Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = epigallocatechin gallate derivate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1263 KB  
Systematic Review
Curcumin in the Treatment of Kidney Disease: A Systematic Review with a Focus on Drug Interactions
by Ebenezer Ofori-Attah, Abigail Aning and Layla Simón
Antioxidants 2025, 14(11), 1369; https://doi.org/10.3390/antiox14111369 - 18 Nov 2025
Viewed by 1428
Abstract
Kidney disease (KD) is a major health challenge, affecting millions of people worldwide, highlighting the need for improved prevention and management strategies. The pathophysiological mechanisms converged on a common pathway characterized by inflammation, oxidative stress, fibrosis, nephron loss and failure. Curcumin, the active [...] Read more.
Kidney disease (KD) is a major health challenge, affecting millions of people worldwide, highlighting the need for improved prevention and management strategies. The pathophysiological mechanisms converged on a common pathway characterized by inflammation, oxidative stress, fibrosis, nephron loss and failure. Curcumin, the active compound derived from turmeric (Curcuma longa), attracts considerable interest as a potential therapy for KD due to its anti-inflammatory, antioxidant and anti-fibrotic properties. Despite the benefits of curcumin, co-administration with kidney medications may cause drug interactions. Here, we systematically reviewed the efficacy of curcumin in alleviating KD and its safety when used with conventional treatments. Search terms included: curcumin AND (“diabetic nephropathy” OR “renal disease” OR “kidney disease”). Data on mechanisms of action, redox status, clinical benefits, side effects, and drug interactions were extracted and analyzed. Curcumin reduces oxidative stress, inflammation, apoptosis, fibrosis, ER stress, and lipid and glucose metabolism. Curcumin has multifaceted nephroprotective effects, while it is safe and well-tolerated. The curcumin–drug interactions reviewed were: -piperine, -epigallocatechin gallate, -losartan, -ginkgolide B, -rosuvastatin, -insulin, -cilostazol, and -ginger. These interactions improve curcumin bioavailability, and synergistic anti-inflammatory/antioxidant/antifibrotic and renoprotective effects. Future research should prioritize large-scale clinical trials to evaluate the efficacy and safety of curcumin in diverse KD populations. Full article
Show Figures

Graphical abstract

21 pages, 4628 KB  
Article
Unveiling the Therapeutic Mechanisms of Chinese Herbs in Heart Failure: Integrating Network Pharmacology, Molecular Docking, and Simulation Analysis
by Basharat Ahmad, Cai-Yi Ma, Grace-Mercure Bakanina Kissanga, Sebu Aboma Temesgen, Huma Fida, Hao Lin and Cheng-Bing Huang
Pharmaceuticals 2025, 18(11), 1648; https://doi.org/10.3390/ph18111648 - 31 Oct 2025
Viewed by 542
Abstract
Background: Heart failure (HF) is a leading cause of mortality and represents the final stage of various cardiovascular disorders. Although traditional Chinese herbs have been extensively applied in HF treatment and their clinical efficacy has been investigated, the underlying molecular mechanisms remain insufficiently [...] Read more.
Background: Heart failure (HF) is a leading cause of mortality and represents the final stage of various cardiovascular disorders. Although traditional Chinese herbs have been extensively applied in HF treatment and their clinical efficacy has been investigated, the underlying molecular mechanisms remain insufficiently understood. To address this gap, systematic approaches are required to elucidate the therapeutic basis of herbal interventions. Methods: In this study, we systematically analyzed the bioactive compounds from seven traditional Chinese herbs, Baiguo (Ginkgo biloba), Chishao (Radix Paeoniae Rubra), Biba (Piper longum), Aidicha (Ilex latifolia), Bajiaolian (Dysosma spp.), Beiwuweizi (Schisandra chinensis), and Baiqucai (Sedum sarmentosum) and explored their potential mechanisms in HF by integrating network pharmacology, molecular docking, and molecular dynamics simulations. Result: We identified key targets and pathways implicated in HF pathogenesis and herbal interventions. A total of 63 active compounds were found to regulate 1947 genes. Through integrative analysis of the GSE57338 heart failure dataset from the GEO database, we further identified 265 intersecting targets shared between herb-associated genes and HF-related genes, highlighting their potential involvement in HF progression. Network analysis prioritized three hub proteins, STAT3, SRC, and TP53, which were subsequently subjected to molecular docking with the top bioactive compounds (quercetin, kaempferol, and epigallocatechin-3-gallate). Docking studies revealed strong binding affinities, and molecular dynamics (MD) simulations further validated the stability of these protein compound interactions. Conclusions: This study elucidates key bioactive components and targets involved in HF treatment, with kaempferol and epigallocatechin-3-gallate emerging as promising therapeutic candidates. These results provide a foundation for future experimental validation and the development of targeted HF therapies derived from traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

29 pages, 1093 KB  
Review
Polyphenols and Bone Health: A Comprehensive Review of Their Role in Osteoporosis Prevention and Treatment
by Pasquale Perrone, Chiara De Rosa and Stefania D’Angelo
Molecules 2025, 30(21), 4154; https://doi.org/10.3390/molecules30214154 - 22 Oct 2025
Viewed by 1602
Abstract
Osteoporosis is a progressive bone disorder characterized by decreased bone mineral density and structural deterioration, leading to increased fracture risk. Conventional treatments, although effective, are limited by adverse effects and low long-term adherence. In recent years, polyphenols, plant-derived bioactive compounds, have emerged as [...] Read more.
Osteoporosis is a progressive bone disorder characterized by decreased bone mineral density and structural deterioration, leading to increased fracture risk. Conventional treatments, although effective, are limited by adverse effects and low long-term adherence. In recent years, polyphenols, plant-derived bioactive compounds, have emerged as promising candidates for bone health promotion due to their antioxidant, anti-inflammatory, and osteo-regulatory properties. This review synthesizes the current preclinical and clinical evidence on the potential of polyphenols, including quercetin, resveratrol, curcumin, isoflavones, and epigallocatechin gallate, to modulate bone metabolism and prevent or mitigate osteoporosis. Mechanistically, polyphenols enhance osteoblastogenesis, inhibit osteoclast differentiation, regulate the RANKL/OPG axis, and activate key osteogenic pathways such as Wnt/β-catenin and MAPKs. Additionally, their estrogen-like activity and ability to modulate gut microbiota offer further therapeutic potential. Preclinical models consistently demonstrate improvements in bone mass, architecture, and turnover markers, while clinical trials, although limited, support their role in preserving bone density, particularly in postmenopausal women. Despite promising outcomes, variability in bioavailability, dosage, and study design limits current translational application. Further large-scale clinical studies and standardized formulations are needed. Polyphenols represent a compelling adjunct or alternative approach in the integrated management of osteoporosis. Full article
Show Figures

Graphical abstract

26 pages, 3661 KB  
Article
Genome Characterization of Stelechocarpus burahol (Blume) Hook.f. & Thomson “Kepel” and Exploration of Phytochemicals from Water and Ethanolic Extracts of Leaves and Fruits
by Onsaya Kerdto, Pimpisid Koonyosying, Narisara Paradee, Sunhawit Junrungsee, Nopphadol Chalortham, Pheravut Wongsawad, Artit Yawootti, Amorntip Wongmuangsinghanat and Somdet Srichairatanakool
Foods 2025, 14(20), 3569; https://doi.org/10.3390/foods14203569 - 20 Oct 2025
Viewed by 573
Abstract
Stelechocarpus burahol (kepel) is valued for its aromatic fruits and medicinal leaves, yet its genomic and phytochemical features remain poorly characterized. This study estimated the nuclear DNA content of kepel leaves at 3.96 pg per haploid genome (genome size: 3873 Mbp) and comprehensively [...] Read more.
Stelechocarpus burahol (kepel) is valued for its aromatic fruits and medicinal leaves, yet its genomic and phytochemical features remain poorly characterized. This study estimated the nuclear DNA content of kepel leaves at 3.96 pg per haploid genome (genome size: 3873 Mbp) and comprehensively profiled their bioactive metabolites. Leaf extracts prepared with water and 70% ethanol, with or without pulsed electric field (PEF) treatment, were analyzed using HPLC-MS, UHPLC-QTOF-MS, HPLC-DAD, and GC-MS. Leaf extracts showed the highest phenolic and flavonoid contents, with PEF markedly improving ethanolic extraction efficiency. A total of 72 phenolics, 2 tocopherols, 3 tocotrienols, and several novel vitamin E derivatives were detected, alongside abundant catechins, tannic acid, and gallic acid. PEF significantly enhanced catechin recovery: catechin (C) increased from 153.7 to 846.8 mg/g and epicatechin (EC) from 338.2 to 921.4 mg/g in water extracts, while ethanolic extracts rose from 335.3 to 905.1 mg/g (C) and 245.0 to 616.9 mg/g (EC). Epigallocatechin 3-gallate (EGCG), absent in untreated leaves, reached 799.9 mg/g in water and 231.9 mg/g in ethanol extracts after PEF. In fruits, PEF reduced phenolic recovery in water extracts (C: 236.7 → 136.8 mg/g; EC: 135.4 → 118.2 mg/g; EGCG: 2892.2 mg/g → undetectable), but slightly improved ethanolic extracts (C: 237.8 → 289.4 mg/g). GC-MS identified 19 volatile compounds contributing to the fruit’s aroma. This work provides the first integrated report of kepel genome size and phytochemical composition, highlighting PEF as a promising strategy to enhance leaf catechin extraction and supporting kepel’s potential as a functional food and medicinal resource. Full article
Show Figures

Figure 1

18 pages, 8061 KB  
Article
Transcriptomic Insights into the Dual-Modulatory Role of EGCG in Alleviating Glyphosate-Induced Oxidative Stress in Cucumis melo
by Qiuying Lu, Dongmiao Zhai, Yaxian Wu, Yihu Mao, Golam Jalal Ahammed, Xinzhong Zhang, Jingbo Yu and Xin Li
Int. J. Mol. Sci. 2025, 26(20), 9887; https://doi.org/10.3390/ijms26209887 - 11 Oct 2025
Viewed by 437
Abstract
Glyphosate is one of the most widely used herbicides in agricultural, horticultural, and urban environments. However, its residue accumulation and oxidative damage pose serious threats to crop health and food safety. In this study, we evaluated the potential of epigallocatechin gallate, a natural [...] Read more.
Glyphosate is one of the most widely used herbicides in agricultural, horticultural, and urban environments. However, its residue accumulation and oxidative damage pose serious threats to crop health and food safety. In this study, we evaluated the potential of epigallocatechin gallate, a natural polyphenol derived from tea, to alleviate glyphosate-induced stress in melon (Cucumis melo L.). LC-MS/MS analysis revealed that EGCG significantly reduced glyphosate residues in plant tissues. Transcriptome analysis indicated that glyphosate induced extensive transcriptional reprogramming, activating genes involved in detoxification and antioxidant defense. Co-treatment with glyphosate and EGCG partially mitigated this stress response and redirected gene expression toward secondary metabolic pathways, particularly flavonoid and phenylalanine biosynthesis. Under herbicide stress, EGCG restored the transcription of key flavonoid biosynthetic genes, including PAL, C4H, CHI, and OMT. Meanwhile, EGCG also modulated the expression of APX, SOD, and GST, suggesting a selective effect on antioxidant systems. Co-expression network analysis identified key hub genes associated with oxidative stress and flavonoid metabolism. These findings demonstrate the dual regulatory role of EGCG in suppressing acute oxidative stress while enhancing metabolic adaptability, highlighting its potential as a natural additive for reducing herbicide residues in fruit crops. Full article
Show Figures

Figure 1

11 pages, 1510 KB  
Article
In Vitro Reversal of Escherichia coli Quiescence by Catechol-Containing Polyphenols and Phenolic Acids Across Multiple Strains
by Terra Marie M. Jouaneh, Josiah J. Morrison, Abigail C. Luthern, Riley D. Kirk, Jodi L. Camberg and Matthew J. Bertin
Nutraceuticals 2025, 5(4), 29; https://doi.org/10.3390/nutraceuticals5040029 - 9 Oct 2025
Viewed by 514
Abstract
Urinary tract infections (UTIs) are common and create significant clinical challenges. Most UTIs are caused by uropathogenic Escherichia coli (UPEC) and affect 50 to 70% of women at some point in their lives. Of this population, 25% will have a recurrent urinary tract [...] Read more.
Urinary tract infections (UTIs) are common and create significant clinical challenges. Most UTIs are caused by uropathogenic Escherichia coli (UPEC) and affect 50 to 70% of women at some point in their lives. Of this population, 25% will have a recurrent urinary tract infection (rUTI) within 3 to 12 months of the first episode. High rates of rUTIs may occur because UPEC can enter a non-proliferative or quiescent state within the urothelium of the bladder. This state allows UPEC to evade the host’s immune response and antibiotic treatment. We utilized a library of plant extracts derived from the URI Heber W. Youngken Jr. Medicinal Garden to determine if they reversed UPEC quiescence with a novel in vitro quiescence assay using the classic UPEC endemic lineage ST73 strain CFT073. We found an overall active extract hit rate of 69% (79/114 active) and that active extracts contained high levels of polyphenolic compounds. Further testing showed that polyphenols with adjacent hydroxyl groups on a benzene ring (catechol moiety) were the most effective and potent in reversing quiescence. The ability to reverse quiescence was also linked to the compound’s ability to bind iron (e.g., epigallocatechin gallate and rosmarinic acid were the most potent reversing agents—0.1 mM—and they both had the strongest iron-binding activity as determined via CAS assay). These findings reveal a new class of metabolites that can reverse quiescence in UPEC strains. Full article
Show Figures

Graphical abstract

45 pages, 3919 KB  
Review
Neuroactive Phytochemicals as Multi-Target Modulators of Mental Health and Cognitive Function: An Integrative Review
by Halina Tkaczenko, Lyudmyla Buyun, Renata Kołodziejska, Piotr Kamiński and Natalia Kurhaluk
Int. J. Mol. Sci. 2025, 26(18), 8907; https://doi.org/10.3390/ijms26188907 - 12 Sep 2025
Cited by 1 | Viewed by 2514
Abstract
The growing prevalence of mental health issues and cognitive impairment poses a significant challenge to global public health. Conditions such as depression, anxiety, neurodegenerative diseases, and stress-related cognitive dysfunction are becoming more common, while conventional pharmacotherapies are often limited by suboptimal efficacy, adverse [...] Read more.
The growing prevalence of mental health issues and cognitive impairment poses a significant challenge to global public health. Conditions such as depression, anxiety, neurodegenerative diseases, and stress-related cognitive dysfunction are becoming more common, while conventional pharmacotherapies are often limited by suboptimal efficacy, adverse side effects, and concerns about long-term use. Against this backdrop, neurophytochemistry—the study of plant-derived bioactive compounds—has emerged as a promising area of research. This review explores the potential of selected phytochemicals to support mental well-being and cognitive function via various molecular mechanisms. Compounds such as apigenin, hesperidin, and epigallocatechin gallate have been shown to have a significant impact on key regulatory pathways. These include enhancing neurogenesis via brain-derived neurotrophic factor, modulating neurotransmitter systems (such as GABA and serotonin), and attenuating oxidative stress and neuroinflammation. The therapeutic relevance of these compounds is discussed in the context of depression, anxiety, Alzheimer’s disease, Parkinson’s disease, and stress-related cognitive dysfunction, often referred to as ‘brain fog’. This review synthesizes evidence published between 2010 and 2025 from several scientific databases, including PubMed, Scopus, Web of Science, and Embase. Preliminary evidence from in vitro studies and animal models indicates that neurophytochemicals could enhance synaptic plasticity, protect neurons from oxidative damage, and modulate inflammatory pathways, particularly those involving NF-κB and the Nrf2/ARE antioxidant response. In addition, early human clinical trials have shown that phytochemical supplementation can lead to improvements in mood regulation, stress response, and cognitive performance. Furthermore, emerging evidence suggests that the gut–brain axis plays a key role in mediating the effects of phytochemicals. Several compounds have been found to modulate the composition of gut microbiota in ways that could enhance the function of the central nervous system. While the initial results are encouraging, more high-quality clinical trials and mechanistic studies are required to validate these findings, optimize dosage regimens, and guarantee the safety and efficacy of long-term use. Thus, neurophytochemicals represent a promising integrative approach to alleviating the increasing burden of mental and cognitive disorders through naturally derived therapeutic strategies. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 2449 KB  
Article
Suppressed Autoxidation, Enhanced Antioxidant Activity, and Improved Cytocompatibility of Epigallocatechin Gallate via Alginate Site-Specific Conjugation with Tunable Substitution Degree
by Nunnarpas Yongvongsoontorn, Maho Kihara, Masaya Inada, Joo Eun Chung and Motoichi Kurisawa
Int. J. Mol. Sci. 2025, 26(17), 8725; https://doi.org/10.3390/ijms26178725 - 7 Sep 2025
Viewed by 1309
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits strong antioxidant activity but suffers from poor stability due to rapid autoxidation under physiological conditions. In this study, we developed alginate–EGCG conjugates via a site-selective thiol-quinone addition reaction under mild aqueous conditions. The conjugation [...] Read more.
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits strong antioxidant activity but suffers from poor stability due to rapid autoxidation under physiological conditions. In this study, we developed alginate–EGCG conjugates via a site-selective thiol-quinone addition reaction under mild aqueous conditions. The conjugation preserved EGCG’s flavanic structure while enabling tunable degrees of substitution (DS). We systematically evaluated the oxidative stability, antioxidant activity, and cytocompatibility of alginate–EGCG conjugates in comparison with free EGCG and a mixture of EGCG and alginate. Alginate–EGCG conjugates significantly suppressed EGCG autoxidation, reduced hydrogen peroxide generation, and improved cytocompatibility in human renal epithelial cells, especially at a low DS. Furthermore, alginate–EGCG conjugates retained or even enhanced superoxide anion radical scavenging activity, with higher DS conjugates exhibiting greater antioxidant effects. In addition, dynamic light scattering analysis revealed DS-dependent particle formation via self-assembly. These findings demonstrate that covalent conjugation with natural polymers is an effective strategy to improve oxidative stability and biological functionality of plant-derived polyphenols, offering a promising approach for developing advanced antioxidant materials for food, cosmetic, and biomedical applications. Full article
Show Figures

Figure 1

21 pages, 2129 KB  
Article
Comparative Study on Antioxidant Potential of Schinus terebinthifolius Extracts Prepared by Conventional Extraction, Accelerated Solvent Extraction, and Pulsed Electric Field Method
by Tanakarn Chaithep, Anurak Muangsanguan, Juan M. Castagnini, Francisco J. Marti-Quijal, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Francisco J. Barba and Warintorn Ruksiriwanich
Molecules 2025, 30(17), 3589; https://doi.org/10.3390/molecules30173589 - 2 Sep 2025
Viewed by 1424
Abstract
Oxidative stress is a major contributor to skin aging and related disorders. This study comparatively evaluated the bioefficacy of Schinus terebinthifolius Raddi leaf extracts prepared using three extraction techniques: conventional extraction (CE), accelerated solvent extraction (ASE), and pulsed electric field (PEF) extraction, with [...] Read more.
Oxidative stress is a major contributor to skin aging and related disorders. This study comparatively evaluated the bioefficacy of Schinus terebinthifolius Raddi leaf extracts prepared using three extraction techniques: conventional extraction (CE), accelerated solvent extraction (ASE), and pulsed electric field (PEF) extraction, with 50% (v/v) ethanol and water as green solvents. Among all tested conditions, the CE-derived extract (C-4), obtained with 50% (v/v) ethanol for 120 min, exhibited the highest extraction yield (29.7%). It also showed the highest total phenolic (668.56 ± 11.52 mg gallic acid equivalent (GAE)/g dry material (DM)) and flavonoid content (2629.92 ± 112.61 mg quercetin equivalent (QE)/100 g DM), and potent antioxidant activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical (12,645.50 ± 60.31 µmol Trolox equivalent (TE)/g DM) and oxygen radical absorbance capacity assay (ORAC: 7180.27 ± 101.79 µM TE/100 g DM). Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analysis revealed a diverse phytochemical profile rich in polyphenols, including gallic acid, p-coumaric acid, rutin, rosmarinic acid, caffeic acid, and epicatechin. Cellular assays in hydrogen peroxide (H2O2)-induced HaCaT keratinocytes demonstrated that C-4 extract significantly enhanced cell viability and upregulated endogenous antioxidant genes (superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPX)), with effects comparable to established antioxidants such as epigallocatechin gallate (EGCG) and ascorbic acid. These findings highlight the influence of extraction parameters on phytochemical yield and biological activity, supporting the potential application of CE-derived S. terebinthifolius extracts as effective, sustainable ingredients for cosmeceutical formulations targeting oxidative stress-mediated skin aging. Full article
Show Figures

Figure 1

24 pages, 3590 KB  
Article
Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation
by Raúl Domínguez-Perles, Concepción Medrano-Padial, Cristina García-Viguera and Sonia Medina
Biomolecules 2025, 15(8), 1208; https://doi.org/10.3390/biom15081208 - 21 Aug 2025
Cited by 1 | Viewed by 1057
Abstract
Lipophenols, combining phenolic and lipid moieties in a single molecule, are valuable candidates for providing enhanced bioactive properties with therapeutic potential, including anti-inflammatory functions associated with immune-mediated diseases such as intestinal bowel disease (IBD). Thus, palmitoyl–epigallocatechin gallate (PEGCG), a lipophilic derivative of epigallocatechin [...] Read more.
Lipophenols, combining phenolic and lipid moieties in a single molecule, are valuable candidates for providing enhanced bioactive properties with therapeutic potential, including anti-inflammatory functions associated with immune-mediated diseases such as intestinal bowel disease (IBD). Thus, palmitoyl–epigallocatechin gallate (PEGCG), a lipophilic derivative of epigallocatechin gallate (EGCG), has been highlighted for its enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. However, the contribution of lipophilic esterification to PEGCG’s capacity to inhibit inflammation and the development of harmful autoimmune responses remains underexplored. This work uncovered the differential efficiency of EGCG and its palmitoyl derivative in modulating, in vitro, the interleukin profile generated by intestinal epithelium under inflammatory conditions. Therefore, both could attenuate the immune response by lowering macrophage migration and polarisation towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. While the fatty acid moiety gave PEGCG a functional advantage over EGCG in adjusting the interleukin-based response of intestinal epithelium to inflammation—since both of them decreased, to a similar extent, the expression of pro-inflammatory interleukins, namely IL-6, IL-17, IL-18, IL-23, and TNF-α (which lowered by 11.2%, on average)—the former was significantly more efficient in cushioning the increase in IL-1β and IL-12p70 (by 9.2% and 10.4%, respectively). This immune modulation capacity did not significantly impact the migration and expression of costimulatory molecules featuring M1 (CD86+) or M2 (CD206+) phenotypes by THP-1-derived macrophages, for which both bioactive compounds exhibited equivalent efficiency. Nonetheless, the analysis of the pro- and anti-inflammatory interleukins secreted by differentiated macrophages allowed the identification of an advantage for PEGCG, which decreased the expression of the pro-inflammatory immune mediators IL-1β and IL-12p70, IL-23, and TNF-α more efficiently. These results suggest that lipophilisation of phenolic compounds presents exciting potential for extending their application as functional molecules by combining the effects of their polar head with their ability to interfere with membranes, conveyed by their lipophilic tail. In addition, the enhanced reactivity would confer a higher capacity to interact with cellular signalling molecules and thus inhibit or attenuate the immune response, which is of special interest for preventing the onset and severity of immune-mediated pathologies such as IBD. Full article
(This article belongs to the Special Issue Recent Advances in the Enzymatic Synthesis of Bioactive Compounds)
Show Figures

Figure 1

46 pages, 2561 KB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Cited by 2 | Viewed by 1939
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

23 pages, 839 KB  
Review
Catechins and Human Health: Breakthroughs from Clinical Trials
by Elena Ferrari and Valeria Naponelli
Molecules 2025, 30(15), 3128; https://doi.org/10.3390/molecules30153128 - 25 Jul 2025
Cited by 6 | Viewed by 8384
Abstract
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated [...] Read more.
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated with various chronic conditions, including cardiovascular diseases, neurodegenerative disorders, metabolic diseases, and cancer. This review presents a comprehensive analysis of recent clinical studies focused on the therapeutic benefits and potential risks of interventions involving green tea extracts or EGCG. A systematic literature survey identified 17 relevant studies, classified into five key areas related to catechin interventions: toxicity and detoxification, drug pharmacokinetics, cognitive functions, anti-inflammatory and antioxidant properties, and obesity and metabolism. Findings from these clinical studies suggest that the health benefits of green tea catechins outweigh the potential risks. The review highlights the importance of subject genotyping for enzymes involved in catechin metabolism to aid in interpreting liver injury biomarkers, the necessity of assessing drug–catechin interactions in clinical contexts, and the promising effects of topical EGCG in reducing inflammation. This analysis underscores the need for further research to refine therapeutic applications while ensuring the safe and effective use of green tea catechins. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

25 pages, 9865 KB  
Article
Microencapsulation of Propolis by Complex Coacervation with Chia Mucilage and Gelatin: Antioxidant Stability and Functional Potential
by Carlos A. Ligarda-Samanez, David Choque-Quispe, Henry Palomino-Rincón, Elibet Moscoso-Moscoso, Rodrigo J. Guzmán Gutiérrez and Ismael Banda Mozo
Antioxidants 2025, 14(7), 845; https://doi.org/10.3390/antiox14070845 - 10 Jul 2025
Cited by 1 | Viewed by 1319
Abstract
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation [...] Read more.
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation using chia mucilage and gelatin as wall materials, followed by spray drying. A 32 factorial design was applied to evaluate the effects of coacervate concentration and inlet temperature on various microcapsule properties. The optimal formulation (3.13% coacervate and 120 °C) exhibited high phenolic retention (15.36 mg GAE/g), notable antioxidant capacity (60.10 µmol TE/g), good solubility, thermal stability, and sustained in vitro release. Phenolic compounds were identified and quantified by UPLC-PDA-QDa, including gallic acid, catechin, epicatechin, epigallocatechin gallate, rutin, myricetin, resveratrol, quercetin, and kaempferol. Incorporating the microcapsules into functional gummy candies significantly enhanced their antioxidant activity without compromising sensory attributes. These findings support the use of complex coacervation as an effective strategy for stabilizing propolis bioactives, with promising applications in the development of functional foods that offer potential health benefits. Full article
Show Figures

Graphical abstract

11 pages, 4549 KB  
Brief Report
Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol
by Concepción Medrano-Padial, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Molecules 2025, 30(13), 2889; https://doi.org/10.3390/molecules30132889 - 7 Jul 2025
Cited by 1 | Viewed by 955
Abstract
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability [...] Read more.
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. Nonetheless, the effect of lipophilic esterification on some cellular processes, particularly at the mitochondrial level, remains underexplored. According to this knowledge gap, the present study uncovered the cytotoxic and mitochondrial effects of PEGCG, in vitro, upon the liver hepatocarcinoma cell line HepG2. The range of determinations developed, including the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, flow cytometry, and electron microscopy, allowed describing the distinct biological potential for both EGCG and PEGCG. Thus, while EGCG exhibited minimal cytotoxicity and apoptosis induction, PEGCG reduced cell viability dose-dependently at 24 h and triggered significant mitochondrial damage, including fragmentation and cristae loss, at 1 µmol/L. However, at 48 h, PEGCG-treated cells recovered viability and mitochondrial structure, suggesting the activation of adaptive mechanisms for the molecular changes induced by PEGCG. These findings underscore the dynamic interplay between lipophilic catechins and cellular stress responses, offering valuable insights into the PEGCG’s potential as a therapeutic agent and laying a foundation for further exploration of its biological power. Full article
Show Figures

Figure 1

16 pages, 811 KB  
Systematic Review
The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials
by Aidan M. Cavanah, Laura A. Robinson, Madison L. Mattingly and Andrew D. Frugé
Biomedicines 2025, 13(7), 1656; https://doi.org/10.3390/biomedicines13071656 - 7 Jul 2025
Cited by 1 | Viewed by 4877
Abstract
Background/Objectives: Mood disorders include symptoms of depression, anxiety, and or stress, and have increased in prevalence. Green tea and its bioactive components (epigallocatechin gallate [EGCG] and L-theanine) have been investigated for their health benefits and neuroprotective properties. As adults seek integrative and [...] Read more.
Background/Objectives: Mood disorders include symptoms of depression, anxiety, and or stress, and have increased in prevalence. Green tea and its bioactive components (epigallocatechin gallate [EGCG] and L-theanine) have been investigated for their health benefits and neuroprotective properties. As adults seek integrative and alternative treatment modalities, it is relevant to determine the effects of natural and non-pharmacological treatments on humans. This study aimed to assess current evidence from published randomized controlled trials testing the effects of green tea, green tea extracts, or its bioactive compounds on mood disorder symptomology and brain-derived neurotrophic factor (BDNF). Methods: We searched PubMed, Cochrane Library, PsycINFO, Embase, Google Scholar, and ClinicalTrials.gov, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and utilizing predetermined inclusion and exclusion criteria. Results: A total of 445 studies were identified, 395 screened, and thirteen met inclusion criteria. Seven used one of the bioactive compounds found in green tea for intervention, while six used green tea extract, matcha, or traditional green tea. Mood disturbance was assessed with several tools, with studies reporting improvements in depressive (n = 4), anxiety (n = 6), stress (n = 5), and sleep (n = 1) symptoms. No studies found a statistically significant effect of green tea or its bioactive compounds on BDNF. Conclusions: Our findings suggest green tea, GTE, L-theanine, and EGCG may improve mood disorder symptomology, particularly symptoms of depression; no evidence to date reports effects on BDNF. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

Back to TopTop