Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = fungal PLFA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2983 KB  
Article
Underlying Mechanisms of Increased Precipitation and Arbuscular Mycorrhizal (AM) Fungi on Plant Community by Mediating Soil Microbes in Desert Ecosystems
by Wan Duan, Hui Wang, Zhanquan Ji, Qianqian Dong, Wenshuo Li, Wenli Cao, Fangwei Zhang and Yangyang Jia
Plants 2025, 14(21), 3386; https://doi.org/10.3390/plants14213386 - 5 Nov 2025
Viewed by 209
Abstract
The increasing frequency of global extreme climate events has heightened the need to understand the mechanisms through which desert ecosystems respond to altered precipitation patterns. This includes elucidating how arbuscular mycorrhizal fungi (AMF) drive these responses by regulating key soil processes and shaping [...] Read more.
The increasing frequency of global extreme climate events has heightened the need to understand the mechanisms through which desert ecosystems respond to altered precipitation patterns. This includes elucidating how arbuscular mycorrhizal fungi (AMF) drive these responses by regulating key soil processes and shaping microbial community dynamics. We therefore conducted an in situ experiment involving increased precipitation and AMF suppression, and phospholipid fatty acid (PLFA) was employed to reveal the changes in soil microbial community. Results showed that increased precipitation significantly promoted the growth of soil AMF and Actinobacteria (Act). Increased precipitation significantly changed soil microbial community structure and promoted soil microbial community diversity, but it posed neutral effects on soil microbial community biomass. AMF suppression clearly inhibited AM fungal growth but increased the growth of Act and Gram-positive bacteria (G+) and posed limited effects on Gram-negative bacteria (G), leading to an increased G+/G ratio. Notably, AMF suppression posed slight effects on the biomass, diversity, and structure of soil microbial community. Random forest analysis revealed that soil ammonium nitrogen (NH4+-N), microbial biomass nitrogen (MBN), and soil organic carbon (SOC) were the main factors influencing different soil microbes, and soil Act and G+ were the main factors influencing plant community diversity, but AMF were the primary factor influencing plant community biomass. More importantly, structural equation modeling (SEM) results further confirmed that increased precipitation and AMF significantly altered plant community diversity by influencing soil AM fungi and increased plant community biomass by promoting soil AM fungal growth. In conclusion, our results demonstrate that increased precipitation enhances plant community productivity and diversity in desert ecosystems primarily by stimulating the growth of arbuscular mycorrhizal fungi, which function as a key biological pathway mediating the ecosystem’s response to climate change. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

9 pages, 3565 KB  
Article
Characteristics of Spatiotemporal Distribution of Microbial Communities in the Riparian Zone of the Three Gorges Reservoir Area
by Zheng Li, Baojie Jia, Ping Xie, Zhuofan Gao, Zhuo Huang, Shufang He, Haiqin Zhu, Jinlong Zhang and Shulong Cao
Processes 2025, 13(11), 3541; https://doi.org/10.3390/pr13113541 - 4 Nov 2025
Viewed by 267
Abstract
To investigate the impact of periodic water-level fluctuations on soil microbial community structure in the riparian zone of the Three Gorges Reservoir Area, this study focused on the riparian zone at Zhangjiawan near the dam. Surface soil samples (0–20 cm) were collected in [...] Read more.
To investigate the impact of periodic water-level fluctuations on soil microbial community structure in the riparian zone of the Three Gorges Reservoir Area, this study focused on the riparian zone at Zhangjiawan near the dam. Surface soil samples (0–20 cm) were collected in spring, summer, and autumn from three elevation gradients: below 160 m, 160–170 m, and above 170 m. Phospholipid fatty acid (PLFA) was employed to characterize the microbial community structure. The results indicated that microbial community distribution was significantly influenced by both elevation and season, with bacteria dominating community variations. In terms of elevation, the total microbial biomass and bacterial abundance were highest at the 160–170 m gradient, followed by the area above 170 m, and lowest below 160 m. Season and elevation exhibited a significant interactive effect on fungi. Seasonal patterns showed that total microbial biomass and bacterial abundance peaked in summer, whereas fungal abundance and the fungi-to-bacteria ratio were higher in autumn. In contrast, actinobacterial abundance remained stable across seasons. Soil organic carbon (SOC; 60.3%) was identified as the predominant environmental factor influencing microbial community structure, followed by total nitrogen (TN; 13.9%) and pH (2.4%). SOC was identified as the key driver of microbial community dynamics. These findings clarify the respective roles of water level fluctuation, seasonal variation, and environmental factors in shaping riparian microbial communities, providing critical baseline data and theoretical support for ecological protection and scientific management of the Three Gorges Reservoir Area. Full article
Show Figures

Figure 1

14 pages, 1889 KB  
Article
Greater Application of Nitrogen to Soil and Short-Term Fumigation with Elevated Carbon Dioxide Alters the Rhizospheric Microbial Community of xTriticocereale (Triticale): A Study of a Projected Climate Change Scenario
by Kritika Adesh Gadpayle, Namita Das Saha, Ranjan Bhattacharyya and Madan Pal
Nitrogen 2025, 6(3), 67; https://doi.org/10.3390/nitrogen6030067 - 14 Aug 2025
Viewed by 457
Abstract
An attempt was made to understand the interactive consequences of subjecting a rhizospheric microbial community of xTriticocereale (Triticale) to higher CO2 levels and soil nitrogen addition in the short term in a tropical agro-ecosystem. Open-top chambers (OTCs) were used to grow [...] Read more.
An attempt was made to understand the interactive consequences of subjecting a rhizospheric microbial community of xTriticocereale (Triticale) to higher CO2 levels and soil nitrogen addition in the short term in a tropical agro-ecosystem. Open-top chambers (OTCs) were used to grow the test crops for a single season under ambient CO2 (AC) and elevated CO2 (EC) along with two variable N dosages: recommended (N0: 0.053 g N/kg of soil) and high (N2: 0.107 g of N/kg of soil) levels. Variations in the composition of microbial communities and abundances were investigated using phospholipid fatty acid analysis (PLFA). A significantly (p < 0.001) increased microbial biomass content (MB) was observed under EC compared to AC, while the addition of N had a minor effect. A decreased fungi/bacteria (F/B) ratio (~38%) was observed with high N application in the CO2 enrichment treatment. Bacteria were more abundant, while fungal abundance decreased under N2 and EC. Gram (+ve) bacteria used these conditions to thrive under N2 and EC, while Gram (−ve) bacteria declined. No significant effects on actinomycetes were noticed in any of the treatments. However, eukaryotes acquired more benefits and flourished in response to EC. Varied responses were noted for the Shannon diversity index (H’) under EC. Overall, (i) bacteria (Gram-positive) and eukaryotes dominated under EC and high N addition, while fungi decreased, and (ii) EC and high levels of N addition did not affect actinomycetes. Short-term exposure under the given conditions was found to alter the rhizospheric microbial community. However, multiple season studies are needed to elucidate whether these short-term responses are transient or continuous. Full article
(This article belongs to the Special Issue Nitrogen Cycling and Bacterial Community)
Show Figures

Figure 1

17 pages, 3914 KB  
Article
The Community Structure and Diversity of Heterotrophic Microorganisms in the Soils of Taiga Forests, China
by Siyuan Liu, Zhichao Cheng, Mingliang Gao, Libin Yang and Yongzhi Liu
Microorganisms 2025, 13(8), 1853; https://doi.org/10.3390/microorganisms13081853 - 8 Aug 2025
Viewed by 490
Abstract
Heterotrophic microorganisms derive energy by decomposing organic matter. Their composition and community structure are influenced by environmental factors and interactions. Soil heterotrophic respiration was assessed by establishing vegetation removal plots (Hr) and control plots (Sr). Soil physicochemical properties were analyzed, and the composition [...] Read more.
Heterotrophic microorganisms derive energy by decomposing organic matter. Their composition and community structure are influenced by environmental factors and interactions. Soil heterotrophic respiration was assessed by establishing vegetation removal plots (Hr) and control plots (Sr). Soil physicochemical properties were analyzed, and the composition and biomass were evaluated using Illumina HiSeq sequencing and PLFA. The pH of Hr exhibited a significant increase (p < 0.05), whereas MC, MBC, SOC, DOC, TN, and AN all showed significant decreases (p < 0.05). PLFA analysis revealed that the biomass of bacteria, fungi, and total microorganisms in Hr was significantly lower than in Sr (p < 0.05). The predominant bacterial phyla were Acidobacteria, Verrucomycota, and Proteobacteria, with Verrucomycota significantly more abundant in Hr. The dominant fungal phyla were Ascomycota and Basidiomycota, both significantly more abundant in Hr. Community assembly was governed primarily by homogeneous selection in both Hr and Sr. The Hr co-occurrence network showed higher complexity, with >60% positive associations. Mantel tests confirmed significant links between soil properties (MC, pH, MBC, SOC, DOC, TN, and AN) and microbial composition. Vegetation removal induced soil heterogeneity and reduced microbial biomass with specific taxa shifts (Verrucomicrobia, Ascomycota, and Basidiomycota). Altered soil conditions and carbon resources reorganize microbial structure and function. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology, 2nd Edition)
Show Figures

Figure 1

12 pages, 1736 KB  
Article
Contrasting Effects of Moso Bamboo Expansion into Broad-Leaved and Coniferous Forests on Soil Microbial Communities
by Rong Lin, Wenjie Long, Fanqian Kong, Juanjuan Zhu, Miaomiao Wang, Juan Liu, Rui Li and Songze Wan
Forests 2025, 16(7), 1188; https://doi.org/10.3390/f16071188 - 18 Jul 2025
Viewed by 627
Abstract
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical [...] Read more.
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical regions. However, how soil microbial communities respond to this vegetation type transformation has not fully explored. To address this knowledge gap, a time-alternative spatial method was employed in the present study, and we investigated the effect of Moso bamboo expansion into subtropical broad-leaved forest and coniferous forest on soil microbial phospholipid fatty acids (PLFAs). We also measured the dynamics of key soil properties during the Moso bamboo expansion processes. Our results showed that Moso bamboo encroachment into subtropical broad-leaved forest induced an elevation in soil bacterial PLFAs (24.78%) and total microbial PLFAs (22.70%), while decreasing the fungal-to-bacterial (F:B) ratio. This trend was attributed to declines in soil NO3-N (18.63%) and soil organic carbon (SOC) concentrations (28.83%). Conversely, expansion into coniferous forests promoted soil fungal PLFAs (40.41%) and F:B ratio, primarily driven by increases in soil pH (4.83%) and decreases in SOC (36.18%). These results provide mechanistic insights into how contrasting expansion trajectories of Moso bamboo restructure soil microbial communities and highlight the need to consider vegetation context-dependency when evaluating the ecological consequences of Moso bamboo expansion. Full article
(This article belongs to the Special Issue Forest Soil Microbiology and Biogeochemistry)
Show Figures

Figure 1

18 pages, 1643 KB  
Article
The Contribution of Microbial- and Plant-Derived Carbon to Soil Organic Carbon Fractions and Stability Under Manure Application Combined with Straw Incorporation
by Yunjie Wen, Xian Liu, Na Yang, Yongping Li and Jiancheng Zhang
Agronomy 2025, 15(6), 1424; https://doi.org/10.3390/agronomy15061424 - 11 Jun 2025
Cited by 2 | Viewed by 1957
Abstract
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each [...] Read more.
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each influencing soil carbon dynamics and nutrient cycling. Current research gaps remain regarding how combined fertilization practices affect the inputs of plant-originated and microbe-derived carbon into SOC pools and stability mechanisms. Our investigation measured SOC fractions (DOC, POC, MOC), SOC mineralization rate (SCMR), microbial necromass carbon, lignin phenols, enzyme activities, and microbial phospholipid fatty acids (PLFAs) over a long-term (17 years) field experiment with four treatments: mineral fertilization alone (CF), manure-mineral combination (CM), straw-mineral application (CS), and integrated manure-straw-mineral treatment (CMS). The CMS treatment exhibited notably elevated levels of POC (7.42 g kg−1), MOC (10.7 g kg−1), and DOC (0.108 g kg−1), as well as a lower SCMR value (1.85%), compared with other fertilization treatments. Additionally, the CMS treatment stimulated the buildup of both bacterial and fungal necromass while enhancing the concentrations of ligneous biomarkers (vanillin, syringyl, and cinnamic derivatives), which correlated strongly with the elevated contents of fungal and bacterial PLFAs and heightened activity of carbon-processing enzymes (α-glucosidase, polyphenol oxidase, cellobiohydrolase, peroxidase, N-acetyl-β-D-glucosidase). Furthermore, fungal and bacterial microbial necromass carbon, together with lignin phenols, significantly contributed to shaping the composition of SOC. Through random forest analysis, we identified that the contents of bacterial and fungal necromass carbon were the key factors influencing DOC and MOC. The concentrations of syringyl phenol and cinnamyl phenols, and the syringyl-to-cinnamyl phenols ratio were the primary determinants for POC, while the fungal-to-bacterial necromass carbon ratio, as well as the concentrations of vanillyl, syringyl, and cinnamyl phenols, played a critical role in SCMR. In conclusion, the manure combined with straw incorporation not only promoted microbial growth and enzyme activity but also enhanced plant- and microbial-derived carbon inputs. Consequently, this led to an increase in the contents and stability of SOC fractions (DOC, POC, and MOC). These results suggest that manure combined with straw is a viable strategy for soil fertility due to its improvement in SOC sequestration and stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 2820 KB  
Article
Thinning Intensity Enhances Soil Multifunctionality and Microbial Residue Contributions to Organic Carbon Sequestration in Chinese Fir Plantations
by Ting He, Junjie Lei, Yuanying Peng, Ruihui Wang, Xiaoyong Chen, Zongxin Liu, Xiaoqian Gao, Peng Dang and Wende Yan
Plants 2025, 14(4), 579; https://doi.org/10.3390/plants14040579 - 14 Feb 2025
Viewed by 1083
Abstract
Soil multifunctionality is essential for the enhancement of soil carbon sequestration, but disturbances such as thinning practices can influence soil microbial activity and carbon cycling. Microbial residues, particularly microbial residue carbon (MRC), are important contributors to soil organic carbon (SOC), but the effects [...] Read more.
Soil multifunctionality is essential for the enhancement of soil carbon sequestration, but disturbances such as thinning practices can influence soil microbial activity and carbon cycling. Microbial residues, particularly microbial residue carbon (MRC), are important contributors to soil organic carbon (SOC), but the effects of thinning intensity on MRC accumulation remain poorly understood. This study evaluated the impact of four thinning treatments—control (CK, 0%), light-intensity thinning (LIT, 20%), medium-intensity thinning (MIT, 30%), and high-intensity thinning (HIT, 45%)—on soil multifunctionality in Chinese fir plantations five years after thinning. Soil nutrient provision, microbial biomass, enzyme activity, and microbial residue carbon were assessed. The results showed that thinning intensity significantly affected soil nutrient provision and microbial biomass, with MIT and HIT showing higher nutrient levels than CK and LIT. Specifically, MIT’s and HIT’s total nutrient provision increased by 0.04 and 0.15 compared to that of CK. Enzyme activity was highest in LIT (+0.89), followed by MIT (+0.07), with HIT showing a decline (−0.84). Microbial biomass, including bacterial PLFAs (B-PLFAs), fungal PLFAs (F-PLFAs), microbial biomass carbon (MBC), and nitrogen (MBN), was highest in CK and MIT, and lowest in HIT, with MIT showing a 0.13 increase compared to CK. Microbial residue carbon (MRC) accumulation was positively correlated with soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), and easily oxidized organic carbon (EOC). The highest MRC content in the 0–20 cm soil layer was observed in MIT and CK (10.46 and 11.66 g/kg, respectively), while the MRC in LIT and HIT was significantly lower, reduced by 24% and 12%, respectively. These findings highlight the significant role of thinning intensity in microbial activity and carbon cycling. Medium-intensity thinning (MIT, 30%) was identified as the most effective approach for promoting microbial biomass and enhancing carbon cycling in Chinese fir forest soils, making it an optimal approach for forest management aimed at increasing soil carbon sequestration. Full article
Show Figures

Figure 1

17 pages, 3363 KB  
Article
Shifts in the Soil Microbial Community and Enzyme Activity Under Picea crassifolia Plantations and Natural Forests
by Yunyou Zheng, Qiuyun Fan, Yuqing Geng, Lin Chen, Xiang Han, Weitai Wu and Famiao Shi
Forests 2025, 16(1), 14; https://doi.org/10.3390/f16010014 - 25 Dec 2024
Cited by 2 | Viewed by 1442
Abstract
Soil microbes are crucial for regulating biogeochemical cycles and maintaining forest ecosystem sustainability; however, the understanding of microbial communities and enzyme activity under natural and plantation forests in plateau regions remains limited. Using soil samples from 15-, 30-, and 50-year-old Picea crassifolia plantations [...] Read more.
Soil microbes are crucial for regulating biogeochemical cycles and maintaining forest ecosystem sustainability; however, the understanding of microbial communities and enzyme activity under natural and plantation forests in plateau regions remains limited. Using soil samples from 15-, 30-, and 50-year-old Picea crassifolia plantations and a natural forest (NF) in eastern Qinghai, China, this study assessed physicochemical properties, microbial communities, and enzyme activity across three soil layers. Microbial composition was characterized using the phospholipid fatty acid (PLFA) method, which is sensitive to structural changes. The PLFAs of bacteria, fungi, and actinomycetes accounted for 58.31%–74.20%, 8.91%–16.83%, and 3.41%–10.41% of the total PLFAs in all forests, respectively. There were significant differences between the NF and plantations, with the NF exhibiting higher PLFA abundance and enzyme activities than plantations, except for fungal PLFAs. PLFAs in plantations increased with the plantation age. However, the fungi-to-bacteria ratio was lower in the NF than in plantations. Finally, a redundancy analysis revealed that soil properties influence microbial composition and enzyme functionality significantly. These findings highlight the influence of stand age on microbial communities and structure, offering valuable insights for forest management practices aimed at conserving natural forests. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

14 pages, 1705 KB  
Article
Effects of Biological Nitrogen Fixation and Nitrogen Deposition on Soil Microbial Communities in Karst Grassland Ecosystems
by Xin Liu, Rong Yang, Jie Zhao, Dan Xiao, Xunyang He, Wei Zhang, Kelin Wang and Hongsong Chen
Microorganisms 2024, 12(12), 2429; https://doi.org/10.3390/microorganisms12122429 - 26 Nov 2024
Cited by 1 | Viewed by 1623
Abstract
Diverse exogenous nitrogen (N) sources have a considerable impact on microbial community structure in terrestrial ecosystems. Legume plants and N deposition can relieve N limitations and increase net primary productivity. However, the differences in their effects on soil microbial communities remain unclear. Here, [...] Read more.
Diverse exogenous nitrogen (N) sources have a considerable impact on microbial community structure in terrestrial ecosystems. Legume plants and N deposition can relieve N limitations and increase net primary productivity. However, the differences in their effects on soil microbial communities remain unclear. Here, the responses of the soil microbial community to a legume-planting system and simulated N deposition were examined in karst grasslands in Southwest China over five years by analyzing soil microbial phospholipid fatty acids (PLFAs). The experiment included three treatments—legume plant introduction (NL, Indigofera atropurpurea), N deposition (ND, NH4NO3:10 g N m−2 yr−1), and a control with no treatment. The effects of NL and ND on soil microbial community composition differed significantly. ND significantly reduced the biomass of bacteria, actinobacteria, and arbuscular mycorrhizal fungi. NL insignificantly increased the biomass of all microbial groups. However, the total amounts of PLFAs and fungal biomass were significantly higher in NL than in ND. The effect of legume plant introduction on soil microbial community composition was more powerful than that of ND. Overall, the introduction of legume plants is beneficial in terms of increasing the biomass of the soil microbial community and stabilizing the soil microbial community structure in karst grassland ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 5263 KB  
Article
Kiwifruit Vine Decline Syndrome (KVDS) Alters Soil Enzyme Activity and Microbial Community
by Valentino Bergamaschi, Alfonso Vera, Lucia Pirone, José A. Siles, Rubén López-Mondéjar, Laura Luongo, Salvatore Vitale, Massimo Reverberi, Alessandro Infantino and Felipe Bastida
Microorganisms 2024, 12(11), 2347; https://doi.org/10.3390/microorganisms12112347 - 16 Nov 2024
Cited by 2 | Viewed by 1561
Abstract
Kiwifruit Vine Decline Syndrome (KVDS) has become a major concern in Italy, impacting both plant health and production. This study aims to investigate how KVDS affects soil health indicators and the composition of soil microbial communities by comparing symptomatic and asymptomatic areas in [...] Read more.
Kiwifruit Vine Decline Syndrome (KVDS) has become a major concern in Italy, impacting both plant health and production. This study aims to investigate how KVDS affects soil health indicators and the composition of soil microbial communities by comparing symptomatic and asymptomatic areas in two kiwifruit orchards located in Latium, Italy. Soil samples were collected during both spring and autumn to assess seasonal variations in soil physicochemical properties, enzyme activities, and microbial biomass. The results reveal that KVDS influences several soil properties, including pH, electrical conductivity, and the contents of water-soluble carbon and nitrogen. However, these effects varied between orchards and across different seasons. Additionally, KVDS significantly impacts soil enzyme activities and microbial biomass, as assessed through the phospholipid fatty acid (PLFA) analysis, particularly showing an increase in fungal biomass in symptomatic areas. Metabarcoding further demonstrates that microbial communities differ between symptomatic and asymptomatic soils, exhibiting notable shifts in both diversity and relative abundance. Our findings emphasise the complex interactions between plants, soil, and microbial communities in relation to KVDS. This suggests that the syndrome is multifactorial and likely linked to an imbalance in soil microbial communities at the rhizosphere level, which can negatively affect soil health. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

11 pages, 2655 KB  
Article
The Negative Effects of Tourist Trampling on the Soil Physical Properties and Microbial Community Composition in a Natural Oak Forest
by Qing Shang, Changfu Li and Yanchun Liu
Forests 2024, 15(8), 1419; https://doi.org/10.3390/f15081419 - 13 Aug 2024
Cited by 2 | Viewed by 2190
Abstract
Tourist trampling is a serious disturbance affecting the soil structure and microbial community in forests. However, it is still unclear whether the response of soil microorganisms to trampling is attributed to the alterations in soil physical (soil bulk density and total porosity) or [...] Read more.
Tourist trampling is a serious disturbance affecting the soil structure and microbial community in forests. However, it is still unclear whether the response of soil microorganisms to trampling is attributed to the alterations in soil physical (soil bulk density and total porosity) or soil chemical (total nitrogen and soil organic carbon) properties. To determine the response and mechanism of soil microbial community composition to tourist trampling, we conducted a field experiment including four levels of trampling intensity (control, mild, moderate, and severe) at the Baotianman forest ecotourism area. With increasing trampling intensity, soil bulk density showed a substantially increasing pattern, whereas soil total porosity, total nitrogen, and soil organic carbon showed a decreasing trend. Compared to the insignificant change under mild trampling, moderate and severe trampling significantly decreased soil bacterial PLFAs (phospholipid fatty acids) by 46.6% and 57.5%, and fungal PLFAs by 36.3% and 61.5%, respectively. Severe trampling showed a significantly negative effect (−4.37%) on the proportion of soil bacterial PLFAs. Changes in soil bulk density and porosity induced by trampling, rather than total nitrogen and soil organic carbon, played a greater role in regulating soil microbial community composition. These findings suggest that soil microbial community composition and biomass are significantly influenced by the changes in soil texture and aeration conditions caused by tourist trampling. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Figure 1

13 pages, 3496 KB  
Article
Soil Microbial Community Structures under Annual and Perennial Crops Treated with Different Nitrogen Fertilization Rates
by Sadikshya R. Dangi, Upendra M. Sainju, Brett L. Allen and Rosalie B. Calderon
Soil Syst. 2024, 8(3), 81; https://doi.org/10.3390/soilsystems8030081 - 15 Jul 2024
Cited by 1 | Viewed by 1899
Abstract
Perennial bioenergy crops may enhance microbial community structures due to their extensive root system compared to annual crops. However, the long-term effect of perennial bioenergy crops receiving different N fertilization rates on microbial community structures is not well defined. We evaluated the 11-year [...] Read more.
Perennial bioenergy crops may enhance microbial community structures due to their extensive root system compared to annual crops. However, the long-term effect of perennial bioenergy crops receiving different N fertilization rates on microbial community structures is not well defined. We evaluated the 11-year effect of perennial bioenergy crops with various N fertilization rates as well as an annual crop with the recommended N rate on soil microbial properties in 2019 and 2020 in the US northern Great Plains. Perennial grasses were intermediate wheatgrass, IWG (Thinopyrum intermedium [Host] Barkworth and Dewey), and switchgrass, SG (Panicum virgatum L.), with N fertilization rates of 0, 28, 56, and 84 kg N ha−1, and the annual crop was spring wheat, WH (Triticum aestivum, L.) with 80 kg N ha−1. The total fungal phospholipid fatty acid (PLFA) proportion and fungal/bacterial ratio were significantly lower under annual spring wheat than perennial grass (SG). Increased N fertilization rate linearly increased Gram-positive bacterial PLFA proportions and the Gram-positive/Gram-negative bacterial ratio for IWG in 2020 but decreased the PLFA proportions of arbuscular mycorrhizal fungi (AMF) for both perennial bioenergy crops in all years. The proportions of AMF neutral lipid fatty acid and Gram-negative bacterial PLFA were greater for SG (0.432 and 0.271, respectively) than IWG (0.339 and 0.258, respectively), but actinomycetes and the Gram-positive/Gram-negative bacterial ratio were greater for IWG (0.160 and 1.532, respectively) compared to SG (0.152 and 1.437, respectively). Microbial community structures varied with perennial bioenergy crops, N fertilization rates, and perennial vs. annual crops. This study showed how perennial crops favored fungal growth and how annual crops enhanced bacterial growth impacting soil biological health. Full article
Show Figures

Figure 1

10 pages, 3282 KB  
Article
Insights for Soil Improvements: Unraveling Distinct Mechanisms of Microbial Residue Carbon Accumulation under Chemical and Anaerobic Soil Disinfestation
by Kejian Yang, Jiangtao Yan, Xianwei Wang, Pengtao She, Zhonghui Li, Risheng Xu and Yanlong Chen
Agronomy 2024, 14(7), 1430; https://doi.org/10.3390/agronomy14071430 - 30 Jun 2024
Cited by 1 | Viewed by 1743
Abstract
Soil disinfestation has been widely used as an effective strategy to improve soil health and crop yield by suppression of soil-borne plant pathogens, but its effect on soil organic carbon (SOC), a crucial factor linked to climate change, remains unknown. A microcosm trial [...] Read more.
Soil disinfestation has been widely used as an effective strategy to improve soil health and crop yield by suppression of soil-borne plant pathogens, but its effect on soil organic carbon (SOC), a crucial factor linked to climate change, remains unknown. A microcosm trial was conducted to evaluate microbial residue carbon (MRC) and its contribution to SOC under chemical soil disinfestation (CSD) with quicklime (QL) and chloropicrin (CP), as well as anaerobic soil disinfestation (ASD) with maize straw (MASD) and soybean straw (SASD). The SOC concentrations were increased by both CSD and ASD. Also, total SOC-normalized MRC concentration was enhanced, with a considerable increase in soil bacterial and fungal MRC, particularly evident under CP and SASD treatment. Due to broad-spectrum biocidal activities, decreased SOC-normalized microbial biomass carbon (MBC) was consistent with the reductions in bacterial and fungal phospholipid fatty acids (PLFAs), consequently increasing MRC accumulation under CSD. Similarly, ASD decreased fungal PLFAs while shifting bacterial PLFAs from aerobic to anaerobic taxa or from gram-negative to -positive taxa, both of which contributed to both MBC and MRC buildup. Collectively, the findings demonstrate that ASD can efficiently increase SOC concentration, with distinct mechanisms underlying MRC generation when compared to traditional CSD. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 31831 KB  
Article
Changes in Microbial Community and Activity of Chernozem Soil under Different Management Systems in a Long-Term Field Experiment in Hungary
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Ida Kincses, Magdolna Tállai, Zsolt Sándor, János Kátai, Tamás Rátonyi and Rita Kremper
Agronomy 2024, 14(4), 745; https://doi.org/10.3390/agronomy14040745 - 4 Apr 2024
Cited by 5 | Viewed by 2358
Abstract
The effects of intensive and reduced tillage, fertilization, and irrigation on soil chemical and microbiological parameters were studied in a long-term field experiment in Hungary. The treatments were plowing tillage, ripper tillage, strip tillage; control (without fertilization), NPK fertilization (N: 160 kg/ha; P: [...] Read more.
The effects of intensive and reduced tillage, fertilization, and irrigation on soil chemical and microbiological parameters were studied in a long-term field experiment in Hungary. The treatments were plowing tillage, ripper tillage, strip tillage; control (without fertilization), NPK fertilization (N: 160 kg/ha; P: 26 kg/ha; K: 74 kg/ha); and non-irrigation and irrigation. Soil samples were collected through maize monoculture in the fall of 2021 in the 30th year of the experiment. The soil organic carbon, total nitrogen, soil microbial biomass (based on PLFA analysis), and soil enzyme activity were observed to be significantly high in the strip tillage plots, but were lower in the ripper tillage plots, and even lower in the plowing tillage plots. The fungal, arbuscular mycorrhiza fungal, and bacterial biomasses were significantly higher in the strip tillage and ripper tillage plots compared to the plowing tillage plots. The strip tillage treatment was found to be the most favorable cultivation method for improving the microbial biomass and activity of Chernozem soil, followed by the ripper tillage and plowing tillage treatments. The long-term use of chemical fertilizers greatly reduced the soil microbial biomass and negatively impacted the soil microbial community, leading to a decrease in fungi and Gram-negative bacteria. The ratio of cyclopropyl PLFA precursors to cyclopropyl PLFAs, as a “stress factor”, indicated the most stressful bacterial environment was that found in the fertilized, non-irrigated plowed soil. Full article
(This article belongs to the Special Issue Tillage Systems and Fertilizer Application on Soil Health)
Show Figures

Figure 1

11 pages, 769 KB  
Article
The Effect of Alternative Dryland Crops on Soil Microbial Communities
by Sadikshya R. Dangi, Brett L. Allen, Jay D. Jabro, Tatyana A. Rand, Joshua W. Campbell and Rosalie B. Calderon
Soil Syst. 2024, 8(1), 4; https://doi.org/10.3390/soilsystems8010004 - 25 Dec 2023
Cited by 1 | Viewed by 2326
Abstract
The composition of a soil microbial community that is associated with novel rotation crops could contribute to an increased yield of subsequent crops and is an important factor influencing the composition of the rhizosphere microbiome. However, the effect of alternative dryland crops on [...] Read more.
The composition of a soil microbial community that is associated with novel rotation crops could contribute to an increased yield of subsequent crops and is an important factor influencing the composition of the rhizosphere microbiome. However, the effect of alternative dryland crops on soil microbial community composition is not clear in the northern Great Plains (NGP). The objective of this study, therefore, was to evaluate the effects of the oilseed crops Ethiopian mustard (Brassica carinata A.) or camelina (Camelina sativa L.) or a 10-species forage/cover crop (CC) mix and fallow on soil biological health. Phospholipid fatty acid (PLFA) analysis was used to characterize the microbial community structure. The results showed that the total bacterial PLFA proportion was significantly higher in camelina and fallow compared to CCs and carinata, whereas the total fungal proportion was significantly higher under a CC mix compared to camelina and fallow. The fungal-to-bacterial ratio was significantly higher in CCs (0.130) and carinata (0.113) compared to fallow (0.088). Fungi are often considered a good indicator of soil health, while bacteria are crucial in soil functions. The changes in specific microbial communities due to crop-related alterations might play a key role in the yield of subsequent crops. This study provides valuable insights into the effect of oilseeds, CCs, and fallow on microbial communities. Full article
Show Figures

Figure 1

Back to TopTop