Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = fade probability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3739 KiB  
Article
Electrochemical–Thermal Modeling of Lithium-Ion Batteries: An Analysis of Thermal Runaway with Observation on Aging Effects
by Milad Tulabi and Roberto Bubbico
Batteries 2025, 11(5), 178; https://doi.org/10.3390/batteries11050178 - 2 May 2025
Viewed by 237
Abstract
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or [...] Read more.
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or thermal abuse, which can lead to catastrophic failures. While most TR models focus on fresh cells, aging significantly impacts battery behavior and safety. This study develops an electrochemical–thermal coupled model that incorporates aging effects to better predict thermal behavior and TR initiation in cylindrical Li-ion batteries. The model is validated against experimental data for fresh NMC and aged NCA cells, and statistical analysis is conducted to identify key factors influencing TR (p < 0.05). A full factorial design evaluates the effects of internal resistance (10, 20, 30, and 40 mΩ), capacity (1, 2, 3, and 5 Ah), and current rate (1C, 3C, 6C, and 8C) on temperature evolution. Additionally, a machine learning algorithm (logistic regression) is employed to identify an internal resistance threshold, beyond which thermal runaway (TR) becomes highly probable, and to predict TR probability based on key battery parameters. The model achieved a high prediction accuracy of 95% on the test dataset. Results indicate that aging affects thermal stability in complex ways. The increased internal resistance exacerbates heating rates, while capacity fade reduces stored energy, mitigating TR risk. These findings provide a validated framework for enhancing battery thermal management and predictive safety mechanisms, which contributed to the development of safer, more reliable Li-ion energy storage systems. Full article
Show Figures

Figure 1

16 pages, 530 KiB  
Article
Performance Analysis of a Multi-User MIMO Reflecting Intelligent Surface-Aided Communication System Under Weibull Fading Channels
by Ricardo C. Ferreira, Gustavo Fraidenraich, Felipe A. P. de Figueiredo and Eduardo R. de Lima
Sensors 2025, 25(9), 2743; https://doi.org/10.3390/s25092743 - 26 Apr 2025
Viewed by 203
Abstract
This study analyzes the performance of a multi-user digital communication system aided by reflecting intelligent surfaces (RIS) in terms of bit error probability and secrecy outage probability for a system sending symbols with M-QAM modulation passing through channels with Weibull fading, where [...] Read more.
This study analyzes the performance of a multi-user digital communication system aided by reflecting intelligent surfaces (RIS) in terms of bit error probability and secrecy outage probability for a system sending symbols with M-QAM modulation passing through channels with Weibull fading, where RIS are employed to improve the signal-to-noise plus interference ratio (SINR) for each user. The performance analysis is conducted based on the statistical properties of the phase correction error of the transmitted signal, which follows a von Mises distribution. Furthermore, this study demonstrates that the resulting SINR follows a gamma distribution, with its parameters derived analytically. The RIS performance increases the line of sight strength and reduces the secrecy outage probability and error probability when the number of reflectors is sufficiently large, even without direct links between the users and the transmitter. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 3845 KiB  
Article
Mutual Information Neural-Estimation-Driven Constellation Shaping Design and Performance Analysis
by Xiuli Ji, Qian Wang, Liping Qian and Pooi-Yuen Kam
Entropy 2025, 27(4), 451; https://doi.org/10.3390/e27040451 - 21 Apr 2025
Viewed by 252
Abstract
The choice of constellations largely affects the performance of both wireless and optical communications. To address increasing capacity requirements, constellation shaping, especially for high-order modulations, is imperative in high-speed coherent communication systems. This paper, thus, proposes novel mutual information neural estimation (MINE)-based geometric, [...] Read more.
The choice of constellations largely affects the performance of both wireless and optical communications. To address increasing capacity requirements, constellation shaping, especially for high-order modulations, is imperative in high-speed coherent communication systems. This paper, thus, proposes novel mutual information neural estimation (MINE)-based geometric, probabilistic, and joint constellation shaping schemes, i.e., the MINE-GCS, MINE-PCS, and MINE-JCS, to maximize mutual information (MI) via emerging deep learning (DL) techniques. Innovatively, we first introduce the MINE module to effectively estimate and maximize MI through backpropagation, without clear knowledge of the channel state information. Then, we train encoder and probability generator networks with different signal-to-noise ratios to optimize the distribution locations and probabilities of the points, respectively. Note that MINE transforms the precise MI calculation problem into a parameter optimization problem. Our MINE-based schemes only optimize the transmitter end, and avoid the computational and structural complexity in traditional shaping. All the designs were verified through simulations as having superior performance for MI, among which the MINE-JCS undoubtedly performed the best for additive white Gaussian noise, compared to the unshaped QAMs and even the end-to-end training and other DL-based joint shaping schemes. For example, the low-order 8-ary MINE-GCS could achieve an MI gain of about 0.1 bits/symbol compared to the unshaped Star-8QAM. It is worth emphasizing that our proposed schemes achieve a balance between implementation complexity and MI performance, and they are expected to be applied in various practical scenarios with different noise and fading levels in the future. Full article
(This article belongs to the Special Issue Advances in Modern Channel Coding)
Show Figures

Figure 1

16 pages, 2500 KiB  
Article
Outage Performance of SWIPT-D2D-Based Hybrid Satellite–Terrestrial Networks
by Zhen Li, Jian Xing and Jinhui Hu
Sensors 2025, 25(8), 2393; https://doi.org/10.3390/s25082393 - 9 Apr 2025
Viewed by 186
Abstract
This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT)-assisted device-to-device (D2D)-based hybrid satellite–terrestrial networks (HSTNs). In the considered system, an energy-constrained terrestrial user terminal (UT) harvests energy from the radio frequency (RF) signal of a terrestrial amplify-and-forward (AF) [...] Read more.
This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT)-assisted device-to-device (D2D)-based hybrid satellite–terrestrial networks (HSTNs). In the considered system, an energy-constrained terrestrial user terminal (UT) harvests energy from the radio frequency (RF) signal of a terrestrial amplify-and-forward (AF) relay and utilizes the harvested energy to cooperate with the shadowed terrestrial Internet of Things (IoT) devices in a D2D communication. Both power splitting (PS)-based and time switching (TS)-based SWIPT-D2D schemes are adopted by the energy-constrained UT to obtain sustainable energy for transmitting information to the shadowed IoT device. Considering shadowed Rician fading for satellite–terrestrial links and Nakagami-m fading for terrestrial links, we analyze the system performance by deriving the closed-form expressions for the outage probability (OP) of both the UT and the IoT device. Our theoretical analyses are validated via Monte Carlo simulations. Full article
(This article belongs to the Special Issue Advanced Technologies in 5G/6G-Enabled IoT Environments and Beyond)
Show Figures

Figure 1

25 pages, 5374 KiB  
Article
Design and Optimization of a Vibration-Assisted Crop Seed Drying Tray with Real-Time Moisture Monitoring
by Mingming Du, Hongbo Zhao, Shuai Zhang, Chen Li, Zhaoyuan Chu, Xiaohui Liu and Zhiyong Cao
Appl. Sci. 2025, 15(7), 3968; https://doi.org/10.3390/app15073968 - 3 Apr 2025
Viewed by 222
Abstract
In modern agriculture, reducing the internal moisture content of crop seeds is essential to enhance the activity and mobility of seed oil molecules, thereby increasing oil yield while minimizing the risk of mold and deterioration. However, traditional drying methods often result in uneven [...] Read more.
In modern agriculture, reducing the internal moisture content of crop seeds is essential to enhance the activity and mobility of seed oil molecules, thereby increasing oil yield while minimizing the risk of mold and deterioration. However, traditional drying methods often result in uneven heating, leading to seed scorching and diminished drying efficiency and economic returns. To address these limitations, this study proposes a novel thin-layer seed drying system incorporating a redesigned drying tray structure. Specifically, the system places the seed-bearing tray beneath a vibration module operating at a predetermined frequency. The vibration mechanism induces the uniform motion of the seeds, thereby preventing localized overheating (scalding) and enabling automatic weighing for the real-time monitoring of moisture reduction during the drying process. The advancement of wireless sensor technologies in agriculture has enabled the deployment of more refined, large-scale monitoring networks. In this work, a commercial chip-based piezoelectric vibration detection device was integrated into the experimental setup to collect time-domain response signals resulting from interactions among seeds, impurities, and the drying tray. These signals were used to construct a comprehensive database of seed collision signatures. To mitigate discontinuities in signal transmission caused by vibration and potential equipment failure, the shortest routing protocol (SRP) was implemented. Additionally, the system outage probability (OP) and a refined closed-form solution for signal transmission reliability were derived under a Rayleigh fading channel model. To validate the proposed method, a series of experiments were conducted to determine the optimal vibration frequencies for various seed types. The results demonstrated a reduction in seed scalding rate to 1.5%, a decrease in seed loss rate to 0.4%, and an increase in moisture monitoring accuracy to 97.0%. Compared to traditional drying approaches, the vibrating drying tray substantially reduced seed loss and effectively distinguished between seeds and impurities. Furthermore, the approach shows strong potential for broader applications in seed classification and moisture detection across different crop types. Full article
Show Figures

Figure 1

13 pages, 652 KiB  
Article
Infinite Time and the Boltzmann Brain Hypothesis
by M. Joshua Mozersky
Philosophies 2025, 10(2), 34; https://doi.org/10.3390/philosophies10020034 - 20 Mar 2025
Viewed by 583
Abstract
Many argue that the standard understanding of the second law of thermodynamics combined with the supposition, backed by recent scientific evidence, that the future is infinite entails that one is, most likely, a momentary Boltzmann brain that will quickly disintegrate into the cosmos. [...] Read more.
Many argue that the standard understanding of the second law of thermodynamics combined with the supposition, backed by recent scientific evidence, that the future is infinite entails that one is, most likely, a momentary Boltzmann brain that will quickly disintegrate into the cosmos. The argument is as follows: (1) Given infinite time, the universe will eventually reach thermodynamic equilibrium; (2) once there, every possible fluctuation away from equilibrium, no matter how improbable, will recur, ad infinitum; (3) those fluctuations that create stable, long-lived creatures, such as we take ourselves to be, will be extremely rare compared to those that create short-lived brains that mistakenly think they are ordinary human beings; hence, by statistical reasoning, (4) one is, with overwhelming probability, just a fleeting instantiation of experience. I argue that this reasoning is invalid since it rests on an error regarding the relationship between infinite sets and their subsets. Once this error is eliminated, the power of the argument fades, and the evidence that we are ordinary human beings becomes decisive. Surprisingly, I find that the best argument for the Boltzmann brain hypothesis requires the assumption that the future is very long but finite. Full article
(This article belongs to the Special Issue The Nature of Structure and the Structure of Nature)
Show Figures

Figure 1

42 pages, 3013 KiB  
Article
Optimal Power Procurement for Green Cellular Wireless Networks Under Uncertainty and Chance Constraints
by Nadhir Ben Rached, Shyam Mohan Subbiah Pillai and Raúl Tempone
Entropy 2025, 27(3), 308; https://doi.org/10.3390/e27030308 - 14 Mar 2025
Viewed by 427
Abstract
Given the increasing global emphasis on sustainable energy usage and the rising energy demands of cellular wireless networks, this work seeks an optimal short-term, continuous-time power-procurement schedule to minimize operating expenditure and the carbon footprint of cellular wireless networks equipped with energy-storage capacity, [...] Read more.
Given the increasing global emphasis on sustainable energy usage and the rising energy demands of cellular wireless networks, this work seeks an optimal short-term, continuous-time power-procurement schedule to minimize operating expenditure and the carbon footprint of cellular wireless networks equipped with energy-storage capacity, and hybrid energy systems comprising uncertain renewable energy sources. Despite the stochastic nature of wireless fading channels, the network operator must ensure a certain quality-of-service (QoS) constraint with high probability. This probabilistic constraint prevents using the dynamic programming principle to solve the stochastic optimal control problem. This work introduces a novel time-continuous Lagrangian relaxation approach tailored for real-time, near-optimal energy procurement in cellular networks, overcoming tractability problems associated with the probabilistic QoS constraint. The numerical solution procedure includes an efficient upwind finite-difference solver for the Hamilton–Jacobi–Bellman equation corresponding to the relaxed problem, and an effective combination of the limited memory bundle method (LMBM) for handling nonsmooth optimization and the stochastic subgradient method (SSM) to navigate the stochasticity of the dual problem. Numerical results, based on the German power system and daily cellular traffic data, demonstrate the computational efficiency of the proposed numerical approach, providing a near-optimal policy in a practical timeframe. Full article
Show Figures

Figure 1

20 pages, 3754 KiB  
Article
Secrecy Outage Performance Analysis of Wirelessly Powered IoT System with Randomly Moving Receiving Nodes
by Vesna Blagojević, Nadica Kozić, Aleksandra Cvetković and Predrag Ivaniš
Sensors 2025, 25(5), 1386; https://doi.org/10.3390/s25051386 - 24 Feb 2025
Viewed by 362
Abstract
Due to the need for the implementation of various IoT services, novel generation networks are often characterized by a constant requirement for their expansion and a rising number of nodes. The IoT network nodes are usually low power, so security becomes a challenging [...] Read more.
Due to the need for the implementation of various IoT services, novel generation networks are often characterized by a constant requirement for their expansion and a rising number of nodes. The IoT network nodes are usually low power, so security becomes a challenging issue as conventional cryptographic techniques are hard to implement due to power and computational limitations. Besides, wireless power transfer is an appealing approach for powering IoT systems in scenarios where many nodes are placed in hardly accessible areas. Finally, due to a variety of applications, network nodes are often mobile. Motivated by these facts, in this paper, we investigate physical layer security in IoT systems powered by means of a power beacon, where a legitimate user or eavesdropper can be mobile. The closed-form approximate secrecy outage probability expressions are derived for the Nakagami-m fading environment and three scenarios of receiving node mobility, described by using a random waypoint model with mobility patterns in one, two or three dimensions. The accuracy of the obtained analytical expressions is corroborated by an independently developed simulation model. Full article
(This article belongs to the Special Issue Integrated Sensing and Communication in IoT Applications)
Show Figures

Figure 1

17 pages, 4106 KiB  
Article
Iterative Maximum Ratio Combining Detector for Satellite Multiple-Input Multiple-Output/Orthogonal Time–Frequency Space Systems Based on Soft-Symbol Interference Cancelation
by Meng Sun, Qi Zhang, Haipeng Yao, Ran Gao, Jiayuan Li, Weiying Feng, Fu Wang, Xiaohu Li, Xiangyu Liu, Feng Tian, Qinghua Tian, Yi Zhao, Liang Liu and Yuqi Wang
Electronics 2025, 14(3), 521; https://doi.org/10.3390/electronics14030521 - 27 Jan 2025
Viewed by 671
Abstract
Orthogonal time–frequency space (OTFS) modulation combined with massive multiple-input multiple-output (MIMO) can simultaneously address the problems caused by multipath delay, the Doppler effect, and channel fading. To mitigate inter-subcarrier and inter-symbol interference in satellite–terrestrial MIMO-OTFS systems, an iterative maximum ratio combining detection algorithm [...] Read more.
Orthogonal time–frequency space (OTFS) modulation combined with massive multiple-input multiple-output (MIMO) can simultaneously address the problems caused by multipath delay, the Doppler effect, and channel fading. To mitigate inter-subcarrier and inter-symbol interference in satellite–terrestrial MIMO-OTFS systems, an iterative maximum ratio combining detection algorithm based on hard-decision interference cancelation (ICH-IMRC) is proposed. The signal detection is iterated by performing MRC on the interference-canceled received symbols. To mitigate the error spread in the interference cancelation process, iterative maximum ratio combining detection based on soft symbol interference cancelation (S-IMRC) is proposed, which is improved based on ICH-IMRC. The interference cancelation is updated by the expectation of other symbols, and the expectation and variance of symbols are updated by soft judgment with the posterior probability of symbols. To improve the detection convergence speed, optimal relaxation parameters are obtained based on the Sparrow Search Algorithm (SSA). Simulation results show that the proposed S-IMRC has superior error rate performance compared to the conventional algorithms for satellite–terrestrial MIMO-OTFS systems. Furthermore, the proposed algorithm is applicable to various satellite channel models and achieves excellent BER for different orders of orthogonal amplitude-modulated signals and different antenna array sizes. Full article
Show Figures

Figure 1

19 pages, 2018 KiB  
Article
Secrecy Analysis of LEO Satellite-to-Ground Station Communication System Influenced by Gamma-Shadowed Ricean Fading
by Ivan Radojkovic, Jelena Anastasov, Dejan N. Milic, Predrag Ivaniš and Goran T. Djordjevic
Electronics 2025, 14(2), 293; https://doi.org/10.3390/electronics14020293 - 13 Jan 2025
Viewed by 907
Abstract
The Low Earth Orbit (LEO) small satellites are extensively used for global connectivity to enable services in underpopulated, remote or underdeveloped areas. Their inherent broadcast nature exposes LEO–terrestrial communication links to severe security threats, which always reveal new challenges. The secrecy performance of [...] Read more.
The Low Earth Orbit (LEO) small satellites are extensively used for global connectivity to enable services in underpopulated, remote or underdeveloped areas. Their inherent broadcast nature exposes LEO–terrestrial communication links to severe security threats, which always reveal new challenges. The secrecy performance of the satellite-to-ground user link in the presence of a ground eavesdropper is studied in this paper. We observe both scenarios of the eavesdropper’s channel state information (CSI) being known or unknown to the satellite. Throughout the analysis, we consider that locations of the intended and unauthorized user are both arbitrary in the satellite’s footprint. On the other hand, we analyze the case when the user is in the center of the satellite’s central beam. In order to achieve realistic physical layer security features of the system, the satellite channels are assumed to undergo Gamma-shadowed Ricean fading, where both line-of-site and scattering components are influenced by shadowing effect. In addition, some practical effects, such as satellite multi-beam pattern and free space loss, are considered in the analysis. Capitalizing on the aforementioned scenarios, we derive the novel analytical expressions for the average secrecy capacity, secrecy outage probability, probability of non-zero secrecy capacity, and probability of intercept events in the form of Meijer’s G functions. In addition, novel asymptotic expressions are derived from previously mentioned metrics. Numerical results are presented to illustrate the effects of beam radius, satellite altitude, receivers’ position, as well as the interplay of the fading or/and shadowing impacts over main and wiretap channels on the system security. Analytical results are confirmed by Monte Carlo simulations. Full article
(This article belongs to the Special Issue New Advances of Microwave and Optical Communication)
Show Figures

Figure 1

25 pages, 677 KiB  
Article
Performance Analysis of Buffer-Aided FSO Relaying with an Energy Harvesting Relay
by Chadi Abou-Rjeily
Photonics 2025, 12(1), 55; https://doi.org/10.3390/photonics12010055 - 9 Jan 2025
Viewed by 555
Abstract
In this paper, we consider a three-node free space optical (FSO) decode-and-forward (DF) cooperative network. The relay is not connected to a permanent power supply and relies solely on the optical energy harvested (EH) from the source node. This energy is accumulated in [...] Read more.
In this paper, we consider a three-node free space optical (FSO) decode-and-forward (DF) cooperative network. The relay is not connected to a permanent power supply and relies solely on the optical energy harvested (EH) from the source node. This energy is accumulated in an energy buffer in order to enable the relay–destination communications. Moreover, buffer-aided (BA) relaying is considered where the relay is equipped with a data buffer for storing the incoming packets. For such networks, we propose a relaying protocol that delineates the roles of the source and the EH BA relay in each time slot. We develop a Markov chain framework for capturing the dynamics of the data and energy buffers. We derive the transition probabilities between the states of the Markov chain after discretizing the continuous-value energy buffer allowing for the evaluation of the analytical performance of the considered system. A numerical analysis is also presented over a turbulence-induced gamma–gamma fading channel highlighting the impacts of the data rate threshold levels, relay position, relay transmit power and propagation conditions on the achievable performance levels. Results validate the accuracy of the theoretical analysis and demonstrate significant reductions in the network outage, especially when the relay’s transmit level is appropriately selected. Full article
Show Figures

Figure 1

17 pages, 2752 KiB  
Article
Fountain Coding Based Two-Way Relaying Cognitive Radio Networks Employing Reconfigurable Intelligent Surface and Energy Harvesting
by Hieu T. Nguyen, Nguyen-Thi Hau, Nguyen Van Toan, Vo Ta Ty and Tran Trung Duy
Telecom 2025, 6(1), 1; https://doi.org/10.3390/telecom6010001 - 25 Dec 2024
Viewed by 702
Abstract
This paper examines two-way relaying cognitive radio networks utilizing fountain coding (FC), reconfigurable intelligent surfaces (RIS), and radio frequency energy harvesting (EH). In the proposed schemes, two secondary sources attempt to exchange data with each other through the assistance of an RIS deployed [...] Read more.
This paper examines two-way relaying cognitive radio networks utilizing fountain coding (FC), reconfigurable intelligent surfaces (RIS), and radio frequency energy harvesting (EH). In the proposed schemes, two secondary sources attempt to exchange data with each other through the assistance of an RIS deployed in the network. Using FC, one source sends its encoded packets to the other source, which must collect enough packets for a successful data recovery. The transmit power of the two sources is adjusted according to an interference constraint given by a primary user and the energy harvested from a power station. In the conventional scheme, one source continuously transmits FC packets to the other, using the maximum number of transmissions allowed. In the modified scheme, as soon as one source collects a sufficient number of FC packets, it notifies the other source to stop transmission. We derive closed-form expressions of outage probability (OP) at each source, system outage probability (SOP), and average number of FC-packet transmissions for the successful data exchange of the considered schemes over Rayleigh fading channels. Simulation results are provided to validate our analysis, to compare the performance of the considered schemes, and to examine the impact of key parameters on performance. Full article
(This article belongs to the Special Issue Performance Criteria for Advanced Wireless Communications)
Show Figures

Figure 1

14 pages, 2905 KiB  
Article
On Security Performance of SWIPT Multi-User Jamming Based on Mixed RF/FSO Systems with Untrusted Relay
by Xingyue Guo, Shan Tu, Dexian Yan and Yi Wang
Sensors 2024, 24(24), 8203; https://doi.org/10.3390/s24248203 - 22 Dec 2024
Cited by 1 | Viewed by 881
Abstract
This paper presents research on the security performance of a multi-user interference-based mixed RF/FSO system based on SWIPT untrusted relay. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga (M) turbulence, respectively. Multiple users transmit messages to the [...] Read more.
This paper presents research on the security performance of a multi-user interference-based mixed RF/FSO system based on SWIPT untrusted relay. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga (M) turbulence, respectively. Multiple users transmit messages to the destination with the help of multiple cooperating relays, one of which may become an untrusted relay as an insider attacker. In a multi-user network, SWIPT acts as a charging device for each user node. In order to prevent the untrusted relays from eavesdropping on the information, some users are randomly assigned to transmit artificial noise in order to interfere with untrusted relays, and the remaining users send information to relay nodes. Based on the above system model, the closed-form expressions of secrecy outage probability (SOP) and average secrecy capacity (ASC) for the mixed RF/FSO system are derived. The correctness of these expressions is verified by the Monte Carlo method. The influences of various key factors on the safety performance of the system are analyzed by simulations. The results show that the security performance of the system is considerably improved by increasing the signal–interference noise ratio, the number of interfering users, the time distribution factor and the energy conversion efficiency when the instantaneous signal-to-noise ratio (SNR) of the RF link instantaneous SNR is low. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 1448 KiB  
Article
Outage Probability Analysis and Altitude Optimization of a UAV-Enabled Triple-Hop Mixed RF-FSO-Based Wireless Communication System
by Deepika Latka, Mona Aggarwal and Swaran Ahuja
Photonics 2024, 11(12), 1145; https://doi.org/10.3390/photonics11121145 - 5 Dec 2024
Viewed by 960
Abstract
In this paper, we present the evaluation of network parameters for the unmanned aerial vehicle (UAV)-enabled triple-hop mixed RF/FSO-based wireless communication system, where one relay is a fixed relay and the second relay is a UAV which acts as decode-and-forward relay for communication [...] Read more.
In this paper, we present the evaluation of network parameters for the unmanned aerial vehicle (UAV)-enabled triple-hop mixed RF/FSO-based wireless communication system, where one relay is a fixed relay and the second relay is a UAV which acts as decode-and-forward relay for communication from the base station (B) to the multiple mobile users (Mi), i{1,2N}. The first hop from B to fixed relay (R1) is the radio frequency (RF) link modeled using ακμ fading distribution, the second hop from the relay R1 to the UAV relay (R2) is a free space optics (FSO) link modeled using Gamma-Gamma fading, and the third hop from R2 to the Mi is, again, an RF link modeled using the Rayleigh fading model. The direct communication between the B and the Mi is not feasible due to the very large distance. We derive the closed form analytical expression for the outage probability of the proposed system and find the effect of the base system parameters on the performance of the system. We also analyze the outage probability of the system at high SNR values to get further insights of the system performance. In addition, altitude optimization of UAV is carried out to know the optimal elevation angle in correspondence with UAV’s optimal altitude in order to maximize performance of the system. Full article
Show Figures

Figure 1

24 pages, 1660 KiB  
Article
Performance Study of FSO/THz Dual-Hop System Based on Cognitive Radio and Energy Harvesting System
by Jingwei Lu, Rongpeng Liu, Yawei Wang, Ziyang Wang and Hongzhan Liu
Electronics 2024, 13(23), 4656; https://doi.org/10.3390/electronics13234656 - 26 Nov 2024
Viewed by 695
Abstract
In order to address the problems of low spectrum efficiency in current communication systems and extend the lifetime of energy-constrained relay devices, this paper proposes a novel dual-hop free-space optical (FSO) system that integrates cognitive radio (CR) and energy harvesting (EH). In this [...] Read more.
In order to address the problems of low spectrum efficiency in current communication systems and extend the lifetime of energy-constrained relay devices, this paper proposes a novel dual-hop free-space optical (FSO) system that integrates cognitive radio (CR) and energy harvesting (EH). In this system, the source node communicates with two users at the terminal via FSO and terahertz (THz) hard-switching links, as well as a multi-antenna relay for non-orthogonal multiple access (NOMA). There is another link whose relay acts as both the power beacon (PB) in the EH system and the primary network (PN) in the CR system, achieving the double function of auxiliary transmission. In addition, based on the three possible practical working scenarios of the system, three different transmit powers of the relay are distinguished, thus enabling three different working modes of the system. Closed-form expressions are derived for the interruption outage probability per user for these three operating scenarios, considering the Gamma–Gamma distribution for the FSO link, the αμ distribution for the THz link, and the Rayleigh fading distribution for the radio frequency (RF) link. Finally, the numerical results show that this novel system can be adapted to various real-world scenarios and possesses unique advantages. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop