Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = fiber-reinforced thermoplastics (FRPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4538 KB  
Article
Investigation of the Melt-Rotation Effects on Fiber Orientation Variation and Geometrical Shrinkage in FRP Injection-Molded Parts
by Jing-Kai Gao, Fang-Lin Hsieh, Min-Yuan Chien and Chao-Tsai Huang
Polymers 2025, 17(17), 2360; https://doi.org/10.3390/polym17172360 - 30 Aug 2025
Viewed by 751
Abstract
The study focuses on the asymmetric shrinkage typically occurring between the upstream and downstream regions of FRP injection-molded products, a challenge that is particularly difficult to manage and improve. Specifically, two sets of four-cavity systems in one mold were utilized as the experimental [...] Read more.
The study focuses on the asymmetric shrinkage typically occurring between the upstream and downstream regions of FRP injection-molded products, a challenge that is particularly difficult to manage and improve. Specifically, two sets of four-cavity systems in one mold were utilized as the experimental platform. One set used a balanced runner (BR) system, and the other used a non-balanced runner (NBR) system. Each cavity in the four-cavity systems contained an ASTM D638 standard specimen with dimensions of 63.5 mm × 9.53 mm × 3.5 mm. Both CAE simulation and experimental methods were applied. The results show that the filling patterns from the simulation analysis closely matched those from the experimental study for both BR and NBR systems. Furthermore, by comparing the geometric shrinkage of the injected parts, significant differences were observed in the dimensional deformation in three directions (x, y, and z) between the NBR and BR systems. Specifically, at the end of the filling region (EFR), there was no noticeable difference in shrinkage along the flow direction, but the shrinkage in the cross-flow and thickness directions was reduced in the NBR system. Additionally, for the same cavity (1C) in both BR and NBR systems, the melt-rotation effect significantly reduced shrinkage in both the cross-flow and thickness directions. These findings strongly suggest that melt rotation can effectively modify the dimensional shrinkage of injection-molded parts. Moreover, fiber orientation analyses of the 1C cavity were also performed using CAE simulation for both BR and NBR systems. The results show that in the NBR system, the melt-rotation effect substantially alters the fiber orientation. Specifically, the fiber orientation tensors in the cross-flow (A22) direction exhibit a decreasing trend. It can be speculated that the melt rotation alters the flow field, which subsequently changes the fiber orientation by reducing the flow-fiber coupling effect, thereby reducing the upstream-to-downstream asymmetry in the cross-flow direction. Through in-depth analysis, it is demonstrated that the correlation between the macroscopic geometric shrinkage and the microscopic fiber orientation changes is highly consistent. Specifically, in the EFR, ΔA22 decreased by 0.0376, improving upstream/downstream shrinkage asymmetry in the cross-flow direction (Ly). Future work will investigate alternative melt-rotation designs and the optimization of model-internal parameters in FOD prediction. Full article
(This article belongs to the Special Issue Advances in Polymer Processing Technologies: Injection Molding)
Show Figures

Figure 1

50 pages, 5366 KB  
Review
Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review
by Lahiru Wijewickrama, Janitha Jeewantha, G. Indika P. Perera, Omar Alajarmeh and Jayantha Epaarachchi
Polymers 2025, 17(17), 2345; https://doi.org/10.3390/polym17172345 - 29 Aug 2025
Cited by 2 | Viewed by 3392
Abstract
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus [...] Read more.
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus on manufacturing methods, durability challenges, and future innovations. Thermoset polymer composites, particularly those with epoxy and vinyl ester matrices, continue to dominate marine applications due to their mechanical robustness and processing maturity. In contrast, thermoplastic composites such as Polyether Ether Ketone (PEEK) and Polyether Ketone Ketone (PEKK) offer advantages in recyclability and hydrothermal performance but are hindered by higher processing costs. The review evaluates the performance of various fiber types, including glass, carbon, basalt, and aramid, highlighting the trade-offs between cost, mechanical properties, and environmental resistance. Manufacturing processes such as vacuum-assisted resin transfer molding (VARTM) and automated fiber placement (AFP) enable efficient production but face limitations in scalability and in-field repair. Key durability concerns include seawater-induced degradation, moisture absorption, interfacial debonding, galvanic corrosion in FRP–metal hybrids, and biofouling. The paper also explores emerging strategies such as self-healing polymers, nano-enhanced coatings, and hybrid fiber architectures that aim to improve long-term reliability. Finally, it outlines future research directions, including the development of smart composites with embedded structural health monitoring (SHM), bio-based resin systems, and standardized certification protocols to support broader industry adoption. This review aims to guide ongoing research and development efforts toward more sustainable, high-performance marine composite systems. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 5397 KB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Cited by 1 | Viewed by 2116
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

18 pages, 5650 KB  
Article
Process Development for Hybrid Brake Pedals Using Compression Molding with Integrated In-Mold Assembly
by Deviprasad Chalicheemalapalli Jayasankar, Tim Stallmeister, Julian Lückenkötter, Thomas Tröster and Thorsten Marten
Polymers 2025, 17(12), 1644; https://doi.org/10.3390/polym17121644 - 13 Jun 2025
Cited by 2 | Viewed by 879
Abstract
Currently, the need for resource efficiency and CO2 reduction is growing in industrial production, particularly in the automotive sector. To address this, the industry is focusing on lightweight components that reduce weight without compromising mechanical properties, which are essential for passenger safety. [...] Read more.
Currently, the need for resource efficiency and CO2 reduction is growing in industrial production, particularly in the automotive sector. To address this, the industry is focusing on lightweight components that reduce weight without compromising mechanical properties, which are essential for passenger safety. Hybrid designs offer an effective solution by combining weight reduction with improved mechanical performance and functional integration. This study focuses on a one-step manufacturing process that integrates forming and bonding of hybrid systems using compression molding. This approach reduces production time and costs compared to traditional methods. Conventional Post-Mold Assembly (PMA) processes require two separate steps to combine fiber-reinforced plastic (FRP) structures with metal components. In contrast, the novel In-Mold Assembly (IMA) process developed in this study combines forming and bonding in a single step. In the IMA process, glass-mat-reinforced thermoplastic (GMT) is simultaneously formed and bonded between two metal belts during compression molding. The GMT core provides stiffening and load transmission between the metal belts, which handle tensile and compressive stresses. This method allows to produce hybrid structures with optimized material distribution for load-bearing and functional performance. The process was validated by producing a lightweight hybrid brake pedal. Demonstrating its potential for efficient and sustainable automotive production, the developed hybrid brake pedal achieved a 35% weight reduction compared to the steel reference while maintaining mechanical performance under quasi-static loading Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

18 pages, 6813 KB  
Article
Effects of Matrix Properties on the Interfacial Shear Strength Between Carbon Fiber and Various Thermoplastic Polymers, and Their Influence on the Mechanical Properties of Composites
by Kazuto Tanaka and Ryota Sakakibara
J. Compos. Sci. 2025, 9(4), 174; https://doi.org/10.3390/jcs9040174 - 2 Apr 2025
Viewed by 1269
Abstract
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties [...] Read more.
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties of various thermoplastics were measured, and the matrix tightening stress that constricts the fiber was simulated using finite element method (FEM) analysis. The relationships between the fiber–matrix interfacial shear strength and the matrix properties were clarified. The mechanical properties of carbon fiber reinforced thermoplastic (CFRTP) laminates were also evaluated, and the relationships between the fiber–matrix interfacial shear strength and the mechanical properties of CFRTP laminates were examined. The fiber–matrix interfacial shear strength showed a positive correlation with the matrix tightening stress tightening the fiber in the radial direction, as well as with matrix density, tensile strength, modulus, and melting temperature, while a negative correlation was found with the coefficient of linear expansion of the matrix. A higher fiber–matrix interfacial shear strength can be achieved by using a matrix with higher density, even without direct evaluation of the fiber–matrix interfacial strength, as the fiber–matrix interfacial shear strength showed a strong positive correlation with matrix density. Furthermore, the mechanical properties of CFRTP laminates were enhanced when matrices with higher fiber–matrix interfacial shear strength were used. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

31 pages, 11807 KB  
Article
Experimental and Theoretical Investigation into the Thermal Conductivity and Heating-Softening Bending of Glass-Fiber-Reinforced Polypropylene Rebars
by Mingxue Xu, Anni Wang and Xiaogang Liu
Polymers 2025, 17(5), 595; https://doi.org/10.3390/polym17050595 - 24 Feb 2025
Cited by 4 | Viewed by 1970
Abstract
Thermoplastic fiber-reinforced polymer (FRP) reinforcement has a significant advantage over traditional thermosetting FRP reinforcements in that it can be bent on site by heating-softening processing. However, current experimental and theoretical research on the thermal conductivity and heating-softening processing characteristics of thermoplastic FRP reinforcements [...] Read more.
Thermoplastic fiber-reinforced polymer (FRP) reinforcement has a significant advantage over traditional thermosetting FRP reinforcements in that it can be bent on site by heating-softening processing. However, current experimental and theoretical research on the thermal conductivity and heating-softening processing characteristics of thermoplastic FRP reinforcements is quite insufficient. Through heating-softening processing tests, numerical simulation, and theoretical calculation, this study investigated the heating-softening processing time of a thermoplastic glass-fiber-reinforced polypropylene (GFRPP) reinforcement. In the heat transfer process, thermal conductivity is typically treated as a constant. However, the experimental results indicated that the thermal conductivity/diffusivity coefficient of the GFRPP reinforcement was temperature-dependent. On this basis, an equivalent modified thermal diffusivity coefficient of glass fiber was proposed to account for the time-temperature-dependent heat conductivity of the GFRPP reinforcement, utilizing a series model. Utilizing the modified thermal diffusivity coefficient, the simulation model presented a heating-softening processing time that coincided well with the experimental results, with a mean ratio of 1.005 and a coefficient of variation of 0.033. Moreover, based on an equivalent homogeneous circular cross-section assumption of the GFRPP reinforcement, an analytical solution to the heat conduction equation was derived. Combining the experimental and simulation results, a semi-analytical and semi-empirical calculation model was also proposed for predicting the heating-softening processing time of a GFRPP reinforcement with a silicone tube cover. The model’s calculated results align with the simulation trends, with an average deviation of 1.0% and a coefficient of variation of 0.026, demonstrating strong potential for engineering applications. Full article
Show Figures

Figure 1

19 pages, 5397 KB  
Article
Novel Processes for the Production of Continuous Carbon Fiber-Reinforced Thermoplastic Polymers via Additive Manufacturing and Comparisons
by Simon Zeidler, Nikolas Matkovic, Florian Kößler, Alexander Puchta and Jürgen Fleischer
Polymers 2025, 17(5), 584; https://doi.org/10.3390/polym17050584 - 22 Feb 2025
Cited by 1 | Viewed by 2038
Abstract
Continuous fiber-reinforced polymer (CoFRP) parts offer significant potential for reducing future product consumption and CO2 emissions due to their high tensile properties and low density. Additive manufacturing enables the tool-free production of complex geometries with optimal material utilization, making it a promising [...] Read more.
Continuous fiber-reinforced polymer (CoFRP) parts offer significant potential for reducing future product consumption and CO2 emissions due to their high tensile properties and low density. Additive manufacturing enables the tool-free production of complex geometries with optimal material utilization, making it a promising approach for creating load-path-optimized CoFRP parts. Recent advancements have integrated continuous fibers into laser sintering processes, allowing for the support-free production of complex parts with improved material properties. However, additive manufacturing faces challenges such as long production times, small component dimensions, and defects like high void content. New processes, including Arburg Polymer Freeforming (APF), robotic direct extrusion (DES) and the integration of thermoplastic tapes, and laser sintering, have enabled the production of CoFRPs to address these issues. A comparison of these new processes with existing material extrusion methods is necessary to determine the most suitable approach for specific tasks. The fulfillment factor is used to compare composites with different matrix and fiber materials, representing the percentage of experimentally achieved material properties relative to the theoretical maximum according to the Voigt model. The fulfillment factor varies significantly across different processes and materials. For FFF processes, the fulfillment factor ranges from 20% to 77% for stiffness and 14% to 84% for strength, with an average of 52% and 37%, respectively. APF shows a high fulfillment factor for stiffness (94%) but is lower for strength (23%), attributed to poor fiber–matrix bonding and process-induced pores. The new DES process improves the fulfillment factor due to additional consolidation steps, achieving above-average values for strength (67%). The CoFRP produced by the novel LS process also shows a high fulfillment factor for stiffness (85%) and an average fulfillment factor for strength (39%), influenced by suboptimal process parameters and defects. Full article
Show Figures

Figure 1

20 pages, 10387 KB  
Article
Micro-Level Hybridization of Steel, Glass, and Polypropylene Filaments via Air Texturing: Mechanical and Morphological Analysis
by Jan Rehra, Matthias Overberg, Sebastian Schmeer, Anwar Abdkader and Chokri Cherif
J. Compos. Sci. 2025, 9(1), 12; https://doi.org/10.3390/jcs9010012 - 2 Jan 2025
Viewed by 858
Abstract
The increasing application of fiber-reinforced polymer (FRP) composites necessitates the development of composite structures that exhibit high stiffness, high strength, and favorable failure behavior to endure complex loading scenarios and improve damage tolerance. Achieving these properties can be facilitated by integrating conventional FRPCs [...] Read more.
The increasing application of fiber-reinforced polymer (FRP) composites necessitates the development of composite structures that exhibit high stiffness, high strength, and favorable failure behavior to endure complex loading scenarios and improve damage tolerance. Achieving these properties can be facilitated by integrating conventional FRPCs with metallic materials, which offer high ductility and superior energy absorption capabilities. However, there is a lack of effective solutions for the micro-level hybridization of high-performance filament yarns, metal filament yarns, and thermoplastic filament yarns. This study aims to investigate the hybridization of multi-material components at the micro-level using the air-texturing process. The focus is on investigating the morphological and the mechanical properties as well as the damage behavior in relation to the process parameters of the air-texturing process. The process-induced property changes were evaluated throughout the entire process, starting from the individual components, through the hybridization process, and up to the tape production. Tensile tests on multifilament yarns and tape revealed that the strength of the hybrid materials is significantly reduced due to the hybridization process inducing fiber damage. Morphological analyses using 3D scans and micrographs demonstrated that the degree of hybridization is enhanced due to the application of air pressure during the hybridization process. However, this phenomenon is also influenced by the flow movement of the PP matrix during the consolidation stage. The hybrid laminates exhibited a damage behavior that differs from the established behavior of layer-separated metal fiber hybrids, thereby supporting other failure and energy absorption mechanisms, such as fiber pull-out. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

13 pages, 9227 KB  
Article
Effect of Preheating Parameters on Extrusion Welding of High-Density Polyethylene Materials
by Chungwoo Lee, Suseong Woo, Sooyeon Kwon and Jisun Kim
Polymers 2024, 16(21), 2992; https://doi.org/10.3390/polym16212992 - 25 Oct 2024
Cited by 1 | Viewed by 1925
Abstract
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their [...] Read more.
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their application in large, complex marine structures remains underexplored, particularly in terms of joining methods. Existing techniques, such as ultrasonic welding, laser welding, and friction stir welding, are unsuitable for large-scale HDPE components, where extrusion welding is more viable. This study focuses on evaluating the impact of key process parameters, such as the preheating temperature, hot air movement speed, and nozzle distance, on the welding performance of HDPE. By analyzing the influence of these variables on heat distribution during the extrusion welding process, we aim to conduct basic research to derive optimal conditions for achieving strong and reliable joints. The results highlight the critical importance of a uniform temperature distribution in preventing defects such as excessive melting or thermal degradation, which could compromise weld integrity. This research provides valuable insights into improving HDPE joining techniques, contributing to its broader adoption in the marine and manufacturing industries. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

25 pages, 5707 KB  
Article
Comparative Performance of Kevlar, Glass and Basalt Epoxy- and Elium-Based Composites under Static-, Low- and High-Velocity Loading Scenarios—Introduction to an Effective Recyclable and Eco-Friendly Composite
by Farid Taheri and Jesse R. J. G. Llanos
Polymers 2024, 16(11), 1494; https://doi.org/10.3390/polym16111494 - 24 May 2024
Cited by 12 | Viewed by 2407
Abstract
In general, the majority of fiber-reinforced polymer composites (FRPs) used in structural applications comprise carbon, glass, and aramid fibers reinforced with epoxy resin, with the occasional utilization of polyester and vinyl ester resins. This study aims to assess the feasibility of utilizing recyclable [...] Read more.
In general, the majority of fiber-reinforced polymer composites (FRPs) used in structural applications comprise carbon, glass, and aramid fibers reinforced with epoxy resin, with the occasional utilization of polyester and vinyl ester resins. This study aims to assess the feasibility of utilizing recyclable and sustainable materials to create a resilient composite suitable for structural applications, particularly in scenarios involving low-velocity and high-velocity impact (LVI, HVI) loading. The paper presents a comparative analysis of the performance of E-glass, aramid, and eco-friendly basalt-reinforcing fabrics as reinforcement fibers in both thermosetting (epoxy) and recyclable thermoplastic (Elium©) resins. Given the limited research on Elium composites, especially those incorporating basalt-reinforcing fiber, there is an urgent need to expand the databases of fundamental mechanical properties for these diverse composites. This necessity is exacerbated by the scarcity of the literature regarding their performance under low- and high-velocity impact loadings. The results of this study will demonstrate the potential of basalt-reinforced Elium composite as an effective recyclable and environmentally friendly structural material system for both static and dynamic loading conditions. Full article
(This article belongs to the Special Issue Epoxy Thermoset Polymer Composites)
Show Figures

Figure 1

22 pages, 4349 KB  
Article
Study on the Influence of Runner and Overflow Area Design on Flow–Fiber Coupling in a Multi-Cavity System
by Fang-Lin Hsieh, Chuan-Tsen Chen, Shyh-Shin Hwang, Sheng-Jye Hwang, Po-Wei Huang, Hsin-Shu Peng, Ming-Yuan Jien and Chao-Tsai Huang
Polymers 2024, 16(9), 1279; https://doi.org/10.3390/polym16091279 - 2 May 2024
Cited by 2 | Viewed by 2462
Abstract
Fiber-reinforced composites (FRPs) are characterized by their lightweight nature and superior mechanical characteristics, rendering them extensively utilized across various sectors such as aerospace and automotive industries. Nevertheless, the precise mechanisms governing the interaction between the fibers present in FRPs and the polymer melt [...] Read more.
Fiber-reinforced composites (FRPs) are characterized by their lightweight nature and superior mechanical characteristics, rendering them extensively utilized across various sectors such as aerospace and automotive industries. Nevertheless, the precise mechanisms governing the interaction between the fibers present in FRPs and the polymer melt during industrial processing, particularly the manipulation of the flow–fiber coupling effect, remain incompletely elucidated. Hence, this study introduces a geometrically symmetrical 1 × 4 multi-cavity mold system, where each cavity conforms to the ASTM D638 Type V standard specimen. The research utilizes theoretical simulation analysis and experimental validation to investigate the influence of runner and overflow design on the flow–fiber coupling effect. The findings indicate that the polymer melt, directed by a geometrically symmetrical runner, results in consistent fiber orientation within each mold cavity. Furthermore, in the context of simulation analysis, the inclusion of the flow–fiber coupling effect within the system results in elevated sprue pressure levels and an expanded core layer region in comparison to systems lacking this coupling effect. This observation aligns well with the existing literature on the subject. Moreover, analysis of fiber orientation in different flow field areas reveals that the addition of an overflow area alters the flow field, leading to a significant delay in the flow–fiber coupling effect. To demonstrate the impact of overflow area design on the flow–fiber effect, the integration of fiber orientation distribution analysis highlights a transformation in fiber arrangement from the flow direction to cross-flow and thickness directions near the end-of-fill region in the injected part. Additionally, examination of the geometric dimensions of the injected part reveals asymmetrical geometric shrinkage between upstream and downstream areas in the end-of-fill region, consistent with microscopic fiber orientation changes influenced by the delayed flow–fiber coupling effect guided by the overflow area. In brief, the introduction of the overflow area extends the duration in which the polymer melt exerts control in the flow direction, consequently prolonging the period in which the fiber orientation governs in the flow direction (A11). This leads to the impact of fiber orientation on the flow of the polymer melt, with the flow reciprocally affecting the fibers. Subsequently, the interaction between these two elements persists until a state of equilibrium is achieved, known as the flow–fiber coupling effect, which is delayed. Full article
(This article belongs to the Special Issue Rheology of Polymers and Polymer Composites)
Show Figures

Graphical abstract

13 pages, 5594 KB  
Article
Investigation of Metal Wire Mesh as Support Material for Dieless Forming of Woven Reinforcement Textiles
by Jan-Erik Rath and Thorsten Schüppstuhl
J. Manuf. Mater. Process. 2023, 7(5), 182; https://doi.org/10.3390/jmmp7050182 - 11 Oct 2023
Cited by 1 | Viewed by 2899
Abstract
Within the rapidly growing market for fiber-reinforced plastics (FRPs), conventional production processes involving molds are not cost-efficient for prototype and small series production. Therefore, new flexible forming techniques are increasingly being researched, many of which have been inspired by incremental sheet metal forming [...] Read more.
Within the rapidly growing market for fiber-reinforced plastics (FRPs), conventional production processes involving molds are not cost-efficient for prototype and small series production. Therefore, new flexible forming techniques are increasingly being researched, many of which have been inspired by incremental sheet metal forming (ISF). Due to the different deformation mechanisms of woven reinforcement fibers and metal sheets, ISF is not directly applicable to FRP. Instead, shear and bending of the fibers need to be realized. Therefore, a new dieless forming process for the production of FRP supported by metal wire mesh as an auxiliary material is proposed. Two standard tools, such as hemispherical punches, are used to locally bend a reversible layup of metal wire mesh and woven reinforcement fiber fabric enclosed in a vacuum bag. Therefore, the mesh aids in introducing shear into the material due to its ability to transmit compressive in-plane forces, and it ensures that the otherwise flexible fabric maintains the intended deformation until the part is cured or solidified. Basic experiments are conducted using thermoset prepreg, woven commingled yarn fabric, and thermoplastic organo sheets, proving the feasibility of the approach. Full article
Show Figures

Figure 1

14 pages, 1645 KB  
Article
Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets
by Maximilian Lang, Benedikt Neitzel, Shiva MohammadKarimi and Florian Puch
Polymers 2023, 15(18), 3830; https://doi.org/10.3390/polym15183830 - 20 Sep 2023
Cited by 3 | Viewed by 1964
Abstract
The use of bio-based and biodegradable matrix materials in fiber-reinforced polymers (FRPs) is an approach to reduce the consumption of fossil resources and the amount of polymer waste. This study aims to assess the influence of the process parameters on the resulting mechanical [...] Read more.
The use of bio-based and biodegradable matrix materials in fiber-reinforced polymers (FRPs) is an approach to reduce the consumption of fossil resources and the amount of polymer waste. This study aims to assess the influence of the process parameters on the resulting mechanical properties of extruded bio-based and biodegradable continuous fiber-reinforced thermoplastics (CFRTPs) in the form of sheets. Therefore, the impregnation temperature during the production of PLA/flax fiber composites is varied between 220 °C and 280 °C, and the consolidation pressure, between 50 bar and 90 bar. A design of experiments approach is used. Fiber contents of 28.8% to 34.8% and void contents of 6.8% to 15.5% are determined for the composites by optical measurements. To assess the mechanical properties, tensile tests are performed. Using the evaluation software Minitab, a strong negative influence of the consolidation pressure on the tensile modulus and the tensile strength is observed. Increasing the pressure from 50 bar to 90 bar results in a reduction in the tensile modulus of 50.7% and a reduction in the tensile strength of 54.8%, respectively. It is assumed that this is due to fibers being damaged by the external force exerted onto the materials during the consolidation process in the calender. The influence of the impregnation temperature on the mechanical properties cannot be verified. Full article
Show Figures

Figure 1

17 pages, 6368 KB  
Article
Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA
by Khairul Izwan Ismail, Rayson Pang, Rehan Ahmed and Tze Chuen Yap
Polymers 2023, 15(16), 3436; https://doi.org/10.3390/polym15163436 - 17 Aug 2023
Cited by 29 | Viewed by 5074
Abstract
A 3D printed composite via the fused filament fabrication (FFF) technique has potential to enhance the mechanical properties of FFF 3D printed parts. The most commonly employed techniques for 3D composite printing (method 1) utilized premixed composite filaments, where the fibers were integrated [...] Read more.
A 3D printed composite via the fused filament fabrication (FFF) technique has potential to enhance the mechanical properties of FFF 3D printed parts. The most commonly employed techniques for 3D composite printing (method 1) utilized premixed composite filaments, where the fibers were integrated into thermoplastic materials prior to printing. In the second method (method 2), short fibers and thermoplastic were mixed together within the extruder of a 3D printer to form a composite part. However, no research has been conducted on method 3, which involves embedding short fibers into the printed object during the actual printing process. A novel approach concerning 3D printing in situ fiber-reinforced polymer (FRP) by embedding glass fibers between deposited layers during printing was proposed recently. An experimental investigation has been undertaken to evaluate the tensile behavior of the composites manufactured by the new manufacturing method. Neat polylactic acid (PLA) and three different glass fiber-reinforced polylactic acid (GFPLA) composites with 1.02%, 2.39%, and 4.98% glass fiber contents, respectively, were 3Dprinted. Tensile tests were conducted with five repetitions for each sample. The fracture surfaces of the samples were then observed under scanning electron microscopy (SEM). In addition, the porosities of the 3D printed samples were measured with a image processing software (ImageJ 1.53t). The result shows that the tensile strengths of GFPLA were higher than the neat PLA. The tensile strength of the composites increased from GFPLA-1 (with a 1.02% glass fiber content) to GFPLA-2.4 (with a 2.39% glass fiber content), but drastically dropped at GFPLA-5 (with a 4.98% glass fiber content). However, the tensile strength of GFPLA-5 is still higher than the neat PLA. The fracture surfaces of tensile samples were observed under scanning electron microscopy (SEM). The SEM images showed the average line width of the deposited material increased as glass fiber content increased, while layer height was maintained. The intralayer bond of the deposited filaments improved via the new fiber embedding method. Hence, the porosity area is reduced as glass fiber content increased. Full article
(This article belongs to the Special Issue Advanced Additive Processes and 3D Printing for Polymer Composites)
Show Figures

Figure 1

21 pages, 9470 KB  
Article
Processing Strategies for Dieless Forming of Fiber-Reinforced Plastic Composites
by Jan-Erik Rath, Robert Graupner and Thorsten Schüppstuhl
Machines 2023, 11(3), 365; https://doi.org/10.3390/machines11030365 - 8 Mar 2023
Cited by 4 | Viewed by 2641
Abstract
The demand for lightweight materials, such as fiber-reinforced plastics (FRP), is constantly growing. However, current FRP production mostly relies on expensive molds representing the final part geometry, which is not economical for prototyping or highly individualized products, such as in the medical or [...] Read more.
The demand for lightweight materials, such as fiber-reinforced plastics (FRP), is constantly growing. However, current FRP production mostly relies on expensive molds representing the final part geometry, which is not economical for prototyping or highly individualized products, such as in the medical or sporting goods sector. Therefore, inspired by incremental sheet metal forming, we conduct a systematic functional analysis on new processing methods for shaping woven FRP without the use of molds. Considering different material combinations, such as dry fabric with thermoset resin, thermoset prepreg, thermoplastic commingled yarn weave and organo sheets, we propose potential technical implementations of novel dieless forming techniques, making use of simple robot-guided standard tools, such as hemispherical tool tips or rollers. Feasibility of selected approaches is investigated in basic practical experiments with handheld tools. Results show that the main challenge of dieless local forming, the conservation of already formed shapes while allowing drapability of remaining areas, is best fulfilled by local impregnation, consolidation and solidification of commingled yarn fabric, as well as concurrent forming of prepreg and metal wire mesh support material. Further research is proposed to improve part quality. Full article
Show Figures

Figure 1

Back to TopTop