Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,460)

Search Parameters:
Keywords = food industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 1127 KB  
Review
Exploring Cyclodextrin Complexes of Lipophilic Antioxidants: Benefits and Challenges in Nutraceutical Development
by Mario Jug, Kristina Radić, Laura Nižić Nodilo, Emerik Galić, Tea Petković, Marina Jurić, Nikolina Golub, Ivanka Jerić and Dubravka Vitali Čepo
Int. J. Mol. Sci. 2025, 26(23), 11682; https://doi.org/10.3390/ijms262311682 - 2 Dec 2025
Abstract
Antioxidants are essential bioactive compounds widely recognized for their health benefits in preventing oxidative stress-related diseases. However, many lipophilic antioxidants suffer from poor aqueous solubility, low chemical stability, and limited bioavailability, restricting their application in food, nutraceutical, and pharmaceutical industries. Cyclodextrins (CDs), a [...] Read more.
Antioxidants are essential bioactive compounds widely recognized for their health benefits in preventing oxidative stress-related diseases. However, many lipophilic antioxidants suffer from poor aqueous solubility, low chemical stability, and limited bioavailability, restricting their application in food, nutraceutical, and pharmaceutical industries. Cyclodextrins (CDs), a class of cyclic oligosaccharides with a hydrophilic exterior and lipophilic interior, present an effective strategy to encapsulate and deliver these compounds by improving their solubility, stability, and therapeutic efficacy. This review critically examines the structural features and derivatives of cyclodextrins relevant for antioxidant encapsulation, mechanisms and thermodynamics of inclusion complex formation, and advanced characterization techniques. It evaluates the influence of CD encapsulation on the oral bioavailability and antioxidant activity of various lipophilic antioxidants supported by recent in vitro and in vivo studies. Moreover, sustainable preparation methods for CD complexes are discussed alongside safety and regulatory considerations. The comprehensive synthesis of current knowledge contributes to guiding the rational design and development of CD-based antioxidant nutraceuticals, addressing formulation challenges while promoting efficacy and consumer safety. Full article
(This article belongs to the Special Issue Research on Cyclodextrin: Properties and Biomedical Applications)
24 pages, 1549 KB  
Review
From Nature to Science: A Review of the Applications of Pectin-Based Hydrogels
by Karla Nohemi Rubio-Martin del Campo, María Fernanda Rivas-Gastelum, Luis Eduardo Garcia-Amezquita, Maricruz Sepulveda-Villegas, Edgar R. López-Mena, Jorge L. Mejía-Méndez and Angélica Lizeth Sánchez-López
Macromol 2025, 5(4), 58; https://doi.org/10.3390/macromol5040058 (registering DOI) - 2 Dec 2025
Abstract
Pectin is widely used in different areas like biomedical, pharmaceutical, food, and environmental industries thanks to its gelling properties. Pectin hydrogels are of great interest because of their wide biomedical applications in drug delivery, tissue engineering, wound healing, the food industry, agriculture, and [...] Read more.
Pectin is widely used in different areas like biomedical, pharmaceutical, food, and environmental industries thanks to its gelling properties. Pectin hydrogels are of great interest because of their wide biomedical applications in drug delivery, tissue engineering, wound healing, the food industry, agriculture, and cosmetic products because of their biocompatibility, biodegradability, and non-toxic nature. This review provides an understanding of pectin-based hydrogels and their applications in various industrial areas. In addition, an overview of emerging technologies and recent applications of pectin hydrogels is provided, including the controlled and targeted release of bioactive compounds or drugs. They are used as a scaffold for cell growth, as a wound dressing to promote healing, as a fat replacer in food, and as a texturizer in skin-care products. It also serves as a coating for seeds to improve their germination and growth. This paper also identifies knowledge gaps and future research direction for optimizing pectin hydrogels. Full article
Show Figures

Figure 1

21 pages, 8794 KB  
Review
Unlocking the Potential of Peach Palm (Bactris gasipaes Kunth) for Plant-Based Foods: A Review of Nutritional, Techno-Functional, and Bioactive Attributes
by Kartik Sharma, Suphat Phongthai, Wanli Zhang, Shusong Wu, Young Hoon Jung and Saroat Rawdkuen
Foods 2025, 14(23), 4134; https://doi.org/10.3390/foods14234134 (registering DOI) - 2 Dec 2025
Abstract
Peach palm (Bactris gasipaes) is an underutilized Amazonian crop with emerging relevance for plant-based food systems. Global demand for plant-based products continues to expand, reaching USD 28.38 billion in 2024, yet current formulations rely on a narrow set of ingredients with [...] Read more.
Peach palm (Bactris gasipaes) is an underutilized Amazonian crop with emerging relevance for plant-based food systems. Global demand for plant-based products continues to expand, reaching USD 28.38 billion in 2024, yet current formulations rely on a narrow set of ingredients with limitations in nutritional quality, functionality, sustainability, and supply-chain resilience. This review synthesizes quantitative evidence on the nutritional composition (carbohydrates 30–72% dm, protein 2–8% dm, lipids 2–14% dm), fatty acid profile, mineral density, and bioactive compounds (carotenoids up to 800 µg/g dm; phenolics 60–90 mg GAE/100 g dm) of peach palm fruit. Techno-functional properties relevant for plant-based applications, such as emulsification, water-binding, and structural contributions in bakery products and meat analogues, are critically examined, along with the effects of processing on nutrient retention and antinutrient reduction. The review also evaluates sustainability attributes and identifies key limitations, including regional cultivation, sensory constraints, and economic and technological barriers. By integrating nutritional, technological, and ecological perspectives, this work highlights the potential of peach palm as a diversified ingredient source and outlines research gaps necessary for future industrial adoption. Full article
Show Figures

Figure 1

14 pages, 3047 KB  
Article
Smartphones as Portable Tools for Reliable Color Determination of Metal Coatings Using a Colorimetric Calibration Card
by Walter Giurlani, Arianna Meoli, Marco Marseglia and Massimo Bonini
Coatings 2025, 15(12), 1411; https://doi.org/10.3390/coatings15121411 - 2 Dec 2025
Abstract
The use of smartphones and digital cameras as color measurement tools is reported. Initially, a careful mathematical analysis of the intrinsic limitations of using an 8-bit RGB color space was conducted, determining the ΔE in terms of sensitivity and conversion error to the [...] Read more.
The use of smartphones and digital cameras as color measurement tools is reported. Initially, a careful mathematical analysis of the intrinsic limitations of using an 8-bit RGB color space was conducted, determining the ΔE in terms of sensitivity and conversion error to the CIELab space. Metal coatings were subsequently analyzed under extremely different lighting conditions, obtaining equally different colors. The use of a colorimetric reference card, captured alongside the samples, enabled the minimization of these differences. The possibility of obtaining quantitative results using portable and widely available devices, such as smartphones, even in outdoor environments with uncontrollable lighting conditions provides a valuable analytical tool across various fields, including industrial, decorative, medical, and food applications, especially in the characterization of coatings. Eight-bit RGB devices limit sensitivity in the worst case to ∆E = 1.5. ∆E > 20, as measured by spectrophotometer and smartphone, which was reduced to ∆E < 5 after the proposed processing. Full article
Show Figures

Graphical abstract

13 pages, 1099 KB  
Article
Protein Level and Particle Size-Dependent Stabilization of Oil-in-Water Emulsions by Sunflower Meal
by Strahinja Vidosavljević, Nikola Maravić, Zita Šereš, Aleksandar Fišteš and Nemanja Bojanić
Processes 2025, 13(12), 3882; https://doi.org/10.3390/pr13123882 (registering DOI) - 1 Dec 2025
Abstract
Sunflower meal represents a protein- and fiber-rich by-product of the oil industry with potential application as a natural stabilizer in food emulsions. Building upon previous findings that emphasized the role of protein content in emulsion stability, the present study further investigated the combined [...] Read more.
Sunflower meal represents a protein- and fiber-rich by-product of the oil industry with potential application as a natural stabilizer in food emulsions. Building upon previous findings that emphasized the role of protein content in emulsion stability, the present study further investigated the combined effect of protein level and particle size distribution of sunflower meal fractions on the formation and stability of oil-in-water emulsions. Two sets of sunflower meal fractions were prepared from finely milled material, fractionated, and blended in controlled proportions to obtain four protein-enriched (30 ± 1%) and four cellulose-rich (15 ± 1%) fractions, each defined by particle size ranges of 250/200, 200/125, 125/100, and <100 µm. Emulsion stability was evaluated through droplet size analysis, zeta potential measurements, and creaming index determination during seven days of storage. The results demonstrated that both protein content and particle size significantly affected the emulsifying and stabilizing behavior of sunflower meal fractions. For the low-protein group (15%), larger particle sizes (250/200 µm) yielded smaller emulsion droplets (D[4.3] = 66.03 µm) and higher zeta potential values (−15.53 mV), while in the high-protein group (30%), droplet size distribution was more uniform (D[4.3] from 72.13 to 76.29 µm). During seven days of storage, all emulsions exhibited a gradual increase in creaming index, followed by partial stabilization at later time points. Emulsions prepared with sunflower meal fractions of higher-protein content showed consistently lower creaming index values, indicating improved physical stability throughout storage. Overall, the study confirmed that the interplay between composition (protein level) and physical structure (particle size) governs the emulsification efficiency of sunflower meal fractions, providing insights for their potential application as plant-based stabilizers in food systems. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

37 pages, 693 KB  
Review
Current Status and Future Perspectives of Betaine and Betaine-Based Natural Deep Eutectic Solvents: A Review
by Aylin Allahyari, Maryam Borji, Ali Jahanban-Esfahlan, Ali Khanalipour, Mahnaz Tabibiazar and Parisa Ahmadi
Foods 2025, 14(23), 4122; https://doi.org/10.3390/foods14234122 (registering DOI) - 1 Dec 2025
Abstract
Betaine (BET)-based deep eutectic solvents (DESs) have emerged as promising substitutes for traditional organic solvents owing to their eco-friendly properties and versatility in various applications. This review provides a comprehensive overview of the current status and future perspectives of BET-based DESs, highlighting their [...] Read more.
Betaine (BET)-based deep eutectic solvents (DESs) have emerged as promising substitutes for traditional organic solvents owing to their eco-friendly properties and versatility in various applications. This review provides a comprehensive overview of the current status and future perspectives of BET-based DESs, highlighting their definition, characteristics, and mechanisms of eutectic formation. The unique properties of BET, including its biodegradability and non-toxicity, make it an attractive hydrogen bond acceptor in the formulation of DESs. The review discusses common methods for preparing BET-based DESs and emphasizes their applications in extraction processes, catalysis, biocompatibility, and pharmaceutical applications. Additionally, challenges such as stability and fluidity limitations are addressed, along with regulatory and safety considerations. Future directions suggest an increasing industrial application of BET-based DESs in environmentally sustainable processes within the food and pharmaceutical sectors, underlining their potential as green solvents in next-generation chemical methodologies. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 475 KB  
Article
Exploring the Nutritional Value and Bioactive Potential of Craterellus cornucopioides (L.) Pers. as a Functional Food Source
by Mariana-Gabriela Bumbu, Mihaela Niculae, Irina Ielciu, Adela Pintea, Zsolt Matyas, Ștefan Alexandru Anton, Daniela Benedec, Melinda Fogarasi, Ioan Marcus, Oana Roșca-Casian, Nicodim Fiț and Daniela Hanganu
Foods 2025, 14(23), 4124; https://doi.org/10.3390/foods14234124 (registering DOI) - 1 Dec 2025
Abstract
This study aimed to explore the phytochemical variability, nutrient composition, and bioactive profile of the edible mushroom species Craterellus cornucopioides with specimens originating from Romanian flora. Its nutritional profile, including its proximate composition and energy value, was determined using standardized analytical methods. The [...] Read more.
This study aimed to explore the phytochemical variability, nutrient composition, and bioactive profile of the edible mushroom species Craterellus cornucopioides with specimens originating from Romanian flora. Its nutritional profile, including its proximate composition and energy value, was determined using standardized analytical methods. The mean contents of total polyphenols and caffeic acid derivatives, quantified by spectrophotometric assay, were established. HPLC–DAD–ESI+ analysis enabled the identification and quantification of individual phenolic constituents. Its antioxidant potential was systematically assessed using the following in vitro complementary assays: FRAP, ABTS, CUPRAC, DPPH, and ORAC. Antimicrobial activity was evaluated in vitro against MSSA, MRSA, Bacillus cereus, Enterococcus faecalis, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using well diffusion, broth microdilution, and anti-biofilm assays. The high amounts of polyphenols, including gentisic acid and protocatechuic acid, underlined a biologically relevant phytochemical composition. In fact, all tested extracts and, in particular, CE3 extract consistently displayed strong antioxidant properties, as indicated by five complementary in vitro tests (FRAP, ABTS, CUPRAC, DPPH, and ORAC). In addition, CE1-4 extracts expressed in vitro antimicrobial potential towards all tested organisms except for Pseudomonas aeruginosa. Our results underscore C. cornucopioides’ nutritional, antioxidant, and antimicrobial potential, thus supporting its classification as an edible but under-explored mushroom species with promising applications in both the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Mushrooms and Edible Fungi as Future Foods)
Show Figures

Figure 1

19 pages, 2539 KB  
Article
Resource Monitoring and Heat Recovery in a Wastewater Treatment Plant: Industrial Decarbonisation of the Food and Beverage Processing Sector
by Brian Considine, Paul Coughlan, Madhu K. Murali, Laurence Gill, Lena Moher, Lucas Novakowski and Aonghus McNabola
Water 2025, 17(23), 3419; https://doi.org/10.3390/w17233419 - 1 Dec 2025
Abstract
To achieve net-zero targets globally, industrial decarbonisation is a major priority. This paper examines lost energy resources in a wastewater treatment plant (WWTP) and the deployment of novel wastewater heat recovery (WWHR) technology in the food and beverage processing industry. Four industrial WWTPs [...] Read more.
To achieve net-zero targets globally, industrial decarbonisation is a major priority. This paper examines lost energy resources in a wastewater treatment plant (WWTP) and the deployment of novel wastewater heat recovery (WWHR) technology in the food and beverage processing industry. Four industrial WWTPs were monitored in Ireland to quantify the available embedded energy. Post monitoring, WWHR technology was developed to be integrated within existing infrastructure without compromising the primary function, and evaluated in real operating conditions. On average, 1.11–2.55 GWh/a of embedded energy was measured within the wastewater. The direct WWHR pilot plant resulted in a projected recovery rate of 10.89 MWh/a, leading to substantial economic savings and emission reductions. Incorporating a water-to-water heat pump incurred energy savings of 13.5 MWh/a. Nationally, the energy recovery potential was assessed to be 82.1 GWh/a in Ireland and 476.9 GWh/a in the UK. A large proportion of the energy embedded in this wastewater remains to be recovered and, based on the monitoring campaign, could amount to 118.5 TWh/a and 20.4 TWh/a for the UK and Ireland, respectively. WWHR could serve a prominent role in increasing operational energy efficiency of manufacturing processes by enacting energy, economic and emission savings, thus leading to industrial decarbonisation. Full article
(This article belongs to the Special Issue Energy Use Assessment and Management in Wastewater Systems)
Show Figures

Figure 1

12 pages, 252 KB  
Article
Effects of Cantaloupe (Cucumis melo) Melon Seed Flour on Physicochemical Characteristics and Consumer Acceptance of Gluten-Free Cookies
by Sagrario Medina, Roberto Cedillos, Silvia Murillo Miguez, Andrea Muela, Elio Villasmil, Jhunior Marcia and Witoon Prinyawiwatkul
Foods 2025, 14(23), 4117; https://doi.org/10.3390/foods14234117 (registering DOI) - 1 Dec 2025
Abstract
Cantaloupe melon seeds are a byproduct that can be upcycled for their nutritional value, generating added value, reducing food waste, and supporting food sustainability. This study evaluated the effects of melon seed flour on selected physicochemical and consumer acceptance of gluten-free cookies. Melon [...] Read more.
Cantaloupe melon seeds are a byproduct that can be upcycled for their nutritional value, generating added value, reducing food waste, and supporting food sustainability. This study evaluated the effects of melon seed flour on selected physicochemical and consumer acceptance of gluten-free cookies. Melon seeds were dehydrated at 60 °C for 12 h and ground. Then gluten-free cookies containing varying melon seed flour (20, 40, 60, 80, and 100%) were prepared by mixing the ingredients and baked at 177 °C for 18 min. Color, water activity, proximate composition, and mineral contents of the melon seed flour were measured. Color, water activity, spread factor, and hardness of the five cookie formulations were evaluated. Finally, a randomized block design was used for the consumer test with 90 consumers. Appearance, aroma, flavor, texture, grittiness, and overall liking were evaluated using a 9-point hedonic scale. Also, purchase intent was asked for before and after a sustainability claim. Data were analyzed using an ANOVA and the post hoc Tukey test (p < 0.05). The McNemar test was used to test whether there were significant differences in purchase intent before and after a sustainability claim. Melon seed flour had 21.4% protein, 34.93% crude fiber, 3% ash, 4% moisture, and 26.9% fat. Spread factor and a* (color redness) values increased with increasing melon seed flour. On the other hand, the more melon seed flour in cookies, the lower the L* value and water activity. The treatment with 40% melon seed flour had the highest liking score, 6.25. Finally, the sustainability claim significantly increased the positive purchase intent of the cookies. This study demonstrates the potential of cantaloupe melon seed flour as an ingredient in food, such as gluten-free cookies. This practice in the food industry can help increase value and reduce waste in cantaloupe processing. Full article
34 pages, 4925 KB  
Review
Nanomaterial Engineered Biosensors and Stimulus–Responsive Platform for Emergency Monitoring and Intelligent Diagnosis
by Bo Fang, Yuanyuan Chen, Hui Jiang, Xiaohui Liu and Xuemei Wang
Biosensors 2025, 15(12), 789; https://doi.org/10.3390/bios15120789 (registering DOI) - 1 Dec 2025
Abstract
Biosensing technology serves as a cornerstone in biomedical diagnostics, environmental monitoring, personalized medicine, and wearable devices, playing an indispensable role in precise detection and real–time monitoring. Compared with traditional sensing platforms, functional nanomaterials—by virtue of their ultra–large specific surface area, exceptional optoelectronic properties, [...] Read more.
Biosensing technology serves as a cornerstone in biomedical diagnostics, environmental monitoring, personalized medicine, and wearable devices, playing an indispensable role in precise detection and real–time monitoring. Compared with traditional sensing platforms, functional nanomaterials—by virtue of their ultra–large specific surface area, exceptional optoelectronic properties, and superior catalytic activity—significantly enhance the sensitivity, selectivity, and response speed of biosensors. This has enabled ultrasensitive, rapid, and even in situ detection of disease biomarkers, pollutants, and pathogens. This review summarizes recent advances in five key categories of functional nanomaterials—metallic, semiconductor, carbon–based, two–dimensional, and stimulus–responsive materials—for advanced biosensing applications. It elucidates the structure–property relationships governing sensing performance, such as the surface plasmon resonance of gold nanoparticles and the high carrier mobility of graphene, and analyzes the core mechanisms behind optical sensing, electrochemical sensing, and emerging multimodal sensing strategies. With a focus on medical diagnostics, wearable health monitoring, and environmental and food safety surveillance, the review highlights the application value of functional nanomaterials across diverse scenarios. Current research is progressively moving beyond single–performance optimization toward intelligent design, multifunctional integration, and real–world deployment, though challenges related to industrial application remain. Finally, the review outlines existing issues in the development of functional nanomaterial–based biosensors and offers perspectives on the integration of nanomaterials with cutting–edge technologies and the construction of novel sensing systems. This work aims to provide insights for the rational design of functional nanomaterials and the cross–disciplinary translation of biosensing technologies. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Biomedical Detection)
Show Figures

Figure 1

26 pages, 5010 KB  
Review
From Agricultural Waste to Recyclable Biodegradable Packaging: A Systematic and Bibliometric Review
by Mei Bie, Wei Zhao, He Dong, Yinghui Gu, Shiwei Yuan and Kai Song
Sustainability 2025, 17(23), 10742; https://doi.org/10.3390/su172310742 - 1 Dec 2025
Abstract
Amidst the dual global pressures of plastic pollution and resource scarcity, the transition to a circular economy has become an imperative. The valorization of biomass waste from agricultural, food, and animal processing into biodegradable packaging materials presents a key strategy to address this [...] Read more.
Amidst the dual global pressures of plastic pollution and resource scarcity, the transition to a circular economy has become an imperative. The valorization of biomass waste from agricultural, food, and animal processing into biodegradable packaging materials presents a key strategy to address this challenge. This review aims to systematically construct a comprehensive knowledge framework for the field, addressing the thematic fragmentation and methodological limitations of existing literature through integrated cross-stream analysis, combined bibliometric and technological assessment, and identification of emerging research frontiers. We begin with a bibliometric analysis to delineate the field’s evolutionary trajectory since 2008, global collaboration networks, core research themes, and emerging frontiers, revealing a clear progression from environmental impact assessment to functional material innovation. Subsequently, this review delves into the complete technological chain, from the green extraction of bio-based materials from three major waste streams to the comparison of traditional and advanced film fabrication methods. We then elaborate on the critical performance evaluation dimensions, including mechanical, barrier, biodegradable, safety, and functional properties, and summarize current applications in sectors such as food and medicine. Finally, we critically assess the core challenges related to cost, performance stability, and large-scale production, and provide a systematic outlook on future research directions, particularly the development of high-performance, multifunctional, and intelligent materials. This review offers a comprehensive and data-driven reference framework for researchers and industry stakeholders in the field. Full article
Show Figures

Figure 1

15 pages, 1594 KB  
Review
Fabricating Partial Acylglycerols for Food Applications
by Harsh B. Jadhav, Dheeraj Kumar and Federico Casanova
Colloids Interfaces 2025, 9(6), 80; https://doi.org/10.3390/colloids9060080 (registering DOI) - 1 Dec 2025
Abstract
The functional characteristics of Partial acylglycerols (PAGs) have attracted the attention of researchers in designing PAGs for food applications as a potential substitute for conventional fats/oils. Designing PA using enzymes has been of great interest due to the greater specificity of enzymes, giving [...] Read more.
The functional characteristics of Partial acylglycerols (PAGs) have attracted the attention of researchers in designing PAGs for food applications as a potential substitute for conventional fats/oils. Designing PA using enzymes has been of great interest due to the greater specificity of enzymes, giving high-quality products for food applications. The utilization of PA in fat-based products, such as bakery, dairy, and emulsion foods, exhibits superior functionalities and health-friendly characteristics. The PA can also be used for cooking/frying applications. However, exposure of PA to a higher temperature for a longer time shows inferior characteristics. The functional characteristics of PA, such as solid fat content, rheology, microstructure, crystal formation, and thermal behavior, make it a potential replacement for conventional fat. The present review focuses on a comparative assessment of synthetic routes, the functional characteristics of PA, food applications, and technological drawbacks in commercializing PA-based products. Furthermore, the future prospect focuses on supporting future research that will facilitate the incorporation of PA in food products at an industrial scale. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids and Interfaces)
Show Figures

Figure 1

28 pages, 1380 KB  
Systematic Review
Dairy Intake and Iodine Status in Pregnant and Lactating Women: A Systematic Review and Meta-Analysis
by Elham Razmpoosh, Katrina Geronimo, Caroline Gauntlett, Isabella Vicente, Patricia Pham, Aarsh Shah and Kathy Musa-Veloso
Nutrients 2025, 17(23), 3765; https://doi.org/10.3390/nu17233765 (registering DOI) - 30 Nov 2025
Abstract
Background/Objectives: Despite salt iodization, iodine deficiency during pregnancy and lactation is re-emerging in many industrialized countries, necessitating an evaluation of the role of dairy in supporting iodine status during these critical periods. Methods: We conducted a systematic review and meta-analysis in [...] Read more.
Background/Objectives: Despite salt iodization, iodine deficiency during pregnancy and lactation is re-emerging in many industrialized countries, necessitating an evaluation of the role of dairy in supporting iodine status during these critical periods. Methods: We conducted a systematic review and meta-analysis in accordance with PRISMA guidelines. Ten databases were searched through March 2025 using ProQuest Dialog™ (Version 75.0). Study quality was assessed using either the Quality Evaluation for Observational Studies tool or the Risk of Bias 2 tool, depending on study design. Random-effects models were applied, with certainty of evidence rated using the GRADE framework. Publication bias, sensitivity analyses, and subgroup analyses were also performed. Results: Fifty-one publications met the eligibility criteria, including 50 publications of observational studies and 1 publication of a randomized controlled trial (RCT), with most studies conducted on pregnant women. Higher dairy intake was associated with significantly greater urinary iodine concentration (UIC), (23 studies; standardized mean difference: 0.326; 95% confidence interval [CI]: 0.228, 0.424; p < 0.001; I2 = 57.31%; low-certainty), and significantly lower odds of iodine deficiency (11 studies; odds ratio: 0.58; 95% CI: 0.48, 0.70; p < 0.001; I2 = 0%; moderate-certainty). Associations were stronger in studies conducted during later pregnancy, in higher-quality studies, and when the dairy food was specifically milk. Dairy contributed to ~27% of iodine intake from foods. Breast milk iodine concentration (BMIC) findings were inconsistent, though in one RCT, iodine-fortified milk improved BMIC and UIC. Conclusions: Dairy intake supports adequate iodine status during pregnancy and lactation. RCTs would be valuable in further investigating the role of dairy in supporting iodine status, particularly in lactating women. (PROSPERO CRD420251054576) Full article
(This article belongs to the Special Issue Nutritional Requirements of Pregnant and Lactating Women)
Show Figures

Figure 1

35 pages, 998 KB  
Review
Esterases: Mechanisms of Action, Biological Functions, and Application Prospects
by Arman Mussakhmetov and Dmitriy Silayev
Appl. Microbiol. 2025, 5(4), 139; https://doi.org/10.3390/applmicrobiol5040139 - 30 Nov 2025
Abstract
Esterases are ubiquitous enzymes found in all living organisms, including animals, plants, and microorganisms. They are involved in several biological processes, including the synthesis and breakdown of biomolecules, such as nucleic acids, lipids, and esters; phosphorus metabolism; detoxification of natural and artificial toxicants; [...] Read more.
Esterases are ubiquitous enzymes found in all living organisms, including animals, plants, and microorganisms. They are involved in several biological processes, including the synthesis and breakdown of biomolecules, such as nucleic acids, lipids, and esters; phosphorus metabolism; detoxification of natural and artificial toxicants; polymer breakdown and synthesis; remodeling; and cell signaling. The present review focuses on the most industrially important esterases, namely lipases, phospholipases, cutinases, and polyethylene terephthalate hydrolases (PETases). Esterases are widely used in industrial and biotechnological applications. Notably, the biotechnological production of esters, including methyl acetate, ethyl acetate, vinyl acetate, polyvinyl acetate, and ethyl lactate, as an alternative to chemical production, represents a multi-billion-dollar industry. Currently, most enzymes (>75%) used in industrial processes are hydrolytic. Among them, lipases and phospholipases are primarily used for lipid modification. Lipases are the third most commercialized enzymes after proteases and carboxyhydrases, and their production is steadily increasing, currently representing over one-fifth of the global enzyme market. Esterases, particularly lipases, phospholipases, and cutinases, are employed in cosmetics, food, lubricants, pharmaceuticals, paints, detergents, paper, and biodiesel, among other industries. Overall, biotechnological production using enzymes is gaining global traction owing to its environmental benefits, high yields, and efficiency, aligning with green economy principles. Full article
Show Figures

Figure 1

14 pages, 302 KB  
Article
Insecticidal and Repellent Activity of Different Pomegranate Peel Extracts Against Granary Weevil Adults
by Federica Lo Muzio, Onofrio Marco Pistillo, Ilaria D’Isita, Giovanni Iadarola, Antonella Di Palma, Antonio De Cristofaro, Giuseppe Rotundo and Giacinto Salvatore Germinara
Insects 2025, 16(12), 1222; https://doi.org/10.3390/insects16121222 - 29 Nov 2025
Viewed by 56
Abstract
The pomegranate (Punica granatum L.) fruit peel is an agro-industrial by-product rich in bioactive compounds. In this study, the bioactivity of pomegranate peels (cv. Ako) extracted with acetone, diethyl ether, and n-hexane was assessed by evaluating toxic (contact and ingestion), repellent, [...] Read more.
The pomegranate (Punica granatum L.) fruit peel is an agro-industrial by-product rich in bioactive compounds. In this study, the bioactivity of pomegranate peels (cv. Ako) extracted with acetone, diethyl ether, and n-hexane was assessed by evaluating toxic (contact and ingestion), repellent, antifeedant, and nutritional effects towards Sitophilus granarius (L.) (Coleoptera, Curculionidae) adults. Contact toxicity assays revealed significant mortality induced by the acetone and n-hexane extracts, with 24-h LD50 values of 76.93 and 81.14 μg/adult, respectively. In ingestion bioassays, at the highest dose tested (750 μg/disk), the acetone pomegranate peel extract showed a strong feeding deterrence (FDI: 80%), and significantly reduced food consumption (RCR) and relative growth rate (RGR). In filter paper repellency assays, the acetone extract induced positive contact repellency, with PR values ranging from 80% to 30%. GC-MS analysis identified sitosterol, 9,12-octadecadienoic acid, and α-tocopherol as the major constituents of the acetone extract. These results highlight the potential of pomegranate peel as a sustainable source of bioactive compounds for stored-product insect pest management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Back to TopTop