Interaction of Si Atom with the (001) Surface of TiN, AlN and TaN Compounds
by Leonid Svyatkin, Sergey Ognev, Maxim Syrtanov and Yury Koroteev
Coatings 2023, 13(8), 1453; https://doi.org/10.3390/coatings13081453 - 17 Aug 2023
Cited by 5 | Viewed by 1922
Abstract
Nowadays, the application of multicomponent coatings with multiphase nanocrystalline structure is the most promising direction in the search for wear-resistant protective coatings with a full set of necessary operational properties. Nanocrystalline multicomponent coatings based on the Ti-Al-Ta-Si-N system have a high hardness combined [...] Read more.
Nowadays, the application of multicomponent coatings with multiphase nanocrystalline structure is the most promising direction in the search for wear-resistant protective coatings with a full set of necessary operational properties. Nanocrystalline multicomponent coatings based on the Ti-Al-Ta-Si-N system have a high hardness combined with thermal stability and oxidation resistance. Silicon atoms are weakly soluble in the TiN, Ti1−xAlxN, and TaN crystalline phases of the Ti-Al-Ta-Si-N system and interact preferentially with N atoms, forming the amorphous Si3N4 phase. In this context, it is important to first study the peculiarities of the interaction of Si atoms with the simplest structural units of the Ti-Al-Ta-Si-N system, such as TiN, AlN, and TaN compounds with the NaCl structure. This work is devoted to the study of the interaction of a Si atom with the (001) surface of AlN, TiN, and TaN compounds with the NaCl structure using ab initio calculations. This provides information for a deep understanding of the initial stages of the formation of different crystallites of the considered composite. It was established that the adsorption of silicon on the (001) surface of AlN, TiN, and TaN significantly increases the relaxation of the surface layers and leads to an increase in the corrugation observed on the clean surfaces. The largest corrugation is observed on the surface of the TaN compound. The most energetically favorable adsorption positions of Si atoms were found to be the position of Si above the N atom on the TiN and TaN surfaces and the quadruple coordinated position on the AlN surface. The valence electron density distribution and the crystal orbital Hamiltonian population were studied to identify the type of Si atom bonding with the (001) surface of AlN, TiN, and TaN compounds. It was found that silicon forms predominantly covalent bonds with the nearest metal and nitrogen atoms, except for the quadruple coordinated position on the surface of TiN and TaN, where there is a high degree of ionic bonding of silicon with surface atoms. Full article
(This article belongs to the Special Issue Protective Composite Coatings: Implementation, Structure, Properties)
Show Figures

Figure 1

17 pages, 5497 KB  
Article
Chalcogen Bonds, Halogen Bonds and Halogen···Halogen Contacts in Di- and Tri-iododiorganyltellurium(IV) Derivatives
by Sergi Burguera, Rosa M. Gomila, Antonio Bauzá and Antonio Frontera
Inorganics 2023, 11(5), 209; https://doi.org/10.3390/inorganics11050209 - 12 May 2023
Cited by 6 | Viewed by 2445
Abstract
In this manuscript, we have examined the CSD (Cambridge Structural Database) to investigate the relative ability of Te and I (in practice, the heaviest chalcogen and halogen atoms) in di- and tri-iododiorganyltellurium(IV) derivatives to establish σ-hole interactions. The geometry around the Te(IV) in [...] Read more.
In this manuscript, we have examined the CSD (Cambridge Structural Database) to investigate the relative ability of Te and I (in practice, the heaviest chalcogen and halogen atoms) in di- and tri-iododiorganyltellurium(IV) derivatives to establish σ-hole interactions. The geometry around the Te(IV) in this type of compound is trigonal bipyramidal where the stereoactive lone pair at Te(IV) occupies one of the equatorial positions. In the solid state, Te(IV) tends to form pseudo-octahedral coordination by establishing strong noncovalent interactions opposite to the two covalent bonds of the equatorial plane. Such contacts can also be classified as chalcogen bonds following the recommendation of the International Union of Pure and Applied Chemistry (IUPAC). Such contacts have been analyzed energetically in this work using density functional theory (DFT) calculations, rationalized using molecular electrostatic potential (MEP) surface analysis and characterized using a combination of the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction plot (NCIplot) computational tools. Finally, the observation of halogen bonds and type I halogen···halogen contacts is also emphasized and compared to the chalcogen bonds. Energy decomposition analysis has also been performed to compare the physical nature of chalcogen, halogen and type I interactions. Full article
Show Figures

Graphical abstract

11 pages, 3599 KB  
Article
Evolution of the Electronic Structure of the trans-[Re6S8bipy4Cl2] Octahedral Rhenium Cluster during Reduction
by Maxim R. Ryzhikov, Yakov M. Gayfulin, Anton A. Ulantikov, Dmitry O. Arentov, Svetlana G. Kozlova and Yuri V. Mironov
Molecules 2023, 28(9), 3658; https://doi.org/10.3390/molecules28093658 - 23 Apr 2023
Cited by 2 | Viewed by 2031
Abstract
Understanding the processes that occur during the redox transformations of complexes coordinated by redox-active apical ligands is important for the design of electrochemically active compounds with functional properties. In this work, a detailed analysis of the interaction energy and electronic structure was performed [...] Read more.
Understanding the processes that occur during the redox transformations of complexes coordinated by redox-active apical ligands is important for the design of electrochemically active compounds with functional properties. In this work, a detailed analysis of the interaction energy and electronic structure was performed for cluster complexes trans-[Re6S8bipy4Cl2]n (n = 2–, 4–, 6–, 8–), which can be obtained by stepwise electrochemical reduction of a neutral cluster trans-[Re6S8bipy4Cl2] in DMSO solution. It was shown that the formation of open-shell paramagnetic ions with S = 1, 2 and 1 is the most energetically favorable for n = 2–, 4– and 6–, respectively. Full article
(This article belongs to the Special Issue DFT Quantum Chemical Calculation of Metal Clusters)
Show Figures

Graphical abstract

25 pages, 4811 KB  
Article
Unconventional Dual Donor-Acceptor Topologies of Aromatic Rings in Amine-Based Polymeric Tetrahedral Zn(II) Compounds Involving Unusual Non-Covalent Contacts: Antiproliferative Evaluation and Theoretical Studies
by Pranay Sharma, Rosa M. Gomila, Miquel Barceló-Oliver, Akalesh K. Verma, Diksha Dutta, Antonio Frontera and Manjit K. Bhattacharyya
Crystals 2023, 13(3), 382; https://doi.org/10.3390/cryst13030382 - 23 Feb 2023
Cited by 8 | Viewed by 2406
Abstract
Two Zn(II) coordination polymers, viz., [Zn2Cl2(H2O)2(µ-4-AmBz)2]n (1) and [ZnCl2(µ-3-AmPy)2]n (2) (4-AmBz = 4-aminobenzoate, 3-AmPy = 3-aminopyridine) have been prepared at room temperature and [...] Read more.
Two Zn(II) coordination polymers, viz., [Zn2Cl2(H2O)2(µ-4-AmBz)2]n (1) and [ZnCl2(µ-3-AmPy)2]n (2) (4-AmBz = 4-aminobenzoate, 3-AmPy = 3-aminopyridine) have been prepared at room temperature and characterized using elemental analysis, FT-IR, electronic spectroscopy, TGA (thermogravimetric analysis) and single crystal XRD. Crystal structure analyses of the polymers unfold the presence of non-covalent anion–π, π-stacking and unusual NH2(amino)⋯π interactions which provide rigidity to the crystal structures. Unconventional Type I Cl⋯Cl interactions also play a pivotal role in the stability of compound 1. Molecular electrostatic potential (MEP) surface analysis reveals that the MEP values over the center of the aromatic rings of coordinated 4-AmBz and 3-AmPy moieties are positive on one side and negative on the other side which confirms the dual non-covalent donor-acceptor topologies of the aromatic rings and explains the concurrent formation of unusual non-covalent NH2···π and anion–π interactions. DFT (density functional theory) calculations, QTAIM (quantum theory of atoms in molecules) and NCI plot (non-covalent index) index analyses reveal that among various non-covalent contacts involved in the crystal packing of the compounds, H-bonds in compound 1 and π-interactions (NH2···π, π-π, anion–π) in compound 2 are energetically significant. We have explored in vitro cytotoxic potential of the compounds in Dalton’s lymphoma (DL) cancer cells using trypan blue and apoptosis assays. The studies show that compounds 1 and 2 can significantly exhibit cytotoxicity in DL cells with minimum cytotoxicity in healthy PBMC cells. Molecular docking studies reveal that the compounds effectively bind with the antiapoptotic target proteins; thereby establishing a structure activity relationship of the compounds. Full article
(This article belongs to the Special Issue Feature Papers in Crystal Engineering in 2022)
Show Figures

Figure 1

7 pages, 235 KB  
Perspective
Coordination Energetic Materials—Scientific Curiosity or Future of Energetic Material Applications?
by Klaudia Pawlus, Tomasz Jarosz and Agnieszka Stolarczyk
Appl. Sci. 2022, 12(20), 10498; https://doi.org/10.3390/app122010498 - 18 Oct 2022
Cited by 3 | Viewed by 2068
Abstract
Significant incentives for developing and introducing new energetic materials to the industrial-scale production and application of new energetic materials have stimulated extensive research on the subject. Despite numerous studies, which have reported a broad array of results, progress in this field remains limited [...] Read more.
Significant incentives for developing and introducing new energetic materials to the industrial-scale production and application of new energetic materials have stimulated extensive research on the subject. Despite numerous studies, which have reported a broad array of results, progress in this field remains limited as the research results do not translate into commensurate practical applications. Coordination energetic materials are one of the promising classes of such materials. Despite more than two decades of research efforts dedicated to these substances and their advantages over classical energetic materials, in terms of performance parameters and safety parameters, these materials have not found any broader practical application. In this work, selected representative literature reports dedicated to these materials have been analysed in order to present the possible reasons for this state. Some suggestions about the future direction of research and development efforts dedicated to coordination energetic materials have also been formulated. The publication is one voice in the discussion on new challenges related to the search for new lead-free explosives. Full article
(This article belongs to the Special Issue Selected Papers in the Section Materials 2022)
Show Figures

Figure 1

26 pages, 10312 KB  
Review
Synthetic Methods towards Energetic Heterocyclic N-Oxides via Several Cyclization Reactions
by Weiqing She, Zhenzhen Xu, Lianjie Zhai, Junlin Zhang, Jie Huang, Weiqiang Pang and Bozhou Wang
Crystals 2022, 12(10), 1354; https://doi.org/10.3390/cryst12101354 - 25 Sep 2022
Cited by 11 | Viewed by 4008
Abstract
Due to the introduction of oxygen atoms, N-oxide energetic compounds have a unique oxygen balance, excellent detonation properties, and a high energy density, attracting the extensive attention of researchers all over the world. N-oxides are classified into two categories based on the structural [...] Read more.
Due to the introduction of oxygen atoms, N-oxide energetic compounds have a unique oxygen balance, excellent detonation properties, and a high energy density, attracting the extensive attention of researchers all over the world. N-oxides are classified into two categories based on the structural characteristics of their skeletons: azine N-oxides and azole N-oxides, whose N→O coordination bonds are formed during cyclization. There are six kinds of azine N-oxides, namely 1,2,3,4-tetrazine-1,3-dioxide, 1,2,3,5-tetrazine-2-oxide, 1,2,3-triazine-3-oxide, 1,2,3-triazine-2-oxide, pyridazine-1,2-dioxide, and pyrazine-1-oxide. Azole N-oxides include 1,2,5-oxadiazole-2-oxide, pyrazole-1-oxide, and triazole-1-oxide. Synthetic strategies towards these two categories of N-oxides are fully reviewed. Corresponding reaction mechanisms towards the aromatic N-oxide frameworks and examples that use the frameworks to create high-energy substances are discussed. Moreover, the energetic properties of N-oxide energetic compounds are compared and summarized. Full article
(This article belongs to the Special Issue Advanced Energetic Materials: Testing and Modeling)
Show Figures

Figure 1

9 pages, 3216 KB  
Article
Ab Initio Study of Structural, Electronic and Magnetic Properties of TM&(B@C60) (TM = V, Cr) Sandwich Clusters and Infinite Molecular Wires
by Jie Ji, Tianxia Guo, Liyan Qian, Xiaokang Xu, Huanning Yang, Yue Xie, Maoshuai He, Xiaojing Yao, Xiuyun Zhang and Yongjun Liu
Nanomaterials 2022, 12(16), 2770; https://doi.org/10.3390/nano12162770 - 12 Aug 2022
Viewed by 1881
Abstract
The geometrical structure, electronic and magnetic properties of B-endoped C60 (B@C60) ligand sandwich clusters, TM&(B@C60)2 (TM = V, Cr), and their one-dimensional (1D) infinite molecular wires, [TM&(B@C60)], have been systematically studied using first-principles [...] Read more.
The geometrical structure, electronic and magnetic properties of B-endoped C60 (B@C60) ligand sandwich clusters, TM&(B@C60)2 (TM = V, Cr), and their one-dimensional (1D) infinite molecular wires, [TM&(B@C60)], have been systematically studied using first-principles calculations. The calculations showed that the TM atoms can bond strongly to the pentagonal (η5-coordinated) or hexagonal rings (η6-coordinated) of the endoped C60 ligands, with binding energies ranging from 1.90 to 3.81 eV. Compared to the configurations with contrast-bonding characters, the η6- and η5-coordinated bonding is energetically more favorable for V-(B@C60) and Cr-(B@C60) complexes, respectively. Interestingly, 1D infinite molecular wire [V&(B@C60)-η6] is an antiferromagnetic half-metal, and 1D [Cr&(B@C60)-η5] molecular wire is a ferromagnetic metal. The tunable electronic and magnetic properties of 1D [TM&(B@C60)] SMWs are found under compressive and tensile stains. These findings provide additional possibilities for the application of C60-based sandwich compounds in electronic and spintronic devices. Full article
(This article belongs to the Special Issue First-Principles Investigations of Low-Dimensional Nanomaterials)
Show Figures

Figure 1

13 pages, 10931 KB  
Article
Energetic Materials Based on N-substituted 4(5)-nitro-1,2,3-triazoles
by Gennady T. Sukhanov, Yulia V. Filippova, Yuri V. Gatilov, Anna G. Sukhanova, Irina A. Krupnova, Konstantin K. Bosov, Ekaterina V. Pivovarova and Vyacheslav I. Krasnov
Materials 2022, 15(3), 1119; https://doi.org/10.3390/ma15031119 - 31 Jan 2022
Cited by 8 | Viewed by 2778
Abstract
The regularities and synthetic potentialities of the alkylation of 4(5)-nitro-1,2,3-triazole in basic media were explored, and new energetic ionic and nitrotriazole-based coordination compounds were synthesized in this study. The reaction had a general nature and ended with the formation of N1-, N [...] Read more.
The regularities and synthetic potentialities of the alkylation of 4(5)-nitro-1,2,3-triazole in basic media were explored, and new energetic ionic and nitrotriazole-based coordination compounds were synthesized in this study. The reaction had a general nature and ended with the formation of N1-, N2-, and N3-alkylation products, regardless of the conditions and reagent nature (alkyl- or aryl halides, alkyl nitrates, dialkyl sulfates). This reaction offers broad opportunities for expanding the variability of substituents on the nitrotriazole ring in the series of primary and secondary aliphatic, alicyclic, and aromatic substituents, which is undoubtedly crucial for solving the problems related to both high-energy materials development and medicinal chemistry when searching for new efficient bioactive compounds. An efficient methodology for the separation of regioisomeric N-alkyl(aryl)nitrotriazoles has been devised and relies on the difference in their basicity and reactivity during quaternization and complexation reactions. Based on the inaccessible N3-substitution products that exhibit a combination of properties of practical importance, a series of energy-rich ionic systems and coordination compounds were synthesized that are gaining ever-increasing interest for the chemistry of energy-efficient materials, coordination chemistry, and chemistry of ionic liquids. Full article
(This article belongs to the Special Issue Fabrication, Characterization and Application of High-Energy Material)
Show Figures

Figure 1

Back to TopTop