Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = fire-extinguishing efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 297 KB  
Review
Advances and Environmental Impact Assessment of Forest Fire Extinguishing Agents
by Jiaqi Gao, Lixuan Wang, Weilong Zhang, Jibin Ning, Weike Li, Tongxin Hu and Guang Yang
Fire 2025, 8(11), 411; https://doi.org/10.3390/fire8110411 - 23 Oct 2025
Viewed by 968
Abstract
In the context of climate change, increasingly severe forest fires present a significant threat to lives, property, ecosystem functionality, and the sustainable development of forest resources. As a result, there is an urgent need for rapid, efficient, and environmentally friendly technologies for fire [...] Read more.
In the context of climate change, increasingly severe forest fires present a significant threat to lives, property, ecosystem functionality, and the sustainable development of forest resources. As a result, there is an urgent need for rapid, efficient, and environmentally friendly technologies for fire suppression and containment. This paper begins by reviewing the current research on forest fire extinguishing agents and materials that hold promise for effective fire suppression. Among these agents, gaseous and foam extinguishing materials exhibit drawbacks such as low efficiency or significant environmental hazards. In contrast, natural polymer hydrogels, which are high in water content, environmentally friendly, and biodegradable, show significant potential for developing clean and efficient extinguishing materials. Furthermore, this paper discusses existing environmental assessment standards for fire extinguishing agents, as well as the assessment systems proposed in various studies. It finds that, while universal assessment standards are fairly well-established, current research primarily focuses on enhancing fire suppression performance. However, the environmental performance assessment of forest fire extinguishing agents—often used in large quantities—remains inadequate. Therefore, there is an urgent need to establish a comprehensive and systematic environmental assessment system to address this theoretical and practical gap. Full article
(This article belongs to the Special Issue Fire Extinguishing Agent and Application)
Show Figures

Graphical abstract

17 pages, 3284 KB  
Article
Research on Temperature Distribution of Cable Fire in Utility Tunnel and Fire Extinguishing Efficiency of High-Pressure Water Mist Fire Extinguishing System
by Kun Xiang, Peng Du, Hongrun Liu, Yaojia Fu and Taoran Li
Fire 2025, 8(10), 404; https://doi.org/10.3390/fire8100404 - 17 Oct 2025
Viewed by 778
Abstract
Utility tunnels concentrate various important urban engineering pipelines within a shared underground space, which poses significant fire risks, particularly from cable fires. In this study, a full-scale fire experiment was conducted to investigate the temperature distribution characteristics of cable fires in utility tunnels, [...] Read more.
Utility tunnels concentrate various important urban engineering pipelines within a shared underground space, which poses significant fire risks, particularly from cable fires. In this study, a full-scale fire experiment was conducted to investigate the temperature distribution characteristics of cable fires in utility tunnels, along with the effects of spray intensity, cable fullness, and longitudinal ventilation on the extinguishing efficiency of a high-pressure water mist fire extinguishing system (HWMFES). The results show that the maximum heating area of a cable fire in a utility tunnel is localized to the three cable trays nearest to and directly above the fire source, with a peak temperature of 825 °C, while the impact on other areas is negligible. Increasing the spray intensity from 0.7 to 1.0 L/(min·m2) reduced the time required to lower temperatures to 50 °C by 40.8%, while reducing cable fullness from 12 to 6 cables per tray shortened extinguishing time by 22.5%. Additionally, applying a ventilation speed of 2 m/s enhanced cooling efficiency, reducing the time to reach 50 °C by 67.5% compared to still air conditions. These findings provide practical insights and data support for optimizing the design and application of HWMFES in enhancing fire safety in utility tunnels. Full article
(This article belongs to the Special Issue Confined Space Fire Safety and Alternative Fuel Fire Safety)
Show Figures

Figure 1

23 pages, 4767 KB  
Article
Preparation and Characterization of a High-Performance Foam Extinguishing Agent with Sulfobetaine and Polyoxyethylene Ether for Solid Fires
by Huizhong Ma, Liang Cheng, Lan Zhang, Liyang Ma, Jia Deng, Ao Zhao, Xin Jiang and Fei Wang
Polymers 2025, 17(19), 2579; https://doi.org/10.3390/polym17192579 - 24 Sep 2025
Viewed by 491
Abstract
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires [...] Read more.
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires by focusing on both wettability and adhesion. First, the influence of chemical functional groups on foam wettability and adhesion was elucidated, and the contributions of individual components to foam properties were experimentally investigated. Second, adhesion and wettability tests revealed a negative correlation between these two properties, consistent with variations in foam solution viscosity and wetting time. Third, a novel adhesion evaluation method was proposed, defined as the time required for foam to flow a fixed distance on inclined wooden surfaces; longer flow times indicated stronger adhesion. Fourth, foaming and fire suppression experiments confirmed the practical performance of the optimized formulations. A composition containing 8 wt% Polyoxyethylene ether and 5 wt% Sulfobetaine yielded a wetting-type foam suitable for rapid cooling, whereas 8 wt% Polyoxyethylene ether combined with 9 wt% Sulfobetaine produced an adhesive-type foam capable of persistent attachment to combustibles. Microscopic observations further demonstrated that foams with superior extinguishing performance developed dense lamellae. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 2057 KB  
Article
Numerical Simulation on Effect of Pulsed Water Mist on Temperature and Thermal Radiation in Long and Narrow Underground Space During Fire
by Yanli Deng, Beifang Gu, Ruiqing Zhang, Lielie Li and Lihua Niu
Fire 2025, 8(9), 350; https://doi.org/10.3390/fire8090350 - 3 Sep 2025
Viewed by 903
Abstract
This study numerically investigated how varying pulse durations of water mist systems influence fire dynamics in long, narrow underground enclosures. A Fire Dynamics Simulator (FDS) model was built to represent a pulse-actuated, fine water mist test rig, and simulations of oil pan fires [...] Read more.
This study numerically investigated how varying pulse durations of water mist systems influence fire dynamics in long, narrow underground enclosures. A Fire Dynamics Simulator (FDS) model was built to represent a pulse-actuated, fine water mist test rig, and simulations of oil pan fires were performed to quantify the evolution of temperature and radiative heat flux. Results show that an 8 s spray followed by an 8 s pause yields the most effective suppression cycle. When spray and pause durations are equal, periodic momentum exchange resonates with the buoyant plume, intensifying the mixing of gas and enhancing cooling near the fire seat. Compared with continuous discharge, pulsed mist generates stronger buoyancy-driven disturbances and delivers superior performance in terms of local heat’s extraction and extinguishment. This study has, for the first time, determined the optimal pulse cycle (8 s spray/8 s stop) for oil pool fires in narrow and long underground spaces through FDS simulation, and revealed the enhancement effect of the gas disturbance resonance mechanism on fire suppression efficiency. Full article
Show Figures

Figure 1

19 pages, 3958 KB  
Article
Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries
by Zujin Bai, Pei Zhang, Furu Kang, Zeyang Song and Yang Xiao
Polymers 2025, 17(17), 2374; https://doi.org/10.3390/polym17172374 - 31 Aug 2025
Viewed by 1222
Abstract
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses [...] Read more.
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses both rapid fire suppression and efficient cooling capabilities, thereby effectively mitigating the occurrence and propagation of fires in LIBs. This study pioneers the development of an adaptive thermosensitive microcapsule (TM) fire extinguishing agent synthesized via in situ polymerization. The TM encapsulates a ternary composite core—perfluorohexanone (C6F12O), heptafluorocyclopentane (C5H3F7), and 2-bromo-3,3,3-trifluoropropene (2-BTP)—within a melamine–urea–formaldehyde (MUF) resin shell. The TM was prepared via in situ polymerization, combined with FE-SEM, FTIR, TG–DSC, and laser particle size analysis to verify that the TM had a uniform particle size and complete coating structure. The results demonstrate that the TM can effectively suppress the thermal runaway (TR) of LIBs through the synergistic effects of physical cooling, chemical suppression, and gas isolation. Specifically, the peak TR temperature of a single-cell LIB is reduced by 14.0 °C, and the heating rate is decreased by 0.17 °C/s. Additionally, TM successfully blocked the propagation of TR thereby preventing its spread in the dual-LIB module test. Limitations of single-component agents are overcome by this innovative system by leveraging the ternary core’s complementary functionalities, enabling autonomous TR suppression without external systems. Furthermore, the TM design integrates precise thermal responsiveness, environmental friendliness, and cost-effectiveness, offering a transformative safety solution for next-generation LIBs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 2834 KB  
Article
Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing
by Wenqi Song, Qing He, Qingyu Tan and Guorui Zhu
Fire 2025, 8(8), 327; https://doi.org/10.3390/fire8080327 - 15 Aug 2025
Viewed by 983
Abstract
This study proposes an equivalent furniture fire model based on standard combustible assembly and verifies its feasibility as a substitute for real furniture through full-scale experiments and numerical simulations. Experiments show that the peak heat release rate and total heat release of the [...] Read more.
This study proposes an equivalent furniture fire model based on standard combustible assembly and verifies its feasibility as a substitute for real furniture through full-scale experiments and numerical simulations. Experiments show that the peak heat release rate and total heat release of the standard combustible assembly are highly consistent with those of the single-seat sofa. The numerical model has been verified by experimental data. The dynamic characteristics of the heat release rate (HRR) curve are consistent with the temperature evolution process, confirming its reliability for the numerical model. The research on optimizing fire extinguishing parameters is carried out based on this numerical simulation. The results show that the response time of the horizontal sprinkler is 22 s shorter than that of the vertical sprinkler, and the fire extinguishing efficiency is improved. Reducing the sprinkler height to 3 m can accelerate activation and reduce CO2 release. A flow rate of 91.4 L/min can effectively control the fire, but when it exceeds 150 L/min, the fire extinguishing efficiency is significantly reduced. The low response time index sprinkler starts up 88 s faster than the standard type, significantly enhancing the initial fire suppression capability. This scheme provides a safe, economical, and repeatable standardized combustible assembly for fire training and offers theoretical support for the parameter design of intelligent fire extinguishing systems. Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 2nd Edition)
Show Figures

Figure 1

36 pages, 13501 KB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Viewed by 2417
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

25 pages, 3590 KB  
Article
Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness
by Jan Hora
Fire 2025, 8(8), 304; https://doi.org/10.3390/fire8080304 - 1 Aug 2025
Viewed by 1264
Abstract
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A [...] Read more.
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A with stress-based training and Team B with standard training) under realistic conditions. Using 58 thermocouples and 4 radiometers, temperature distribution and radiant heat flux were measured to evaluate water distribution efficiency and cooling performance during interventions. Team A consistently achieved temperature reductions of approximately 320 °C in the upper layers and 250–400 °C in the middle layers, maintaining stable conditions, whereas Team B only achieved partial cooling, with upper-layer temperatures remaining at 750–800 °C. Additionally, Team A recorded lower radiant heat flux densities (e.g., 20.74 kW/m2 at 0°) compared to Team B (21.81 kW/m2), indicating more effective water application and adaptability. The findings confirm that stress-based training enhances firefighters’ operational readiness and their ability to distribute water effectively during interventions. This skill is essential for safer and effective management of indoor fires under extreme conditions. This study supports the inclusion of stress-based and scenario-based training in firefighter education to enhance safety and operational performance. Full article
Show Figures

Figure 1

32 pages, 2698 KB  
Article
Design and Validation of an Edge-AI Fire Safety System with SmartThings Integration for Accelerated Detection and Targeted Suppression
by Seung-Jun Lee, Hong-Sik Yun, Yang-Bae Sim and Sang-Hoon Lee
Appl. Sci. 2025, 15(14), 8118; https://doi.org/10.3390/app15148118 - 21 Jul 2025
Cited by 1 | Viewed by 2496
Abstract
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor [...] Read more.
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor array for early fire recognition, motorized ventilation units for rapid smoke extraction, and a 360° directional nozzle for targeted agent discharge using a residue-free clean extinguishing agent. Experimental trials demonstrated an average fire detection time of 5.8 s and complete flame suppression within 13.2 s, with 90% smoke clearance achieved in under 95 s. No false positives were recorded during non-fire simulations, and the system remained fully functional under simulated cloud communication failure, confirming its edge-resilient architecture. A probabilistic risk analysis based on ISO 31000 and NFPA 551 frameworks showed risk reductions of 75.6% in life safety, 58.0% in property damage, and 67.1% in business disruption. The system achieved a composite risk reduction of approximately 73%, shifting the operational risk level into the ALARP region. These findings demonstrate the system’s capacity to provide proactive, energy-efficient, and spatially targeted fire response suitable for high-value infrastructure. The modular design and SmartThings Edge integration further support scalable deployment and real-time system intelligence, establishing a strong foundation for future adaptive fire protection frameworks. Full article
Show Figures

Figure 1

18 pages, 1028 KB  
Article
Cooperative Drone and Water Supply Truck Scheduling for Wildfire Fighting Using Deep Reinforcement Learning
by Lin-Yuan Bai, Xin-Ya Chen, Hai-Feng Ling and Yu-Jun Zheng
Drones 2025, 9(7), 464; https://doi.org/10.3390/drones9070464 - 30 Jun 2025
Viewed by 1136
Abstract
Wildfires often spread rapidly and cause significant casualties and economic losses. Firefighting drones carrying water capsules provide an efficient way for wildfire extinguishing, but their operational capabilities are limited by their payloads. This weakness can be compensated by using ground vehicles to provide [...] Read more.
Wildfires often spread rapidly and cause significant casualties and economic losses. Firefighting drones carrying water capsules provide an efficient way for wildfire extinguishing, but their operational capabilities are limited by their payloads. This weakness can be compensated by using ground vehicles to provide mobile water supply. To this end, this paper presents an optimization problem of scheduling multiple drones and water supply trucks for wildfire fighting, which allocates burning subareas to drones, routes drones to perform fire-extinguishing operations in burning subareas and reload water between every two consecutive operations, and routes trucks to provide timely water supply for drones. To solve the problem within the limited emergency response time, we propose a deep reinforcement learning method, which consists of an encoder for embedding the input instance features and a decoder for generating a solution by iteratively predicting the subarea selection decision through attention. Computational results on test instances constructed upon real-world wilderness areas demonstrate the performance advantages of the proposed method over a collection of heuristic and metaheuristic optimization methods. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

15 pages, 3688 KB  
Article
External Barrier and Internal Attack: Synergistic Effect of Microcapsule Fire Extinguishing Agent and Fine Water Mist on Suppressing Lithium-Ion Battery Fire
by Xiangjian Wang, Zhanwen He, Jianjun Gao, Yibo Guo, Haijun Zhang and Mingchao Wang
Materials 2025, 18(13), 3082; https://doi.org/10.3390/ma18133082 - 29 Jun 2025
Cited by 2 | Viewed by 926
Abstract
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature [...] Read more.
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature environment, the escaping gas can cause a jet fire containing high-temperature substances. Effectively controlling the internal temperature of the jet fire, especially rapidly cooling the core area of the flame during the jet process, is important to prevent the spread of lithium-ion battery fires. Therefore, this work proposes a strategy of a synergistic effect using microcapsule fire extinguishing agents and fine water mist to achieve an external barrier and an internal attack. The microcapsule fire extinguishing agents are prepared by using melamine–urea–formaldehyde resin as the shell and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (C5H3F9O) and 1,1,2,2,3,3,4-heptafluorocyclopentane (C5H3F7) as the composite core. During the process of lithium-ion battery thermal runaway, the microcapsule fire extinguishing agents can enter the inner area of the jet fire under the protection of the fine water mist. The microcapsule shell ruptures at 100 °C, releasing the highly effective composite fire suppressant core inside the jet fire. The fine water mist significantly blocks the transfer of thermal radiation, inhibiting the spread of the fire. Compared to the suppression with fine water mist only, the time required to reduce the battery temperature from the peak value to a low temperature is reduced by 66 s and the peak temperature of the high-temperature substances above the battery is reduced by 228.2 °C. The propagation of the thermal runaway is suppressed, and no thermal runaway of other batteries around the faulty unit will occur. This synergistic suppression strategy of fine water mist and microcapsule fire extinguishing agent (FWM@M) effectively reduces the adverse effects of jet fires on the propagation of thermal runaway (TR) of lithium-ion batteries, providing a new solution for efficiently extinguishing lithium-ion battery fires. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 4016 KB  
Article
Green Fabrication of Phosphorus-Containing Chitosan Derivatives via One-Step Protonation for Multifunctional Flame-Retardant, Anti-Dripping, and Antibacterial Coatings on Polyester Fabrics
by Zhen-Guo Zhao, Yuan-Yuan Huang, Xin-Yu Tian and Yan-Peng Ni
Polymers 2025, 17(11), 1531; https://doi.org/10.3390/polym17111531 - 30 May 2025
Cited by 1 | Viewed by 788
Abstract
With the increasing urgency of petroleum resource scarcity and environmental challenges, the development of degradable bio-based flame retardants has become crucial for enhancing the fire safety of organic materials. In this work, a phosphorus-containing chitosan derivative (CS-PPOA) was synthesized via a one-step protonation [...] Read more.
With the increasing urgency of petroleum resource scarcity and environmental challenges, the development of degradable bio-based flame retardants has become crucial for enhancing the fire safety of organic materials. In this work, a phosphorus-containing chitosan derivative (CS-PPOA) was synthesized via a one-step protonation reaction between chitosan (CS) and phenylphosphinic acid (PPOA) under mild conditions. The resulting multifunctional flame-retardant coating was applied to polyester (PET) fabrics. Comprehensive characterization using FT-IR, XPS, and NMR confirmed the successful protonation of chitosan amino groups through electrostatic interactions, forming a stable ionic complex. The CS-PPOA solution exhibited excellent rheological properties and film-forming ability, producing films with over 80% optical transmittance and flexibility. Thermogravimetric analysis (TGA) revealed that CS-PPOA achieved char residue yields of 76.8% and 40.2% under nitrogen and air atmospheres, respectively, significantly surpassing those of acetic acid-protonated chitosan (CS-HAc). The limiting oxygen index (LOI) of CS-PPOA increased to 48.3%, and vertical burning tests demonstrated rapid self-extinguishing behavior. When applied to PET fabrics at a 15% loading, the LOI value improved from 20.3% (untreated fabric) to 27.8%, forming a dense char layer during combustion while completely suppressing melt dripping. Additionally, the coated fabric exhibited broad-spectrum antibacterial activity, achieving a 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus. This study provides a novel strategy for the green and efficient preparation of multifunctional bio-based flame-retardant coatings. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

25 pages, 10258 KB  
Article
Full-Scale Experimental Investigation of Temperature Distribution and Smoke Flow in a Road Tunnel with a Novel Water Mist Fire Fighting System
by Shouzhong Feng, Deyuan Kan and Chao Guo
Fire 2025, 8(6), 216; https://doi.org/10.3390/fire8060216 - 28 May 2025
Viewed by 1318
Abstract
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in [...] Read more.
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in fire behavior and heat release rate were examined to evaluate the effectiveness of the water mist system in extinguishing fires. Additionally, the spatiotemporal changes in ceiling temperature were monitored to assess the cooling and protective effects of the water mist. The thermal insulation capability of the system was also investigated by detecting the temperature distribution inside the tunnel. Moreover, the smoke conditions upstream and downstream of the tunnel were analyzed to evaluate the smoke-blocking performance of the water mist system. The findings demonstrate that the water mist fire fighting system is highly efficient in attenuating the fire and restricting its progression. Within the water mist spray section, the average ceiling temperature decreased exponentially during both the initial and steady burning phases across all tested fire scenarios. Nonetheless, the smoke-carrying capacity of the water mist spray is limited. Fortunately, the dispersed smoke was diluted by water mist, markedly enhancing visibility and mitigating the impact of smoke on tunnel illumination. Full article
Show Figures

Figure 1

22 pages, 10463 KB  
Article
The Effect of Toxicity, Physical and Thermal Properties of Fire Blanket Made of Glass Fiber on Its Quality as Small Fire Suppression Tool
by Mohamed A. Hassan, Mohamed M. AlSofian, Ahmed Al Zharani, Mohammed R. AlOtaibi, Sami Al Saeed and Naif Al Anazi
Fire 2025, 8(5), 191; https://doi.org/10.3390/fire8050191 - 9 May 2025
Viewed by 1230
Abstract
The use of fiberglass blankets as fire suppression blankets to extinguish accidental cooking fires has been regulated and widely used, especially in homes and small firms and laboratories. Understanding the properties, which have significant effect on their performance, is essential for ensuring effective [...] Read more.
The use of fiberglass blankets as fire suppression blankets to extinguish accidental cooking fires has been regulated and widely used, especially in homes and small firms and laboratories. Understanding the properties, which have significant effect on their performance, is essential for ensuring effective fire control and improving the quality of these blankets in fire suppression. This study examines key properties including toxicity, physical characteristics, thermal behavior, and fire suppression capabilities. Novel properties such as air permeability and spectroscopic structural analysis are explored, areas previously under-researched. The sample number S4 had Warp/weft count 21/12 with comparison to air permeability; it gave the lowest value among the selected samples. Thermal properties, including heat transfer and temperature dynamics, are also analyzed to understand how fire spreads through the material. The optimal performance of air permeability was observed to be below 650 L/m2/s. Blankets demonstrated over 45% heat blocking efficiency at low heat flux and more than 78% at high heat flux. Temperature rise within the first minute of fire exposure is a key determinant, with effective blankets maintaining temperatures below 300 °C after one minute and ensuring that the final temperature after three minutes does not exceed 390–400 °C. Additionally, a new classification system based on the toxicity of gases emitted during combustion was introduced, enhancing the safety profile of fiberglass blankets and improving their suitability for practical use. This research contributes valuable insights into both the performance and safety of fiberglass fire blankets Full article
Show Figures

Figure 1

23 pages, 6824 KB  
Article
Study on the Influence of Expansion Ratio on the Effectiveness of Foam in Suppressing Forest Surface Fires
by Haiyan Wang, Junzhao Zhang, Hongbin Zhong and Lei Chen
Fire 2025, 8(5), 171; https://doi.org/10.3390/fire8050171 - 28 Apr 2025
Cited by 1 | Viewed by 1537
Abstract
Firefighting foam is widely recognized for its excellent fire suppression performance. However, research on the effect of foam expansion ratio on the suppression efficiency of forest surface fires remains limited. In this study, the expansion ratio was adjusted by varying the air-to-liquid ratio [...] Read more.
Firefighting foam is widely recognized for its excellent fire suppression performance. However, research on the effect of foam expansion ratio on the suppression efficiency of forest surface fires remains limited. In this study, the expansion ratio was adjusted by varying the air-to-liquid ratio in a compressed air foam system, and laboratory-scale foam suppression experiments were conducted. Key performance indicators, including extinguishing coverage time, internal cooling rate, and resistance to reignition, were systematically measured. The effects of expansion ratio on the diffusion and penetration behavior of foam on the fuel bed surface were then investigated to understand how these characteristics influence suppression performance. The results indicate that both excessively low and high expansion ratios can weaken fire suppression effectiveness. Low-expansion foam, characterized by low viscosity and high water content, exhibits strong local penetration and cooling capabilities. However, it struggles to rapidly cover the fuel bed surface and isolate oxygen, thereby reducing the overall suppression efficiency. In contrast, high-expansion foam has greater viscosity, allowing it to spread across the fuel bed surface under pressure gradient forces and form a stable coverage layer, effectively limiting the oxygen supply required for combustion. However, its limited depth penetration and lower water content reduce internal cooling efficiency, increasing the risk of reignition. The optimal expansion ratio was determined to be 15.1. Additionally, increasing the liquid supply flow rate significantly improved suppression performance; however, this improvement plateaued when the flow rate exceeded 10 L/min. Full article
(This article belongs to the Special Issue Firefighting Approaches and Extreme Wildfires)
Show Figures

Figure 1

Back to TopTop