Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = far forward

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1156 KB  
Article
The Impact of Operating Ratio on the Static and Fatigue Life of Forward-Acting Rupture Discs
by Haitao Wang, Zhenxi Liu, Honglie Xuan, Hongxin Zhang, Hui Xu, Shan Chen and Jianliang Yu
Materials 2025, 18(21), 4983; https://doi.org/10.3390/ma18214983 (registering DOI) - 31 Oct 2025
Abstract
Rupture discs are critical safety devices for pressure vessels, yet defining replacement intervals for discs that have not ruptured remains challenging due to limited quantitative life-prediction methods. This study investigates forward-acting rupture discs made of 316 L stainless steel and Inconel 600 under [...] Read more.
Rupture discs are critical safety devices for pressure vessels, yet defining replacement intervals for discs that have not ruptured remains challenging due to limited quantitative life-prediction methods. This study investigates forward-acting rupture discs made of 316 L stainless steel and Inconel 600 under three test conditions: low pressure at room temperature, low pressure at elevated temperature, and ultra-high pressure at elevated temperature. Static hold life and fatigue life were measured over a range of operating ratios R = Pw/Pb. To model life–ratio relationships while avoiding far-reaching extrapolation, static life was fitted with a log-normal accelerated-life (AFT) model and fatigue life with a Basquin relation following ASTM E739, reporting 95% prediction bands. Predictions were restricted to validated domains (static: R ≥ 0.86) and truncated at five times the groupwise maximum observed life/cycles. Results show a consistent trend for both materials and all conditions: life decreases as R increases, with steep sensitivities within the observed range. At matched R, Inconel 600 generally exhibits longer life than 316 L. Qualitative failure analysis under constant and cyclic loading indicates progressive plastic deformation, local thinning, and a concomitant reduction in bursting pressure until failure. The proposed in-range predictive framework provides actionable guidance for determining conservative replacement intervals for rupture discs. Full article
18 pages, 1512 KB  
Article
SPICE Model for SiC Bipolar Transistor and TTL Inverter Degradation Due to Gamma Radiation
by Alex Metreveli, Anders Hallén and Carl-Mikael Zetterling
Micromachines 2025, 16(11), 1246; https://doi.org/10.3390/mi16111246 (registering DOI) - 31 Oct 2025
Abstract
Silicon carbide (SiC) is a key material for electronics operating in harsh environments due to its wide bandgap, high thermal conductivity, and radiation hardness. In this work, we present a SPICE model for a 4H-SiC BJT and TTL inverter exposed to gamma radiation. [...] Read more.
Silicon carbide (SiC) is a key material for electronics operating in harsh environments due to its wide bandgap, high thermal conductivity, and radiation hardness. In this work, we present a SPICE model for a 4H-SiC BJT and TTL inverter exposed to gamma radiation. The devices were fabricated using a dedicated SiC bipolar process at KTH (Sweden) and tested at the 60Co Calliope (Italy) facility up to 800 krad (Si). Experimental data, including Gummel plots and inverter transfer characteristics, were used to calibrate and refine a VBIC-based SPICE model. The adjusted model accounts for both bulk and surface degradation mechanisms by extracting parameters of forward current gain (βF), saturation current (IS), base resistance (RB), and forward transit time (TF). Results show a uniform degradation of BJTs, primarily manifested as reduced current gain and increased base resistance, while the inverter maintained functional operation up to 600 krad(Si). Extrapolation of the SPICE model predicts a failure threshold near 16 Mrad(Si), far exceeding the tolerance of conventional silicon circuits. By linking radiation-induced defects at the material and interface levels to circuit-level behavior, the proposed model enables realistic design and lifetime prediction of SiC integrated circuits for satellites, planetary missions, and other radiation-intensive applications. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

17 pages, 3963 KB  
Article
A Mutation in Damage-Specific DNA Binding Protein One (ddb-1) Underlies the Phenotype of the No-Marginal-Zone (nmz) Mutant Zebrafish
by Kailey Jerome, Aria Gish, Taylor Aakre, Taylor Brend, Mara Kate Grenier, Christina L. Johnson, Jaxon Gronneberg, Colin K. O’Neill, Lucas Radermacher and Tristan Darland
Fishes 2025, 10(11), 539; https://doi.org/10.3390/fishes10110539 - 22 Oct 2025
Viewed by 275
Abstract
The ciliary marginal zone (CMZ) is a region in the peripheral-most retina that displays ongoing retinogenesis during growth and expansion of the eye in adulthood. While there is evidence that this capacity also exists in birds and mammals, it is far more robust [...] Read more.
The ciliary marginal zone (CMZ) is a region in the peripheral-most retina that displays ongoing retinogenesis during growth and expansion of the eye in adulthood. While there is evidence that this capacity also exists in birds and mammals, it is far more robust in fish and amphibians. The process of CMZ retinogenesis is essentially equivalent to that seen early in the central retina; however, its regulation is not fully understood. In a previous study, we attempted to uncover novel regulatory genes by using a forward genetics screen in zebrafish, looking for recessive CMZ mutants. One of the mutants found was called no marginal zone (nmz). The nmz mutant showed relatively normal central retina development, but a lack of cells in the CMZ by 5 days post fertilization (dpf). Mapping, genomic sequencing, and complementation analysis using a second mutant line (m863) isolated in another laboratory showed that a mutation in damage-specific DNA binding protein-1 (ddb-1) gene underlies the phenotype seen in nmz. BrdU labeling suggested that later expansion and differentiation of CMZ retinal progenitors is more affected by ddb-1 loss than the earlier process of stem cell asymmetric division. As was seen for the m863 mutant and in other studies with mice, one profound effect of ddb-1 loss in nmz was the upregulation in expression of tp53 and several of its downstream effectors. Several important genes important in CMZ retinogenesis are also downregulated in the nmz mutant. The change in gene expression would suggest that ddb-1 loss leads to increased cell cycle disruption and apoptosis at the expense of CMZ retinogenesis. While homozygosity is lethal, heterozygous fish appear to be completely normal in morphology, visual function, and behavior. Full article
Show Figures

Figure 1

9 pages, 394 KB  
Proceeding Paper
From Human-Computer Interaction to Human-Robot Manipulation
by Shuwei Guo, Cong Yang, Zhizhong Su, Wei Sui, Xun Liu, Minglu Zhu and Tao Chen
Eng. Proc. 2025, 110(1), 1; https://doi.org/10.3390/engproc2025110001 - 25 Sep 2025
Viewed by 957
Abstract
The evolution of Human–Computer Interaction (HCI) has laid the foundation for more immersive and dynamic forms of communication between humans and machines. Building on this trajectory, this work introduces a significant advancement in the domain of Human–Robot Manipulation (HRM), particularly in the remote [...] Read more.
The evolution of Human–Computer Interaction (HCI) has laid the foundation for more immersive and dynamic forms of communication between humans and machines. Building on this trajectory, this work introduces a significant advancement in the domain of Human–Robot Manipulation (HRM), particularly in the remote operation of humanoid robots in complex scenarios. We propose the Advanced Manipulation Assistant System (AMAS), a novel manipulation method designed to be low cost, low latency, and highly efficient, enabling real-time, precise control of humanoid robots from a distance. This method addresses critical challenges in current teleoperation systems, such as delayed response, expensive hardware requirements, and inefficient data transmission. By leveraging lightweight communication protocols, optimized sensor integration, and intelligent motion mapping, our system ensures minimal lag and accurate reproduction of human movements in the robot counterpart. In addition to these advantages, AMAS integrates multimodal feedback combining visual and haptic cues to enhance situational awareness, close the control loop, and further stabilize teleoperation. This transition from traditional HCI paradigms to advanced HRM reflects a broader shift toward more embodied forms of interaction, where human intent is seamlessly translated into robotic action. The implications are far-reaching, spanning applications in remote caregiving, hazardous environment exploration, and collaborative robotics. AMAS represents a step forward in making humanoid robot manipulation more accessible, scalable, and practical for real-world deployment. Full article
Show Figures

Figure 1

27 pages, 3143 KB  
Review
Diversity, Functional Complexity, and Translational Potential of Glial Cells in the Central Nervous System
by Agata Wawrzyniak, Izabela Krawczyk-Marć, Agnieszka Żuryń, Jerzy Walocha and Krzysztof Balawender
Int. J. Mol. Sci. 2025, 26(18), 9080; https://doi.org/10.3390/ijms26189080 - 18 Sep 2025
Viewed by 1454
Abstract
Glial cells have emerged as active and dynamic regulators of central nervous system (CNS) function, far beyond their historically perceived supportive role. This review synthesizes the most recent advances in glial biology, highlighting novel molecular mechanisms, cutting-edge imaging methodologies, and translational strategies that [...] Read more.
Glial cells have emerged as active and dynamic regulators of central nervous system (CNS) function, far beyond their historically perceived supportive role. This review synthesizes the most recent advances in glial biology, highlighting novel molecular mechanisms, cutting-edge imaging methodologies, and translational strategies that redefine their role in health and disease. We emphasize new findings on astrocytic signaling in neurodegeneration, NG2-glia dynamics, and microglial modulation, providing forward-looking perspectives for glia-targeted therapeutic interventions. Recent breakthroughs in high-resolution in vivo imaging, single-cell transcriptomics, and gene-editing platforms are discussed in the context of their ability to unravel glial heterogeneity and functional plasticity. By integrating molecular insights with translational research, this review aims to bridge the gap between basic neuroscience and clinical applications, offering a framework for next-generation CNS therapies. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System: 2nd Edition)
Show Figures

Figure 1

14 pages, 1761 KB  
Article
Applying a Hydrodynamic Model to Determine the Fate and Transport of Macroplastics Released Along the West Africa Coastal Area
by Laura Corbari, Fulvio Capodici, Giuseppe Ciraolo, Giulio Ceriola and Antonello Aiello
Water 2025, 17(18), 2658; https://doi.org/10.3390/w17182658 - 9 Sep 2025
Viewed by 849
Abstract
Marine plastic pollution has become a critical transboundary environmental issue, particularly affecting coastal regions with insufficient waste management infrastructure. This study applies a modified Lagrangian hydrodynamic model, TrackMPD v.1, to simulate the movement and accumulation of macroplastics in the West Africa Coastal Area. [...] Read more.
Marine plastic pollution has become a critical transboundary environmental issue, particularly affecting coastal regions with insufficient waste management infrastructure. This study applies a modified Lagrangian hydrodynamic model, TrackMPD v.1, to simulate the movement and accumulation of macroplastics in the West Africa Coastal Area. The research investigates three case studies: (1) the Liberia–Gulf of Guinea region, (2) the Mauritania–Gulf of Guinea coastal stretch, (3) the Cape Verde, Mauritania, and Senegal regions. Using both forward and backward simulations, macroplastics’ trajectories were tracked to identify key sources and accumulation hotspots. The findings highlight the cross-border nature of marine litter, with plastic debris transported far from its source due to ocean currents. The Gulf of Guinea emerges as a major accumulation zone, heavily impacted by plastic pollution originating from West African rivers. Interesting connections were found between velocities and directions of the plastic debris and some of the characteristics of the West African Monson climatic system (WAM) that dominates the area. Backward modelling reveals that macroplastics beached in Cape Verde largely originate from the Arguin Basin (Mauritania), an area influenced by fishing activities and offshore oil and gas operations. Results are visualized through point tracking, density, and beaching maps, providing insights into plastic distribution and accumulation patterns. The study underscores the need for regional cooperation and integrated monitoring approaches, including remote sensing and in situ surveys, to enhance mitigation strategies. Future work will explore 3D simulations, incorporating degradation processes, biofouling, and sinking dynamics to improve the representation of plastic behaviour in marine environments. This research is conducted within the Global Development Assistance (GDA) Agile Information Development (AID) Marine Environment and Blue Economy initiative, funded by the European Space Agency (ESA) in collaboration with the Asian. Development Bank and the World Bank. The outcomes provide actionable insights for policymakers, researchers, and environmental managers aiming to combat marine plastic pollution and safeguard marine biodiversity. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

22 pages, 1429 KB  
Article
The Structure of Demand, Control, and Stability-Support Underlying the Job Content Questionnaire (JCQ) 2.0—An Innovative Tool for Assessing Multilevel Work Characteristics
by Maren Formazin, BongKyoo Choi, Maureen F. Dollard, Jian Li, Sarven S. McLinton, Wilfred Agbenyikey, Sung-il Cho, Irene Houtman and Robert Karasek
Int. J. Environ. Res. Public Health 2025, 22(9), 1403; https://doi.org/10.3390/ijerph22091403 - 8 Sep 2025
Cited by 1 | Viewed by 1048
Abstract
Dominant theories in the field of occupational stress have so far mainly focused only on job task level psychosocial factors. Our novelty was to move the field forward by testing a new multilevel conceptualization of workplace health-related psychosocial factors, captured in the new [...] Read more.
Dominant theories in the field of occupational stress have so far mainly focused only on job task level psychosocial factors. Our novelty was to move the field forward by testing a new multilevel conceptualization of workplace health-related psychosocial factors, captured in the new JCQ 2.0 tool. The JCQ 2.0 tool assesses the theoretical constructs Demand (D), Control (C) and Stability-Support (S-S) at the task and the organizational level in accordance with the Associationalist Demand/Control (ADC) Model. We aimed for a first step to assess the generalizability of the framework by collecting data in four different countries (Korea, China, Australia, and Germany). Using structural equation modeling, the task level three-factor DCS structure was largely confirmed across all four countries (with one exception: skill discretion was an indicator of both control and demand). The organizational level, three-factor DCS-S structure was tested and confirmed in the German data only (only data with sufficient scales). Similarly, the multilevel DCS-S model could only be tested with the German data only and was largely confirmed with the three organizational level factors (D, C, and S-S) as antecedents to their task level analogues (with one exception: supervisor support was an indicator of organizational rather than task level support). The findings provide a first step to advancing existing knowledge by providing preliminary support for a multilevel DCS model. Further multilevel longitudinal research is required to verify the main findings and explain some of the nuances uncovered here. Full article
(This article belongs to the Section Behavioral and Mental Health)
Show Figures

Figure 1

17 pages, 539 KB  
Article
Short-Packet Communications in Multi-Antenna Cooperative NOMA Networks with Hardware Impairments
by Xingang Zhang, Dechuan Chen, Jianwei Hu, Xiaolin Sun, Baoping Wang and Dongyan Zhang
Sensors 2025, 25(17), 5444; https://doi.org/10.3390/s25175444 - 2 Sep 2025
Viewed by 570
Abstract
This work examines the performance of a multi-antenna cooperative non-orthogonal multiple access (NOMA) network that employs short-packet communications and operates under the effect of hardware impairments. Specifically, a multi-antenna source transmits superposition-coded NOMA signals to a near user and a far user. Acting [...] Read more.
This work examines the performance of a multi-antenna cooperative non-orthogonal multiple access (NOMA) network that employs short-packet communications and operates under the effect of hardware impairments. Specifically, a multi-antenna source transmits superposition-coded NOMA signals to a near user and a far user. Acting as a decode-and-forward (DF) relay, the near user adopts successive interference cancellation (SIC) to decode and subsequently forward the message intended for the far user. In addition, the transmission strategy at the source is the maximum ratio transmission (MRT) and the reception strategy at the far user is selection combining (SC). For Nakagami-m fading channels, closed-form expressions for the average block error rate (BLER) and effective throughput are derived. Then, the effective throughput is maximized through the optimization of the blocklength, accounting for constraints on transmission latency and reliability. The results obtained from simulations confirm the analytical findings and demonstrate that the proposed scheme, with a two-antenna source configuration, achieves a superior effective throughput, reaching up to 240% at a transmit signal-to-noise ratio (SNR) of 33 dB, compared to the existing NOMA scheme in the literature. Full article
Show Figures

Figure 1

16 pages, 820 KB  
Article
Exploring the Impact of Self-Excited Alfvén Waves on Transonic Winds: Applications in Galactic Outflows
by Bilal Ramzan, Syed Nasrullah Ali Qazi and Chung-Ming Ko
Universe 2025, 11(9), 290; https://doi.org/10.3390/universe11090290 - 26 Aug 2025
Viewed by 620
Abstract
The impact of cosmic rays is crucial to understand the energetic plasma outflows coming out from the Galactic centers against the strong gravitational potential well. Cosmic rays can interact with thermal plasma via streaming instabilities and produce hydromagnetic waves/fluctuations. During the propagation of [...] Read more.
The impact of cosmic rays is crucial to understand the energetic plasma outflows coming out from the Galactic centers against the strong gravitational potential well. Cosmic rays can interact with thermal plasma via streaming instabilities and produce hydromagnetic waves/fluctuations. During the propagation of cosmic rays it can effectively diffuse and advect through the thermal plasma which results the excitation of Alfvén waves. We are treating thermal plasma, cosmic rays and self-excited Alfvén waves as fluids and our model is referred as multi-fluid model. We investigate steady-state transonic solutions for four-fluid systems (with forward as well as backward propagating self-excited Alfvén waves) with certain boundary conditions at the base of the potential well. As a reference model, a four-fluid model with cosmic-ray diffusion, wave damping and cooling can be studied together and solution topology can be analyzed with different set of boundary conditions available at the base of the gravitational potential well. We compare cases with enhancing the backward propagating self-excited Alfvén waves pressure and examining the shifting of the transonic point near or far away from the base. In conclusion we argue that the variation of the back-ward propagating self-excited Alfvén waves significantly alters the transonic solutions at the base. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

41 pages, 1765 KB  
Review
Probiotics and the Gut–Brain Axis: Emerging Therapeutic Strategies for Epilepsy and Depression Comorbidity
by Mustafa M. Shokr, Reem M. Eladawy, Yasmena O. Azar and Seham M. Al Raish
Foods 2025, 14(17), 2926; https://doi.org/10.3390/foods14172926 - 22 Aug 2025
Viewed by 2171
Abstract
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared [...] Read more.
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared pathophysiology. Neuroinflammatory mediators (interleukin-6, tumor necrosis factor alpha, high-mobility group box 1) establish a vicious cycle: seizures exacerbate inflammation and mood disruption, and stress lowers seizure thresholds. Hippocampal damage and cortisol toxicity also link these disorders, with early life stress imprinting lifelong risk via epigenetic alteration. Genetic studies identify pleiotropic genes (brain-derived neurotrophic factor) that regulate synaptic plasticity, serotonin activity, and immune responses. New treatments target shared pathways: ketamine and AMPAkines normalize glutamate tone; mGluR5 antagonists attenuate hyperexcitability and inflammation; DNA methyltransferase inhibitors reverse aberrant DNA methylation; and probiotics manipulate the gut–brain axis by boosting neuroprotective metabolites like butyrate. Despite challenges—transient effects, precision dosing, and blood–brain barrier penetration—these advances constitute a paradigm shift toward mechanistic repair rather than symptom management. The way forward includes clustered regularly interspaced short palindromic repeats (CRISPR)-based epigenome editing, biomarker-led therapies, and combination approaches (e.g., ketamine and probiotics). Such comorbidity needs to be managed holistically through integrated neuropsychiatry care, offering hope to patients with treatment-refractory symptoms. Full article
Show Figures

Figure 1

14 pages, 10145 KB  
Article
Wavefront-Corrected Algorithm for Vortex Optical Transmedia Wavefront-Sensorless Sensing Based on U-Net Network
by Shangjun Yang, Yanmin Zhao, Binkun Liu, Shuguang Zou and Chenghu Ke
Photonics 2025, 12(8), 780; https://doi.org/10.3390/photonics12080780 - 1 Aug 2025
Viewed by 1097
Abstract
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured [...] Read more.
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured optical intensity—and augments it with a feed-forward, Gaussian-reference subtraction scheme for iterative compensation. In our experiments, this approach boosts the l = 3 mode purity from 38.4% to 98.1%. Compared to the Gerchberg–Saxton algorithm, the Gaussian-reference feed-forward method achieves far lower computational complexity and greater robustness, making real-time phase recovery feasible for OAM-based communications over heterogeneous channels. Full article
Show Figures

Figure 1

26 pages, 4856 KB  
Article
PREFACE: A Search for Long-Lived Particles at the Large Hadron Collider
by Burak Hacisahinoglu, Suat Ozkorucuklu, Maksym Ovchynnikov, Michael G. Albrow, Aldo Penzo and Orhan Aydilek
Physics 2025, 7(3), 33; https://doi.org/10.3390/physics7030033 - 1 Aug 2025
Viewed by 957
Abstract
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass [...] Read more.
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass or by considerably small coupling to SM particles. The latter case implies relatively long lifetimes. Such long-lived particles (LLPs) then to have signatures different from those of SM particles. Searches in the “central region” are covered by the LHC general purpose experiments. The forward small angle region far from the interaction point (IP) is unexplored. Such particles are expected to have the energy as large as E = O(1 TeV) and Lorentz time dilation factor γ=E/m102103 (with m the particle mass) hence long enough decay distances. A new class of specialized LHC detectors dedicated to LLP searches has been proposed for the forward regions. Among these experiments, FASER is already operational, and FACET is under consideration at a location 100 m from the LHC IP5 (the CMS detector intersection). However, some features of FACET require a specially enlarged beam pipe, which cannot be implemented for LHC Run 4. In this study, we explore a simplified version of the proposed detector PREFACE compatible with the standard LHC beam pipe in the HL-LHC Run 4. Realistic Geant4 simulations are performed and the background is evaluated. An initial analysis of the physics potential with the PREFACE geometry indicates that several significant channels could be accessible with sensitivities comparable to FACET and other LLP searches. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

48 pages, 2275 KB  
Article
Intersectional Software Engineering as a Field
by Alicia Julia Wilson Takaoka, Claudia Maria Cutrupi and Letizia Jaccheri
Software 2025, 4(3), 18; https://doi.org/10.3390/software4030018 - 30 Jul 2025
Viewed by 1062
Abstract
Intersectionality is a concept used to explain the power dynamics and inequalities that some groups experience owing to the interconnection of social differences such as in gender, sexual identity, poverty status, race, geographic location, disability, and education. The relation between software engineering, feminism, [...] Read more.
Intersectionality is a concept used to explain the power dynamics and inequalities that some groups experience owing to the interconnection of social differences such as in gender, sexual identity, poverty status, race, geographic location, disability, and education. The relation between software engineering, feminism, and intersectionality has been addressed by some studies thus far, but it has never been codified before. In this paper, we employ the commonly used ABC Framework for empirical software engineering to show the contributions of intersectional software engineering (ISE) as a field of software engineering. In addition, we highlight the power dynamic, unique to ISE studies, and define gender-forward intersectionality as a way to use gender as a starting point to identify and examine inequalities and discrimination. We show that ISE is a field of study in software engineering that uses gender-forward intersectionality to produce knowledge about power dynamics in software engineering in its specific domains and environments. Employing empirical software engineering research strategies, we explain the importance of recognizing and evaluating ISE through four dimensions of dynamics, which are people, processes, products, and policies. Beginning with a set of 10 seminal papers that enable us to define the initial concepts and the query for the systematic mapping study, we conduct a systematic mapping study leads to a dataset of 140 primary papers, of which 15 are chosen as example papers. We apply the principles of ISE to these example papers to show how the field functions. Finally, we conclude the paper by advocating the recognition of ISE as a specialized field of study in software engineering. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Software)
Show Figures

Figure 1

20 pages, 29094 KB  
Article
Retrieval of Cloud, Atmospheric, and Surface Properties from Far-Infrared Spectral Radiances Measured by FIRMOS-B During the 2022 HEMERA Stratospheric Balloon Campaign
by Gianluca Di Natale, Claudio Belotti, Marco Barucci, Marco Ridolfi, Silvia Viciani, Francesco D’Amato, Samuele Del Bianco, Bianca Maria Dinelli and Luca Palchetti
Remote Sens. 2025, 17(14), 2458; https://doi.org/10.3390/rs17142458 - 16 Jul 2025
Viewed by 681
Abstract
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric [...] Read more.
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric state and the surface temperature, from far-infrared spectral radiances, in the 100–1000 cm−1 range, measured by the Far-Infrared Radiation Mobile Observation System-Balloon version (FIRMOS-B) spectroradiometer from a stratospheric balloon launched from Timmins (Canada) in August 2022 within the HEMERA 3 programme. The retrieval study is performed with the Optimal Estimation inversion approach, using three different forward models and retrieval codes to compare the results. Cloud optical depth, particle effective size, and cloud top height are retrieved with good accuracy, despite the relatively high measurement noise of the FIRMOS-B observations used for this study. The retrieved atmospheric profiles, computed simultaneously with cloud parameters, are in good agreement with both co-located radiosonde measurements and ERA-5 profiles, under all-sky conditions. The findings are very promising for the development of an optimised retrieval procedure to analyse the high-precision FIR spectral measurements, which will be delivered by the ESA FORUM mission. Full article
Show Figures

Figure 1

20 pages, 1405 KB  
Article
Multimodal Pragmatic Markers of Feedback in Dialogue
by Ludivine Crible and Loulou Kosmala
Languages 2025, 10(6), 117; https://doi.org/10.3390/languages10060117 - 22 May 2025
Viewed by 1364
Abstract
Historically, the field of discourse marker research has moved from relying on intuition to more and more ecological data, with written, spoken, and now multimodal corpora available to study these pervasive pragmatic devices. For some topics, video is necessary to capture the complexity [...] Read more.
Historically, the field of discourse marker research has moved from relying on intuition to more and more ecological data, with written, spoken, and now multimodal corpora available to study these pervasive pragmatic devices. For some topics, video is necessary to capture the complexity of interactive phenomena, such as feedback in dialogue. Feedback is the process of communicating engagement, alignment, and affiliation (or lack thereof) to the other speaker, and has attracted a lot of attention recently, from fields such as psycholinguistics, conversation analysis, or second language acquisition. Feedback can be expressed by a variety of verbal/vocal and visual/gestural devices, from questions to head nods and, crucially, discourse or pragmatic markers such as “okay, alright, yeah”. Verbal-vocal and visual-gestural forms often co-occur, which calls for more investigation of their combinations. In this study, we analyze multimodal pragmatic markers of feedback in a corpus of French dialogues, where all feedback devices have previously been categorized into either “alignment” (expression of mutual understanding) or “affiliation” (expression of shared stance). After describing the distribution and forms within each modality taken separately, we will focus on interesting multimodal combinations, such as [negative oui ‘yes’ + head tilt] or [mais oui ‘but yes’ + forward head move], thus showing how the visual modality can affect the semantics of verbal markers. In doing so, we will contribute to defining multimodal pragmatic markers, a status which has so far been restricted to verbal markers and manual gestures, at the expense of other devices in the visual modality. Full article
(This article belongs to the Special Issue Current Trends in Discourse Marker Research)
Show Figures

Figure 1

Back to TopTop