Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,266)

Search Parameters:
Keywords = fuel saving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11733 KB  
Article
Retrofitting a Pre-Propeller Duct on a Motor Yacht: A Full-Scale CFD Validation Study
by Davor Mimica, Boris Ljubenkov, Branko Blagojević, Ines Bezić, Josip Bašić and Nastia Degiuli
J. Mar. Sci. Eng. 2025, 13(11), 2125; https://doi.org/10.3390/jmse13112125 - 10 Nov 2025
Abstract
The maritime industry faces increasing pressure to improve energy efficiency, a challenge that extends to the luxury yacht sector. This study presents a comprehensive hydrodynamic assessment for retrofitting a bespoke Energy Saving Device (ESD) onto a 45 m motor yacht. A full-scale self-propulsion [...] Read more.
The maritime industry faces increasing pressure to improve energy efficiency, a challenge that extends to the luxury yacht sector. This study presents a comprehensive hydrodynamic assessment for retrofitting a bespoke Energy Saving Device (ESD) onto a 45 m motor yacht. A full-scale self-propulsion Computational Fluid Dynamics (CFD) model was developed and validated directly against dedicated sea trial data, ensuring high fidelity and bypassing traditional scaling uncertainties. The validated model was then utilized to design and optimize a custom pre-propeller duct system. A parametric study varying the duct’s angle of attack identified an optimal configuration of 20, which achieves a definitive power saving of 4.7% at the vessel’s cruise speed of 12.3 knots. Analysis of the propulsive factors reveals that the gain is primarily driven by a substantial increase in the hull efficiency, ηH, achieved by conditioning the propeller inflow. This improvement successfully compensates for the corresponding decrease in the propeller’s open-water efficiency, ηo. This work demonstrates a successful end-to-end numerical workflow for designing and verifying an effective, retrofittable ESD, highlighting a practical solution for reducing fuel consumption in existing motor yachts. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 2175 KB  
Article
Thermodynamic Analysis of Combined-Cycle Power Plants Incorporating an Organic Rankine Cycle and Supplementary Burners
by Vladimir Kindra, Igor Maksimov, Roman Zuikin, Aleksey Malenkov and Andrey Rogalev
Energies 2025, 18(22), 5909; https://doi.org/10.3390/en18225909 - 10 Nov 2025
Abstract
Emissions reduction and energy saving at thermal power plants are crucial for energy development. This paper presents the results of thermodynamic analysis and optimization of thermal circuits of combined-cycle power plants incorporating an organic Rankine cycle and supplementary burners. It is established that [...] Read more.
Emissions reduction and energy saving at thermal power plants are crucial for energy development. This paper presents the results of thermodynamic analysis and optimization of thermal circuits of combined-cycle power plants incorporating an organic Rankine cycle and supplementary burners. It is established that at a power unit with GTE-170, the transition from a binary cycle with a double-circuit waste heat boiler to a trinary one leads to an increase in net efficiency by 0.79%. It is established that in the trinary cycle, fuel afterburning in the exhaust-gas environment leads to an increase in the net capacity of the power plant: the increase is up to 4.1% with an increase in the degree of afterburning by 0.1 at a steam temperature of 515 °C. It was revealed that the introduction of intermediate superheat provides an increase in the efficiency of the binary cycle by an average of 0.2–3%, and of the trinary cycle by 2–4%, with a change in the degree of afterburning from 0 to 0.5 at an initial steam temperature of 515 °C. The use of supplementary combustion and the organic Rankine cycle make it possible to reduce carbon dioxide emissions in combined-cycle power plants. Compared to a single-pressure combined cycle, the ORC-integrated configuration reduces specific CO2 emissions by more than 7.5%, while supplementary fuel combustion with an increased steam inlet temperature results in a reduction of up to 10%. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 2877 KB  
Article
Techno-Economic Analysis of Membrane-Based Plants for H2/CH4 Purification
by Pasquale Francesco Zito
Membranes 2025, 15(11), 336; https://doi.org/10.3390/membranes15110336 - 7 Nov 2025
Viewed by 121
Abstract
In the context of the growing adoption of alternative gas separation processes, combined with the interest in hydrogen as a fuel and energy carrier, the use of membrane technology in H2/CH4 purification is analyzed in this work, focusing on the [...] Read more.
In the context of the growing adoption of alternative gas separation processes, combined with the interest in hydrogen as a fuel and energy carrier, the use of membrane technology in H2/CH4 purification is analyzed in this work, focusing on the techno-economic aspects. In particular, the separation and economic performance of three Pd–Ag/Si-CHA membrane plants are simulated, aiming to achieve high degrees of purity and recovery paired with cost-effective configurations. A single Pd–Ag membrane stage operating at 20 atm and 350 °C can theoretically guarantee a CH4 concentration of 95%, while a completely pure H2 stream leaves the plant as a permeate product. The choice of a less selective Si-CHA membrane allows a temperature reduction but implies the use of more stages to achieve the desired CH4 target. In addition, H2 purity does not exceed 98%. A two-stage hybrid process, in which the retentate gas leaving the Pd–Ag membrane is cooled and fed to the Si-CHA unit, is also a cost-effective solution, as feed pressure can be reduced to 10 atm with significant compression cost savings. All the configurations are able to provide positive values of economic potential (EP); however, the single Pd–Ag membrane plant is the best option since it guarantees the highest EP, net profit and net present value (NPV). Full article
Show Figures

Figure 1

19 pages, 907 KB  
Article
Analysis of the Logistics Impact for the Freight Transportation Sector Using Electric Trucks
by Patrícia Gomes Dallepiane, Leandro Mallmann and Luciane Silva Neves
Energies 2025, 18(21), 5801; https://doi.org/10.3390/en18215801 - 3 Nov 2025
Viewed by 343
Abstract
The transition to sustainable transport in the logistics sector requires innovative strategies, yet companies still face uncertainty regarding the operational, economic, and environmental feasibility of replacing diesel trucks with electric ones. Electric trucks represent a sustainable alternative, contributing to the reduction in pollutant [...] Read more.
The transition to sustainable transport in the logistics sector requires innovative strategies, yet companies still face uncertainty regarding the operational, economic, and environmental feasibility of replacing diesel trucks with electric ones. Electric trucks represent a sustainable alternative, contributing to the reduction in pollutant gas emissions, noise reduction in traffic, and lower operational costs, in addition to building sustainable logistics through recharges from renewable energy sources. Although electric trucks offer sustainability benefits, existing research often lacks analyses based on real-world delivery conditions. In this context, the objective of this paper is to analyze the logistical impact of introducing electric trucks for beverage transportation. This study includes assessments of planned route profiles, economic evaluation during operation, emission mitigation costs, and charging analyses under different pricing models in consumer units. These elements were selected to reflect the actual challenges companies face. The results demonstrate that electric trucks can reduce fuel costs by 83.90% and significantly lower carbon emissions, confirming their viability for last-mile freight transport operations. Therefore, the results demonstrate that the process of replacing diesel trucks with electric ones is a viable alternative for companies due to the savings generated during operation and the reduction in pollutant emissions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 3995 KB  
Article
Energy Recovery from Iron Ore Sinter Using an Iron Oxide Packed Bed
by Sam Reis, Peter J. Holliman, Stuart Cairns, Sajad Kiani and Ciaran Martin
ChemEngineering 2025, 9(6), 118; https://doi.org/10.3390/chemengineering9060118 - 24 Oct 2025
Viewed by 401
Abstract
This study investigated a novel method of recovering energy from iron ore sinter using solid iron oxide heat transfer materials. Traditionally, air is passed through the sinter either in an open conveyor or a sealed vessel to recover energy. The bed materials used [...] Read more.
This study investigated a novel method of recovering energy from iron ore sinter using solid iron oxide heat transfer materials. Traditionally, air is passed through the sinter either in an open conveyor or a sealed vessel to recover energy. The bed materials used were a magnetite concentrate, hematite ore, goethite–hematite ore and sinter fines. A shortwave thermal camera and quartz reactor were used measure infrared radiation from the process. The thermal imaging was combined with image analysis techniques to visualise the transfer of thermal energy through the system. The results showed that energy moved rapidly through the system with peak heating rates of 18 °C/min at a lump sinter temperature of 600 °C. The ratio of heating rate to cooling rate was as high as 8.6:1.0, indicating efficient retention of energy by the bed materials. The bed composition, determined by X-ray fluorescence and X-ray diffraction was used to calculate the heat capacity based on pure material properties. The resultant energy balance determined thermal efficiency to be between 32 and 46% for the sinter fines and hematite–goethite ore, resulting in predicted fuel savings of up to 9.4kg/tonne with similar heat utilisations to the air recovery process. Thermal imaging combined with Brunauer–Emmett–Teller surface area measurements and scanning electron microscopy analysis experimentally replicated mathematical heat transfer model predictions that a smaller total pore volume resulted in less thermally resistive bed. Image analysis illustrated the breaking of the heat front between the less resistive solid and more resistive air in porous beds versus even conduction of heat through a dense bed. The oxide distribution in the bed materials impacted heat transfer, as at a lump temperature of 500 °C was controlled by hydrated oxide content whereas at 600 °C Fe2O3 was the more dominant driver. Full article
Show Figures

Figure 1

19 pages, 3418 KB  
Article
Effect of Performance Packages on Fuel Consumption Optimization in Heavy-Duty Diesel Vehicles: A Real-World Fleet Monitoring Study
by Maria Antonietta Costagliola, Luca Marchitto, Marco Piras and Alessandra Berra
Energies 2025, 18(20), 5542; https://doi.org/10.3390/en18205542 - 21 Oct 2025
Viewed by 632
Abstract
In line with EU decarbonization targets for the heavy-duty transport sector, this study proposes an analytical methodology to assess the impact of diesel performance additives on fuel consumption in Euro 6 heavy-duty vehicles, the prevailing standard in the circulating European road tractor fleet. [...] Read more.
In line with EU decarbonization targets for the heavy-duty transport sector, this study proposes an analytical methodology to assess the impact of diesel performance additives on fuel consumption in Euro 6 heavy-duty vehicles, the prevailing standard in the circulating European road tractor fleet. A fleet of five N3-category road tractors equipped with tanker semi-trailers was monitored over two phases. During the first 10-month baseline phase, the vehicles operated with standard EN 590 diesel (containing 6–7% FAME); in the second phase, they used a commercially available premium diesel containing performance-enhancing additives. Fuel consumption and route data were collected using a GPS-based system interfaced with the engine control unit via the OBD port and integrated with the fleet tracking platform. After applying data filtering to exclude low-quality or non-representative trips, a 1% reduction in fuel consumption was observed with the use of fuel with additives. Route-level analysis revealed higher savings (up to 5.1%) in high-load operating conditions, while most trips showed improvements between −1.6% and −3.4%. Temporal analysis confirmed the general trend across varying vehicle usage patterns. Aggregated fleet-level data proved to be the most robust approach to mitigate statistical variability. To evaluate the potential impact at scale, a European scenario was developed: a 1% reduction in fuel consumption across the 6.75 million heavy-duty vehicles in the EU could yield annual savings of 2 billion liters of diesel and avoid approximately 6 million tons of CO2 emissions. Even partial adoption could lead to meaningful environmental benefits. Alongside emissions reductions, fuel additives also offer economic value by lowering operating costs, improving engine efficiency, and reducing maintenance needs. Full article
Show Figures

Figure 1

24 pages, 6693 KB  
Article
A Study on Reduced Wind Drag Acting on the Hull of a River Ship in Headwind Using CFD
by Ngo Van He, Le Duy An, Bui Thanh Danh and Hoang Cong Liem
Appl. Sci. 2025, 15(20), 11225; https://doi.org/10.3390/app152011225 - 20 Oct 2025
Viewed by 412
Abstract
The aerodynamic performance of a ship plays a crucial role in determining its efficiency, safety, and economic viability. While traditional ship design has primarily focused on optimizing hull forms to minimize water resistance acting on the hull, recent research highlights the growing importance [...] Read more.
The aerodynamic performance of a ship plays a crucial role in determining its efficiency, safety, and economic viability. While traditional ship design has primarily focused on optimizing hull forms to minimize water resistance acting on the hull, recent research highlights the growing importance of aerodynamic performances and wind drag acting on the ships, especially for ships with large accommodation above the water surface. In this study, aerodynamic performances of a cargo river ship were investigated using Computational Fluid Dynamics (CFD). From the results of the analysis of aerodynamic performance and wind drag acting on the original ship, several accommodation shapes were proposed for the ship to improve aerodynamic performance and reduce wind drag. The results show that the proposed accommodation shape for the ship, which includes a bow cover, a modified hatch cover, and accommodation, makes a small change to the ship’s structure, but it can improve aerodynamic performances and drastically reduce wind drag acting on the ship. An up to 42.82% reduction in total wind drag acting on the new ship can be reached. A study on reducing wind drag acting on the can lead to lower fuel consumption, saving energy, and improving economic efficiency. Full article
Show Figures

Figure 1

21 pages, 4491 KB  
Article
An Energy Management Strategy for FCHEVs Using Deep Reinforcement Learning with Thermal Runaway Fault Diagnosis Considering the Thermal Effects and Durability
by Yongqiang Wang, Fazhan Tao, Longlong Zhu, Nan Wang and Zhumu Fu
Machines 2025, 13(10), 962; https://doi.org/10.3390/machines13100962 - 18 Oct 2025
Viewed by 419
Abstract
Temperature control plays a critical role in mitigating the lifespan degradation mechanisms and ensuring thermal safety of lithium-ion batteries (LIBs) and proton exchange membrane fuel cells (PEMFCs). However, current energy management strategies (EMS) for fuel cell hybrid electric vehicles (FCHEVs) generally lack comprehensive [...] Read more.
Temperature control plays a critical role in mitigating the lifespan degradation mechanisms and ensuring thermal safety of lithium-ion batteries (LIBs) and proton exchange membrane fuel cells (PEMFCs). However, current energy management strategies (EMS) for fuel cell hybrid electric vehicles (FCHEVs) generally lack comprehensive thermal effect modeling and thermal runaway fault diagnosis, leading to irreversible aging and thermal runaway risks for LIBs and PEMFCs stacks under complex operating conditions. To address this challenge, this paper proposes a thermo-electrical co-optimization EMS incorporating thermal runaway fault diagnosis actuators, with the following innovations: firstly, a dual-layer framework integrates a temperature fault diagnosis-based penalty into the EMS and a real-time power regulator to suppress heat generation and constrain LIBs/PEMFCs output, achieving hierarchical thermal management and improved safety; secondly, the distributional soft actor–critic (DSAC)-based EMS incorporates energy consumption, state-of-health (SoH) degradation, and temperature fault diagnosis-based constraints into a composite penalty function, which regularizes the reward shaping and guides the policy toward efficient and safe operation; finally, a thermal safe constriction controller (TSCC) is designed to continuously monitor the temperature of power sources and automatically activate when temperatures exceed the optimal operating range. It intelligently identifies optimized actions that not only meet target power demands but also comply with safety constraints. Simulation results demonstrate that compared to DDPG, TD3, and SAC baseline strategies, DSAC-EMS achieves maximum reductions of 39.91% in energy consumption and 29.38% in SoH degradation. With the TSCC implementation, enhanced thermal safety is achieved, while the maximum energy-saving improvement reaches 25.29% and the maximum reduction in SoH degradation attains 20.32%. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

20 pages, 3535 KB  
Article
Optimization Method of Energy Saving Strategy for Networked Driving in Road Sections with Frequent Traffic Flow Changes
by Minghao Gao, Dayi Qu, Kedong Wang, Yicheng Chen and Jintao Zhan
Vehicles 2025, 7(4), 118; https://doi.org/10.3390/vehicles7040118 - 16 Oct 2025
Viewed by 284
Abstract
It is of great significance to construct a networked energy-saving driving strategy method and application framework to solve the problems of traffic disorder, speed fluctuations, and high energy consumption caused by frequent acceleration, deceleration, and lane changing of vehicles in road sections with [...] Read more.
It is of great significance to construct a networked energy-saving driving strategy method and application framework to solve the problems of traffic disorder, speed fluctuations, and high energy consumption caused by frequent acceleration, deceleration, and lane changing of vehicles in road sections with variable traffic flow. Considering the mixed traffic scenario where autonomous vehicles and manually driven vehicles interact and infiltrate, a hybrid traffic flow vehicle energy-saving driving model was established, and the Dueling Double Deep Q-Network (D3QN) was used to optimize and solve the energy-saving driving model; Selecting Qingdao urban intersections as application scenarios, energy-saving driving strategy application facilities were constructed in simulation experiments to carry out simulation verification of energy-saving driving strategies for mixed traffic flow in the context of vehicle networking. The simulation results show that in different scenarios with different proportions of CAVs, the energy-saving strategy based on D3QN deep reinforcement learning algorithm can achieve fuel savings of 8.41%~6.67% compared to conventional strategies. Compared with the ordinary reinforcement learning algorithm Q-learning, its fuel saving rate is increased by 1.94%~1.5%, and the energy-saving effect becomes more significant with the increase of traffic density; From the perspective of dynamic characteristics, the speed stability under the control of D3QN algorithm is superior to Q-learning algorithm, and significantly better than conventional strategies, further highlighting the comprehensive advantages of D3QN algorithm in optimizing traffic flow status and energy consumption control. The energy-saving driving strategy in the networked environment can reduce fuel consumption caused by speed fluctuations and traffic flow frequency disturbances, and optimize the stability of traffic flow operation. Full article
Show Figures

Figure 1

15 pages, 3399 KB  
Article
Design and Optimization of a Solar Parabolic Dish for Steam Generation in a Blue Hydrogen Production Plant
by Taher Maatallah, Mussad Al-Zahrani, Salman Hilal, Abdullah Alsubaie, Mohammad Aljohani, Murad Alghamdi, Faisal Almansour, Loay Awad and Sajid Ali
Hydrogen 2025, 6(4), 85; https://doi.org/10.3390/hydrogen6040085 - 13 Oct 2025
Viewed by 407
Abstract
The integration of renewable energy into industrial processes is crucial for reducing the carbon footprint of conventional hydrogen production. This work presents detailed design, optical–thermal simulation, and performance analysis of a solar parabolic dish (SPD) system for supplying high-temperature steam to a Steam [...] Read more.
The integration of renewable energy into industrial processes is crucial for reducing the carbon footprint of conventional hydrogen production. This work presents detailed design, optical–thermal simulation, and performance analysis of a solar parabolic dish (SPD) system for supplying high-temperature steam to a Steam Methane Reforming (SMR) plant. A 5 m diameter dish with a focal length of 3 m was designed and optimized using COMSOL Multiphysics (version 6.2) and MATLAB (version R2023a). Optical ray tracing confirmed a geometric concentration ratio of 896×, effectively focusing solar irradiation onto a helical cavity receiver. Thermal–fluid simulations demonstrated the system’s capability to superheat steam to 551 °C at a mass flow rate of 0.0051 kg/s, effectively meeting the stringent thermal requirements for SMR. The optimized SPD system, with a 5 m dish diameter and 3 m focal length, was designed to supply 10% of the total process heat (≈180 GJ/day). This contribution reduces natural gas consumption and leads to annual fuel savings of approximately 141,000 SAR (Saudi Riyal), along with a substantial reduction in CO2 emissions. These quantitative results confirm the SPD as both a technically reliable and economically attractive solution for sustainable blue hydrogen production. Full article
Show Figures

Figure 1

21 pages, 7653 KB  
Article
Efficacy of Hybrid Photovoltaic–Thermal and Geothermal Heat Pump System for Greenhouse Climate Control
by Chung Geon Lee, Geum Choon Kang, Jae Kyung Jang, Sung-Wook Yun, Jong Pil Moon, Hong-Seok Mun and Eddiemar Baguio Lagua
Energies 2025, 18(20), 5386; https://doi.org/10.3390/en18205386 - 13 Oct 2025
Viewed by 597
Abstract
This study evaluated the performance of a hybrid heat pump system integrating photovoltaic–thermal (PVT) panels with a standing column well (SCW) geothermal system in a strawberry greenhouse. The PVT panels, installed over 10% of the area of a 175 m3 greenhouse, stored [...] Read more.
This study evaluated the performance of a hybrid heat pump system integrating photovoltaic–thermal (PVT) panels with a standing column well (SCW) geothermal system in a strawberry greenhouse. The PVT panels, installed over 10% of the area of a 175 m3 greenhouse, stored excess solar heat in an aquifer to offset the reduced efficiency of the geothermal source during extended operation. The results showed that the hybrid system can supply 11,253 kWh of heat energy during the winter, maintaining the night time indoor temperature at 10 °C even when outdoor conditions dropped to −10.5 °C. The PVT system captured 11,125 kWh of solar heat during heating the off season, increasing the heat supply up to 22,378 kWh annually. Additionally, the system generated 3839 kWh of electricity, which significantly offset the 36.72% of the annual pump system electricity requirements, enhancing the system coefficient of performance (COP) of 3.38. Strawberry production increased by 4% with 78% heating cost saving compared to a kerosene boiler system. The results show that the PVT system effectively supports the geothermal system, improving heating performance and demonstrating the feasibility of hybrid renewable energy in smart farms to enhance efficiency, reduce fossil fuel use, and advance carbon neutrality. Full article
Show Figures

Figure 1

25 pages, 5186 KB  
Article
Real-Time Global Velocity Profile Calculation for Eco-Driving on Long-Distance Highways Using Variable-Step Spatial Segmentation
by Jaeyeon Yoo, Yunchul Ha, Seongjoon Moon, Jeesu Kim and Jinwoo Yoo
Appl. Sci. 2025, 15(19), 10811; https://doi.org/10.3390/app151910811 - 8 Oct 2025
Viewed by 411
Abstract
This study introduces a real-time optimization framework for eco-driving of heavy-duty vehicles over long-distance routes. A longitudinal dynamic model incorporating powertrain performance and fuel consumption is formulated, and the eco-driving scenario is expressed as a quadratic programming (QP) problem. To improve computational efficiency, [...] Read more.
This study introduces a real-time optimization framework for eco-driving of heavy-duty vehicles over long-distance routes. A longitudinal dynamic model incorporating powertrain performance and fuel consumption is formulated, and the eco-driving scenario is expressed as a quadratic programming (QP) problem. To improve computational efficiency, a novel variable-step spatial segmentation method is introduced, which ensures a balance between modeling accuracy and computational cost. Simulations involving mixed-terrain scenarios verify the effectiveness of the proposed approach. The results show that the QP-based method achieves fuel savings comparable to those offered by dynamic programming while significantly reducing computation time to sub-second levels; thus, the proposed strategy offers real-time applicability. These findings demonstrate the feasibility of global optimal velocity profile generation in practical eco-driving scenarios. Full article
Show Figures

Figure 1

53 pages, 4002 KB  
Article
Numerical Analysis of Aerodynamics and Aeroacoustics in Heterogeneous Vehicle Platoons: Impacts on Fuel Consumption and Environmental Emissions
by Wojciech Bronisław Ciesielka and Władysław Marek Hamiga
Energies 2025, 18(19), 5275; https://doi.org/10.3390/en18195275 - 4 Oct 2025
Viewed by 456
Abstract
The systematic economic development of European Union member states has resulted in a dynamic increase in road transport, accompanied by adverse environmental impacts. Consequently, research efforts have focused on identifying technical solutions to reduce fuel and/or energy consumption. One promising approach involves the [...] Read more.
The systematic economic development of European Union member states has resulted in a dynamic increase in road transport, accompanied by adverse environmental impacts. Consequently, research efforts have focused on identifying technical solutions to reduce fuel and/or energy consumption. One promising approach involves the formation of homogeneous and heterogeneous vehicle platoons. This study presents the results of numerical simulations and analyses of aerodynamic and aeroacoustic phenomena generated by heterogeneous vehicle platoons composed of passenger cars, delivery vans, and trucks. A total of 54 numerical models were developed in various configurations, considering three vehicle speeds and three inter-vehicle distances. The analysis was conducted using Computational Fluid Dynamics (CFD) methods with the following two turbulence models: the k–ω Shear Stress Transport (SST) model and Large Eddy Simulation (LES), combined with the Ffowcs Williams–Hawkings acoustic analogy to determine sound pressure levels. Verification calculations were performed using methods dedicated to environmental noise analysis, supplemented by acoustic field measurements. The results conclusively demonstrate that vehicle movement in specific platoon configurations can lead to significant fuel and/or energy savings, as well as reductions in harmful emissions. This solution may be implemented in the future as an integral component of Intelligent Transportation Systems (ITSs) and Intelligent Environmental Management Systems (IEMSs). Full article
Show Figures

Figure 1

19 pages, 3786 KB  
Article
Transient Injection Quantity Control Strategy for Automotive Diesel Engine Start-Idle Based on Target Speed Variation Characteristics
by Yingshu Liu, Degang Li, Miao Yang, Hao Zhang, Liang Guo, Dawei Qu, Jianjiang Liu and Xuedong Lin
Energies 2025, 18(19), 5256; https://doi.org/10.3390/en18195256 - 3 Oct 2025
Viewed by 315
Abstract
Active control of injection quantity during start-up idle optimizes automotive diesel engine starting performance, aligning with low-carbon goals. Conventional methods rely on a calibrated demand torque map adjusted by speed, temperature, and pressure variations, requiring extensive labor for calibration and limiting energy-saving and [...] Read more.
Active control of injection quantity during start-up idle optimizes automotive diesel engine starting performance, aligning with low-carbon goals. Conventional methods rely on a calibrated demand torque map adjusted by speed, temperature, and pressure variations, requiring extensive labor for calibration and limiting energy-saving and emission improvements. To address this problem, this paper proposes a transient injection quantity active control method for the start-up process based on the variation characteristics of target speed. Firstly, the target speed variation characteristics of the start-up process are optimized by setting different accelerations. Secondly, a transient injection quantity control strategy for the start-up process is proposed based on the target speed variation characteristics. Finally, the control strategy proposed in this paper was compared with the conventional starting injection quantity control method to verify its effectiveness. The results show that the start-up idle control strategy proposed in this paper reduces the cumulative fuel consumption of the start-up process by 25.9% compared to the conventional control method while maintaining an essentially unchanged start-up time. The emissions of hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxides (NOx) exhibit peak reductions of 12.4%, 32.5%, and 62.9%, respectively, along with average concentration drops of 27.2%, 35.1%, and 41.0%. Speed overshoot decreases by 25%, and fluctuation time shortens by 23.6%. The results indicate that the proposed control method not only avoids complicated calibration work and saves labor and material resources but also effectively improves the starting performance, which is of great significance for the diversified development of automotive power sources. Full article
Show Figures

Figure 1

35 pages, 1513 KB  
Article
Enhancing Thermal Comfort and Efficiency in Fuel Cell Trucks: A Predictive Control Approach for Cabin Heating
by Tarik Hadzovic, Achim Kampker, Heiner Hans Heimes, Julius Hausmann, Maximilian Bayerlein and Manuel Concha Cardiel
World Electr. Veh. J. 2025, 16(10), 568; https://doi.org/10.3390/wevj16100568 - 2 Oct 2025
Viewed by 490
Abstract
Fuel cell trucks are a promising solution to reduce the disproportionately high greenhouse gas emissions of heavy-duty long-haul transportation. However, unlike conventional diesel vehicles, they lack combustion engine waste heat for cabin heating. As a result, electric heaters are often employed, which increase [...] Read more.
Fuel cell trucks are a promising solution to reduce the disproportionately high greenhouse gas emissions of heavy-duty long-haul transportation. However, unlike conventional diesel vehicles, they lack combustion engine waste heat for cabin heating. As a result, electric heaters are often employed, which increase auxiliary energy consumption and reduce driving range. To address this challenge, advanced control strategies are needed to improve heating efficiency while maintaining passenger comfort. This study proposes and validates a methodology for implementing Model Predictive Control (MPC) in the cabin heating system of a fuel cell truck. Vehicle experiments were conducted to characterize dynamic heating behavior, passenger comfort indices, and to provide validation data for the mathematical models. Based on these models, an MPC strategy was developed in a Model-in-the-Loop simulation environment. The proposed approach achieves energy savings of up to 8.1% compared with conventional control using purely electric heating, and up to 21.7% when cabin heating is coupled with the medium-temperature cooling circuit. At the same time, passenger comfort is maintained within the desired range (PMV within ±0.5 under typical winter conditions). The results demonstrate the potential of MPC to enhance the energy efficiency of fuel cell trucks. The methodology presented provides a validated foundation for the further development of predictive thermal management strategies in heavy-duty zero-emission vehicles. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
Show Figures

Figure 1

Back to TopTop