Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = geothermal gradient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8099 KB  
Article
Multidisciplinary Constraints on the Lithospheric Architecture of the Eastern Heihe-Hegenshan Suture (NE China) from Magnetotelluric Imaging and Laboratory-Based Conductivity Experiment
by Tong Sun, Mengqi Wang, Qichun Yin, Kang Wang, Huaben Yang, Tianen Zhang, Jia Feng and He Yuan
Minerals 2025, 15(11), 1144; https://doi.org/10.3390/min15111144 - 31 Oct 2025
Viewed by 277
Abstract
The Central Asian Orogenic Belt (CAOB) represents one of the largest Phanerozoic accretionary orogenic systems globally, with its easternmost segment located in Northeast China. This study integrated broadband magnetotelluric (MT) surveys, geochemical analyses, and high-pressure, high-temperature electrical conductivity experiments to elucidate the deep [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents one of the largest Phanerozoic accretionary orogenic systems globally, with its easternmost segment located in Northeast China. This study integrated broadband magnetotelluric (MT) surveys, geochemical analyses, and high-pressure, high-temperature electrical conductivity experiments to elucidate the deep structural characteristics and tectonic evolution of the Heihe-Hegenshan Suture (HHS) within the CAOB. A dense MT profile survey comprising 15 stations was deployed across the HHS, revealing distinct high-conductivity anomalies interpreted as the suture zone and associated tectonic features. Geochemical and petrophysical analyses of representative andesite and granite samples under simulated crustal conditions (573–973 K, 1.0 GPa) provided critical constraints for MT data interpretation. The integration of MT inversion results with aeromagnetic and Bouguer gravity anomaly data delineates the strike and spatial extent of the HHS, confirming its continuity and northward extension beyond previously recognized limits. Numerical modeling of geothermal gradients and electrical conductivity–depth relationships highlights the dominant role of hydrothermal fluids and alteration minerals in controlling shallow high-conductivity anomalies (<5 km), while deeper structures (>5 km) reflect temperature-controlled rock conductivity. These findings offer novel insights into the lithospheric-scale architecture and geodynamic processes governing the HHS, advancing our understanding of complex accretionary orogenesis in the CAOB. Full article
Show Figures

Figure 1

24 pages, 4387 KB  
Article
Deep Temperature and Heat-Flow Characteristics in Uplifted and Depressed Geothermal Areas
by Pengfei Chi, Guoshu Huang, Liang Liu, Jian Yang, Ning Wang, Xueting Jing, Junjun Zhou, Ningbo Bai and Hui Ding
Energies 2025, 18(21), 5610; https://doi.org/10.3390/en18215610 - 25 Oct 2025
Viewed by 246
Abstract
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling [...] Read more.
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling approach based on step-faulted depressions (sedimentary basins/grabens) and uplifts (domes/uplift belts). We simulate temperature fields and heat flux distributions in multilayered systems incorporating four thermal conductivity types (A, K, H, Q). By systematically comparing the geometric heat flow convergence in depressions with the lateral diffusion in uplifts, this work reveals mirror and anti-mirror relationships between temperature fields and structural morphology at middle and deep levels, as well as local “hot spot” and “cold zone” effects. The results indicate that, in depressional structures, shallow high-temperature reservoirs (<2 km) are mainly concentrated in A- and K-types, while deeper reservoirs (>3 km) are enriched in Q- and H-types. In contrast, uplift structures are characterized by mid- to shallow-depth (<3 km) reservoirs predominantly in A- and K-types, with high temperatures at depth preferentially hosted in A- and H-types, and the highest temperatures observed in the A-type. Thermal conductivity contrasts, layer thicknesses, and structural morphology collectively control the spatial distribution of heat flux. A strong positive correlation between thermal conductivity and heat flux is observed at the central target area, significantly stronger than at the margins, whereas this relationship is notably weakened in Q-type. Crucially, low-conductivity zones display high geothermal gradients coupled with low terrestrial heat flow, disproving the axiom that “elevated geothermal gradients imply high heat flow,” thus establishing “high-gradient/low-heat-flow coupling zones” as strategic exploration targets. The model developed in this study demonstrates high simulation accuracy and computational efficiency. The findings provide a robust theoretical basis for reconstructing geothermal geological evolution and precise geothermal target localization, thereby reducing the risk of “blind heat exploration” and promoting the cost-effective and refined development of deep concealed geothermal resources. Full article
(This article belongs to the Special Issue Advanced Research in Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 19394 KB  
Article
Physio-Mechanical Properties and Meso-Scale Damage Mechanism of Granite Under Thermal Shock
by Kai Gao, Jiamin Wang, Chi Liu, Pengyu Mu and Yun Wu
Energies 2025, 18(20), 5366; https://doi.org/10.3390/en18205366 - 11 Oct 2025
Viewed by 308
Abstract
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different [...] Read more.
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different temperatures (20 °C, 150 °C, 300 °C, 450 °C, 600 °C, and 750 °C) were subjected to rapid cooling treatment with liquid nitrogen. After the thermal treatment, a series of tests were conducted on the granite, including wave velocity test, uniaxial compression experiment, computed tomography scanning, and scanning electron microscopy test, to explore the influence of thermal shock on the physical and mechanical parameters as well as the meso-structural damage of granite. The results show that with the increase in heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of granite gradually decrease, while the peak strain gradually increases. Additionally, the failure mode of granite gradually transitions from brittle failure to ductile failure. Through CT scanning experiments, the spatial distribution characteristics of the pore–fracture structure of granite under the influence of different temperature gradients and temperature change rates were obtained, which can directly reflect the damage degree of the rock structure. When the heat treatment temperature is 450 °C or lower, the number of thermally induced cracks in the scanned sections of granite is relatively small, and the connectivity of the cracks is poor. When the temperature exceeds 450 °C, the micro-cracks inside the granite develop and expand rapidly, and there is a gradual tendency to form a fracture network, resulting in a more significant effect of fracture initiation and permeability enhancement of the rock. The research results are of great significance for the development and utilization of hot dry rock and the evaluation of thermal reservoir connectivity and can provide useful references for rock engineering involving high-temperature thermal fracturing. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

17 pages, 16586 KB  
Article
Heat Extraction Performance Evaluation of Horizontal Wells in Hydrothermal Reservoirs and Multivariate Sensitivity Analysis Based on the XGBoost-SHAP Algorithm
by Shuaishuai Nie, Ke Liu, Bo Yang, Xiuping Zhong, Hua Guo, Jiangfei Li and Kangtai Xu
Processes 2025, 13(10), 3237; https://doi.org/10.3390/pr13103237 - 11 Oct 2025
Viewed by 354
Abstract
The present study investigated the heat extraction behavior of the horizontal well closed-loop geothermal systems under multi-factor influences. Particularly, the numerical model was established based on the geological condition of the geothermal field in Xiong’an New Area, and the XGBoost-SHAP (eXtreme Gradient Boosting [...] Read more.
The present study investigated the heat extraction behavior of the horizontal well closed-loop geothermal systems under multi-factor influences. Particularly, the numerical model was established based on the geological condition of the geothermal field in Xiong’an New Area, and the XGBoost-SHAP (eXtreme Gradient Boosting and SHapley Additive exPlanations) algorithm was employed for multivariable analysis. The results indicated that the produced water temperature and thermal power of a 3000 m-long horizontal well were 2.61 and 4.23 times higher than those of the vertical well, respectively, demonstrating tantalizing heat extraction potential. The horizontal section length (SHAP values of 8.13 and 165.18) was the primary factor influencing production temperature and thermal power, followed by the injection rate (SHAP values of 1.96 and 64.35), while injection temperature (SHAP values of 1.27 and 21.42), geothermal gradient (SHAP values of 0.95 and 19.97), and rock heat conductivity (SHAP values of 0.334 and 17.054) had relatively limited effects. The optimal horizontal section length was 2375 m. Under this condition, the produced water temperature can be maintained higher than 40 °C, thereby meeting the heating demand. These findings provide important insights and guidance for the application of horizontal wells in hydrothermal reservoirs. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

34 pages, 8658 KB  
Article
Driving Processes of the Niland Moving Mud Spring: A Conceptual Model of a Unique Geohazard in California’s Eastern Salton Sea Region
by Barry J. Hibbs
GeoHazards 2025, 6(4), 59; https://doi.org/10.3390/geohazards6040059 - 25 Sep 2025
Viewed by 865
Abstract
The Niland Moving Mud Spring, located near the southeastern margin of the Salton Sea, represents a rare and evolving geotechnical hazard. Unlike the typically stationary mud pots of the Salton Trough, this spring is a CO2-driven mud spring that has migrated [...] Read more.
The Niland Moving Mud Spring, located near the southeastern margin of the Salton Sea, represents a rare and evolving geotechnical hazard. Unlike the typically stationary mud pots of the Salton Trough, this spring is a CO2-driven mud spring that has migrated southwestward since 2016, at times exceeding 3 m per month, posing threats to critical infrastructure including rail lines, highways, and pipelines. Emergency mitigation efforts initiated in 2018, including decompression wells, containment berms, and route realignments, have since slowed and recently almost halted its movement and growth. This study integrates hydrochemical, temperature, stable isotope, and tritium data to propose a refined conceptual model of the Moving Mud Spring’s origin and migration. Temperature data from the Moving Mud Spring (26.5 °C to 28.3 °C) and elevated but non-geothermal total dissolved solids (~18,000 mg/L) suggest a shallow, thermally buffered groundwater source influenced by interaction with saline lacustrine sediments. Stable water isotope data follow an evaporative trajectory consistent with imported Colorado River water, while tritium concentrations (~5 TU) confirm a modern recharge source. These findings rule out deep geothermal or residual floodwater origins from the great “1906 flood”, and instead implicate more recent irrigation seepage or canal leakage as the primary water source. A key external forcing may be the 4.1 m drop in Salton Sea water level between 2003 and 2025, which has modified regional groundwater hydraulic head gradients. This recession likely enhanced lateral groundwater flow from the Moving Mud Spring area, potentially facilitating the migration of upwelling geothermal gases and contributing to spring movement. No faults or structural features reportedly align with the spring’s trajectory, and most major fault systems trend perpendicular to its movement. The hydrologically driven model proposed in this paper, linked to Salton Sea water level decline and correlated with the direction, rate, and timing of the spring’s migration, offers a new empirical explanation for the observed movement of the Niland Moving Mud Spring. Full article
Show Figures

Figure 1

31 pages, 7435 KB  
Article
Rapid Open-Source-Based Simulation Approach for Coaxial Medium-Deep and Deep Borehole Heat Exchanger Systems
by Dmitry Romanov, Ingela Becker-Grupe, Amir M. Jodeiri, Marco Cozzini and Stefan Holler
Energies 2025, 18(18), 4921; https://doi.org/10.3390/en18184921 - 16 Sep 2025
Viewed by 708
Abstract
Compared to shallow geothermal systems, coaxial medium-deep and deep borehole heat exchangers (MDBHE and DBHE) offer higher temperatures and heat extraction rates while requiring less surface area, making them attractive options for sustainable heat supply in combination with ground-source heat pumps (GSHP). However, [...] Read more.
Compared to shallow geothermal systems, coaxial medium-deep and deep borehole heat exchangers (MDBHE and DBHE) offer higher temperatures and heat extraction rates while requiring less surface area, making them attractive options for sustainable heat supply in combination with ground-source heat pumps (GSHP). However, existing simulation tools for such systems are often limited in computational efficiency or open-source availability. To address this gap, we propose a rapid modeling approach using the open-source Python package “pygfunction” (v2.3.0). Its workflow was adjusted to accept the fluid inlet temperature as input. The effective undisturbed ground temperature and ground thermophysical properties were weight-averaged considering stratified ground layers. Validation of the approach was conducted by comparing simulation results with 12 references, including established models and experimental data. The proposed method enables fast estimation of fluid temperatures and heat extraction rates for single boreholes and small-scale bore fields in both homogeneous and heterogeneous geological conditions at depths of 700–3000 m, thus supporting rapid assessments of the coefficient of performance (COP) of GSHP. The approach systematically underestimates fluid outlet temperatures by up to 2–3 °C, resulting in a maximum underestimation of COP of 4%. Under significant groundwater flow or extreme geothermal gradients, these errors may increase to 4 °C and 6%, respectively. Based on the available data, these discrepancies may result in errors in GSHP electric power estimation of approximately ±10%. The method offers practical value for GSHP performance evaluation, geothermal potential mapping, and district heating network planning, supporting geologists, engineers, planners, and decision-makers. Full article
(This article belongs to the Special Issue Geothermal Energy Heating Systems)
Show Figures

Figure 1

20 pages, 14858 KB  
Article
Hydrochemistry and Geothermal Potential of Żary Pericline (SW Poland)
by Barbara Kiełczawa
Water 2025, 17(17), 2647; https://doi.org/10.3390/w17172647 - 7 Sep 2025
Viewed by 1596
Abstract
The mineralization of groundwater within the Żary pericline exhibits a broad range, from 0.2 to 0.3 g/L up to 401 g/L, with the majority classified as brines. These waters are predominantly chloride-rich, characterized by variable concentrations of cations such as Na+, [...] Read more.
The mineralization of groundwater within the Żary pericline exhibits a broad range, from 0.2 to 0.3 g/L up to 401 g/L, with the majority classified as brines. These waters are predominantly chloride-rich, characterized by variable concentrations of cations such as Na+, K+, Ca2+, and Mg2+. Their chemical composition varies by geological formation: Na-Cl and Mg-Cl types dominate in the Triassic strata, while more complex mixtures are observed in the Zechstein and Rotliegend formations. Brine formation and evolution are primarily influenced by evaporation and ion exchange processes, particularly Na+/Ca2+ exchange. These brines represent residual evaporative fluids that migrate through the subsurface during sediment compaction and tectonic deformation. The observed variability in mineral content suggests the occurrence of hydrochemical inversion within the geological layers. Groundwater temperatures range from 20 °C to 55 °C at depths between 490 and 1525 meters below ground level. The geothermal gradient spans from 3.55 °C/100 m to 4 °C/100 m, with the highest values recorded in the western and northwestern sectors of the pericline. These thermal conditions indicate promising potential for geothermal energy development in the region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

36 pages, 6877 KB  
Article
Machine Learning for Reservoir Quality Prediction in Chlorite-Bearing Sandstone Reservoirs
by Thomas E. Nichols, Richard H. Worden, James E. Houghton, Joshua Griffiths, Christian Brostrøm and Allard W. Martinius
Geosciences 2025, 15(8), 325; https://doi.org/10.3390/geosciences15080325 - 19 Aug 2025
Viewed by 983
Abstract
We have developed a generalisable machine learning framework for reservoir quality prediction in deeply buried clastic systems. Applied to the Lower Jurassic deltaic sandstones of the Tilje Formation (Halten Terrace, North Sea), the approach integrates sedimentological facies modelling with mineralogical and petrophysical prediction [...] Read more.
We have developed a generalisable machine learning framework for reservoir quality prediction in deeply buried clastic systems. Applied to the Lower Jurassic deltaic sandstones of the Tilje Formation (Halten Terrace, North Sea), the approach integrates sedimentological facies modelling with mineralogical and petrophysical prediction in a single workflow. Using supervised Extreme Gradient Boosting (XGBoost) models, we classify reservoir facies, predict permeability directly from standard wireline log parameters and estimate the abundance of porosity-preserving grain coating chlorite (gamma ray, neutron porosity, caliper, photoelectric effect, bulk density, compressional and shear sonic, and deep resistivity). Model development and evaluation employed stratified K-fold cross-validation to preserve facies proportions and mineralogical variability across folds, supporting robust performance assessment and testing generalisability across a geologically heterogeneous dataset. Core description, point count petrography, and core plug analyses were used for ground truthing. The models distinguish chlorite-associated facies with up to 80% accuracy and estimate permeability with a mean absolute error of 0.782 log(mD), improving substantially on conventional regression-based approaches. The models also enable prediction, for the first time using wireline logs, grain-coating chlorite abundance with a mean absolute error of 1.79% (range 0–16%). The framework takes advantage of diagnostic petrophysical responses associated with chlorite and high porosity, yielding geologically consistent and interpretable results. It addresses persistent challenges in characterising thinly bedded, heterogeneous intervals beyond the resolution of traditional methods and is transferable to other clastic reservoirs, including those considered for carbon storage and geothermal applications. The workflow supports cost-effective, high-confidence subsurface characterisation and contributes a flexible methodology for future work at the interface of geoscience and machine learning. Full article
Show Figures

Figure 1

27 pages, 6253 KB  
Article
Estimation of Hydraulic Conductivity from Well Logs for the Parameterization of Heterogeneous Multilayer Aquifer Systems
by Boris Lora-Ariza, Luis Silva Vargas and Leonardo David Donado
Water 2025, 17(16), 2439; https://doi.org/10.3390/w17162439 - 18 Aug 2025
Cited by 1 | Viewed by 1247
Abstract
This study presents a methodology for estimating hydraulic conductivity (K) from well geophysical logs, with the aim of improving the parameterization of hydrogeological models in data-scarce regions. The lack of data poses a challenge for aquifer characterization, especially in contexts requiring integrated groundwater [...] Read more.
This study presents a methodology for estimating hydraulic conductivity (K) from well geophysical logs, with the aim of improving the parameterization of hydrogeological models in data-scarce regions. The lack of data poses a challenge for aquifer characterization, especially in contexts requiring integrated groundwater management. In such contexts, indirect methods can support estimation of key hydraulic parameters. The proposed methodology was applied to wells which penetrate Neogene–Quaternary hydrogeological units of the sedimentary aquifer system in the Middle Magdalena Valley, Colombia. Effective porosity was estimated from sonic and gamma ray logs, while temperature profiles were derived from the regional geothermal gradient and calibrated with field measurements. Hydraulic conductivity was estimated using an approach based on the Csókás method and validated through comparison with 131 pumping tests and alignment with the parameterization of a previously calibrated regional groundwater flow model. Pumping tests yielded geometric mean K values of 1.56 m/day in floodplain deposits (QFal), 1.36 m/day in U4, and 0.96 m/day in U3. K values from well logs ranged from 1.65 to 2.95 m/day, within the same order of magnitude. These findings support the proposed methodology as a viable alternative for the parameterization of numerical hydrogeological models in data-scarce environments. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology—Second Edition)
Show Figures

Figure 1

22 pages, 9502 KB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 - 6 Aug 2025
Viewed by 977
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

17 pages, 3817 KB  
Article
The Distribution Characteristics of Frost Heaving Forces on Tunnels in Cold Regions Based on Thermo-Mechanical Coupling
by Yujia Sun, Lei Peng and Qionglin Li
Appl. Sci. 2025, 15(15), 8537; https://doi.org/10.3390/app15158537 - 31 Jul 2025
Viewed by 521
Abstract
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall [...] Read more.
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall frost heaves in a freeze–thaw cycle. Using a COMSOL Multiphysics 6.0 platform and the sequential coupling method, the temperature field evolution of tunnel-surrounding rock, freezing cycle development, and distribution characteristics of the frost heaving force of a tunnel lining under different minimum temperatures, numbers of negative temperature days, frost heave ratios, and anisotropy coefficients of frost heave deformation were systematically simulated. The results revealed that the response of the temperature field of tunnel-surrounding rock to the external temperature varies spatially with time lags, the shallow surface temperatures and the area around the lining fluctuate with the climate, and the temperature of the deep surrounding rock is dominated by the geothermal gradient. The extent of the freezing cycle and the frost heaving force increase significantly when lowering the minimum temperature. The maximum frost heaving force usually occurs in the region of the side wall and the spring line, and tensile stress is prone to be generated at the spring line; the influence of slight fluctuations in the minimum temperature or the short shift in the coldest day on the frost heaving force is limited. A substantial increase in frost heaving force is observed with higher frost heave ratios; for example, an increase from 0.25% to 2.0% results in a 116% rise at the sidewall. Although the increase in the anisotropy coefficient of frost heave deformation does not change the overall distribution pattern of frost heaving force, it can exacerbate the directional concentration of frost heave strain, which can increase the frost heaving force at the periphery of the top arch of the lining. This study revealed the distribution pattern and key influencing factors of the freezing cycle and frost heaving force for tunnels, providing a theoretical basis and data reference for the frost resistance design of tunnels in cold regions. Full article
Show Figures

Figure 1

21 pages, 18596 KB  
Article
Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
by Wenbo Yang, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang and Zhongquan Li
Energies 2025, 18(15), 3901; https://doi.org/10.3390/en18153901 - 22 Jul 2025
Viewed by 572
Abstract
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The [...] Read more.
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The following are our key findings: (1) Heat transfer is conduction-dominated, with thermal anomalies in Late Permian–Early Cambrian strata. Four mudstone/shale caprocks and three carbonate reservoirs occur, with the Longtan Formation as the key seal. Reservoir geothermal gradients (25.05–32.55 °C/km) exceed basin averages. (2) Transtensional strike-slip faults form E-W/NE/NW networks; most terminate at the Permian Longtan Formation, with few extending into the Lower Triassic while penetrating the Archean–Lower Proterozoic basement. (3) Structural highs positively correlate with higher geothermal gradients. (4) The deep geothermal reservoirs and thermal accumulation mechanisms in the Moxi area are jointly controlled by crustal thinning, basement uplift, and structural architecture. Mantle-derived heat converges at basement uplift cores, generating localized thermal anomalies. Fault networks connect these deep heat sources, facilitating upward fluid migration. Thick Longtan Formation shale seals these rising thermal fluids, causing anomalous heating in underlying strata and concentrated thermal accumulation in reservoirs—enhanced by thermal focusing effects from uplift structures. This study establishes a theoretical framework for target selection and industrial-scale geothermal exploitation in sedimentary basins, highlighting the potential for repurposing oil/gas infrastructure. Full article
Show Figures

Figure 1

22 pages, 6083 KB  
Article
Geochemical Characteristics and Thermal Evolution History of Jurassic Tamulangou Formation Source Rocks in the Hongqi Depression, Hailar Basin
by Junping Cui, Wei Jin, Zhanli Ren, Hua Tao, Haoyu Song and Wei Guo
Appl. Sci. 2025, 15(14), 8052; https://doi.org/10.3390/app15148052 - 19 Jul 2025
Viewed by 546
Abstract
The Jurassic Tamulangou Formation in the Hongqi Depression has favorable hydrocarbon generation conditions and great resource potential. This study systematically analyzes the geochemical characteristics and thermal evolution history of the source rocks using data from multiple key wells. The dark mudstone of the [...] Read more.
The Jurassic Tamulangou Formation in the Hongqi Depression has favorable hydrocarbon generation conditions and great resource potential. This study systematically analyzes the geochemical characteristics and thermal evolution history of the source rocks using data from multiple key wells. The dark mudstone of the Tamulangou Formation has a thickness ranging from 50 to 200 m, with an average total organic carbon (TOC) content of 0.14–2.91%, an average chloroform bitumen “A” content of 0.168%, and an average hydrocarbon generation potential of 0.13–3.71 mg/g. The organic matter is primarily Type II and Type III kerogen, with an average vitrinite reflectance of 0.71–1.36%, indicating that the source rocks have generally reached the mature hydrocarbon generation stage and are classified as medium-quality source rocks. Thermal history simulation results show that the source rocks have undergone two major thermal evolution stages: a rapid heating phase from the Late Jurassic to Early Cretaceous and a slow cooling phase from the Late Cretaceous to the present. There are differences in the thermal evolution history of different parts of the Hongqi Depression. In the southern part, the Tamulangou Formation entered the hydrocarbon generation threshold at 138 Ma, reached the hydrocarbon generation peak at approximately 119 Ma, and is currently in a highly mature hydrocarbon generation stage. In contrast, the central part entered the hydrocarbon generation threshold at 128 Ma, reached a moderately mature stage around 74 Ma, and has remained at this stage to the present. Thermal history simulations indicate that the Hongqi Depression reached its maximum paleotemperature at 100 Ma in the Late Early Cretaceous. The temperature evolution pattern is characterized by an initial increase followed by a gradual decrease. During the Late Jurassic to Early Cretaceous, the Hongqi Depression experienced significant fault-controlled subsidence and sedimentation, with a maximum sedimentation rate of 340 m/Ma, accompanied by intense volcanic activity that created a high-temperature geothermal gradient of 40–65 °C/km, with paleotemperatures exceeding 140 °C and a heating rate of 1.38–2.02 °C/Ma. This thermal background is consistent with the relatively high thermal regime observed in northern Chinese basins during the Late Early Cretaceous. Subsequently, the basin underwent uplift and cooling, reducing subsidence and gradually lowering formation temperatures. Full article
Show Figures

Figure 1

23 pages, 3031 KB  
Article
Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System
by Iva Kolenković Močilac, Marko Cvetković, David Rukavina, Ana Kamenski, Marija Pejić and Bruno Saftić
Energies 2025, 18(14), 3800; https://doi.org/10.3390/en18143800 - 17 Jul 2025
Viewed by 476
Abstract
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two [...] Read more.
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two sites were found to be situated in the favorable geological settings, meaning that the inspected wells drilled through structural traps had a seal at least 20 m thick which was intersected by only a few faults with rather limited displacement. Many more closed structures in the area were tested by exploration wells, but in all other wells, various problems were encountered, including inadequate reservoir properties, inadequate seal or inadequate depth of the identified trap. Analysis was highly affected by the insufficient quality and spatial distribution of the seismic input data, as well as in places with insufficient quality of input well datasets. An initial characterization of identified storage sites was performed, and their attributes were compared, with potential storage object B recognized as the one that should be further developed. However, given the depth and increased geothermal gradient of the potential storage object B, it is possible that it will be developed as a geothermal reservoir, and this brings forward the problem of concurrent subsurface use. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

32 pages, 2768 KB  
Article
A Comprehensive Simplified Algorithm for Heat Transfer Modeling of Medium-Deep Borehole Heat Exchangers Considering Soil Stratification and Geothermal Gradient
by Boyu Li, Fei Lei and Zibo Shen
Energies 2025, 18(14), 3716; https://doi.org/10.3390/en18143716 - 14 Jul 2025
Viewed by 549
Abstract
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally [...] Read more.
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally intensive procedures that hinder practical engineering implementation. Building upon an SFLS model adapted for complex geological conditions, this study proposes a comprehensive simplified algorithm: (1) For soil stratification: A geothermally-weighted thermal conductivity method converts layered heterogeneous media into an equivalent homogeneous medium; (2) For geothermal gradient: A temperature correction method establishes fluid temperatures under geothermal gradient by superimposing correction terms onto uniform-temperature model results (g-function model). Validated through two engineering case studies, this integrated algorithm provides a straightforward technical tool for heat transfer calculations in BHE systems. Full article
Show Figures

Figure 1

Back to TopTop