Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = glutamatergic neurotransmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 962 KB  
Review
Interplay Among Synaptic Glutamate Release and Excitotoxicity: Neuronal Damage and Graphene-Based Materials Related Protection
by Giada Cellot and Laura Ballerini
Life 2025, 15(11), 1776; https://doi.org/10.3390/life15111776 - 19 Nov 2025
Viewed by 458
Abstract
Glutamate-related excitotoxicity represents a fundamental pathological process underlying both acute and chronic disorders of the central nervous system. Excessive stimulation of ionotropic and metabotropic glutamate receptors induces ionic dysregulation, mitochondrial dysfunction, and oxidative stress, which can activate necrotic and apoptotic pathways, processes further [...] Read more.
Glutamate-related excitotoxicity represents a fundamental pathological process underlying both acute and chronic disorders of the central nervous system. Excessive stimulation of ionotropic and metabotropic glutamate receptors induces ionic dysregulation, mitochondrial dysfunction, and oxidative stress, which can activate necrotic and apoptotic pathways, processes further amplified by defective glutamate clearance and astrocytic impairment. These mechanisms are recognized as key contributors to neuronal damage in ischemic stroke, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, identifying excitotoxicity as a convergent hallmark of neurodegeneration. Despite considerable progress in elucidating its molecular mechanisms, clinical translation of excitotoxicity-targeted interventions remains limited, largely due to the difficulty of selectively attenuating pathological glutamatergic activity while preserving physiological neurotransmission. Recent advances in nanotechnology, particularly the development of graphene-based materials (GBMs), have offered innovative approaches for neuroprotection. Owing to their unique physicochemical properties and compatibility with neural tissue, GBMs have been investigated as platforms for neural interfacing, regenerative scaffolds, drug delivery platforms, and direct modulators of glutamatergic transmission. In particular, small graphene oxide nanosheets exhibit the capacity to downregulate glutamate release and confer anti-inflammatory and neuroprotective effects. These findings suggest that GBMs may represent a promising class of neuromodulatory tools for mitigating excitotoxic injury, warranting further preclinical and translational investigations. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

22 pages, 1878 KB  
Article
Epigenetic Impact of Sleep Timing in Children: Novel DNA Methylation Signatures via SWAG Analysis
by Erika Richter, Priyadarshni Patel, Yagmur Y. Ozdemir, Ukamaka V. Nnyaba, Roberto Molinari, Jeganathan R. Babu and Thangiah Geetha
Int. J. Mol. Sci. 2025, 26(21), 10615; https://doi.org/10.3390/ijms262110615 - 31 Oct 2025
Viewed by 789
Abstract
Pediatric obesity is rising globally, and emerging evidence suggests that sleep timing may influence metabolic health through epigenetic mechanisms. This study investigated epigenome-wide DNA methylation patterns associated with bedtime in children and explored their biological relevance. Children aged 6–10 years were classified as [...] Read more.
Pediatric obesity is rising globally, and emerging evidence suggests that sleep timing may influence metabolic health through epigenetic mechanisms. This study investigated epigenome-wide DNA methylation patterns associated with bedtime in children and explored their biological relevance. Children aged 6–10 years were classified as early (≤8:30 PM) or late (>8:30 PM) bedtime groups. Saliva-derived DNA was analyzed using the Illumina Infinium MethylationEPIC BeadChip Array, and the Sparse Wrapper Algorithm (SWAG) was applied to identify differentially methylated loci. A total of 1006 CpG sites, representing 571 unique genes, were significantly associated with bedtime (p < 0.001). Significant methylation differences were observed between early and late bedtime groups, with ABCG2, ABHD4, MOBKL1A, AK3, SDE2, PRAMEF4, CREM, CDH4, BRAT1, and SDK1 showing the most consistent variation. Functional enrichment analyses (Gene Ontology, KEGG, and DisGeNET) conducted on the SWAG-identified gene set revealed enrichment in biological processes including peptidyl-lysin demethylation, regulation of sodium ion transport, DNA repair, and lipo-protein particle assembly. Key KEGG pathways included circadian entrainment, neurotransmission (GABAergic, dopaminergic, and glutamatergic), growth hormone synthesis, and insulin secretion. DisGeNET analysis identified associations with neurodevelopmental disorders and cognitive impairment. Cross-comparison with established sleep and obesity gene sets identified ten overlapping genes(CDH4, NR3C2, ACTG1, COG5, CAT, HDAC4, FTO, DOK7, OCLN, and ATXN1). These findings suggest that variations in bedtime during childhood may epigenetically modify genes regulating circadian rhythm, metabolism, neuronal connectivity, and stress response, potentially predisposing to later-life developmental, and metabolic challenges. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
Show Figures

Figure 1

17 pages, 2025 KB  
Article
Cerebellar Mechanisms Underlying Autism-like Cognitive Deficits in Mouse Offspring with Prenatal Valproic Acid Exposure
by Juan Wang, Xu-Lan Zhou, Zi-Han Ma, Li Liu, Qian Zhou, Jia-Wei Wen, Jia-Hui Wen, Hui Su, Yu-Han Zhang and Xiao-Chun Xia
Toxics 2025, 13(10), 833; https://doi.org/10.3390/toxics13100833 - 30 Sep 2025
Viewed by 866
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social communication and repetitive behaviors, involving various brain regions. Emerging evidence highlights the critical role of the cerebellum in the pathophysiology of autism; however, the underlying molecular mechanisms remain poorly [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social communication and repetitive behaviors, involving various brain regions. Emerging evidence highlights the critical role of the cerebellum in the pathophysiology of autism; however, the underlying molecular mechanisms remain poorly understood. This study aimed to establish a prenatal valproic acid (VPA)-induced mouse model of ASD and explore the potential molecular mechanisms underlying cerebellar ASD-like phenotypes through DIA-based proteomics and bioinformatics analyses. Significant cognitive impairment and anxiety-like behaviors were detected using an open field test and novel object test following VPA exposure, respectively. Additionally, reduced numbers of Purkinje cells with irregular arrangement were observed in the cerebellum. Furthermore, cerebellar proteomics analyses revealed that they identified 193 differentially expressed proteins (DEPs) involved in multiple pathways, including axon guidance, glutamatergic synapse, long-term potentiation, and calcium signaling, among others. Notably, dysfunction of glutamate receptor signaling and disruptions in axon-guidance signaling appear to be major molecular mechanisms underlying cerebellar impairment. Together, these findings suggest that Grin2b may serve as a critical molecule linking synaptic neurotransmission and neurodevelopmental disorders. Thus, Grin2b may represent a potential therapeutic target for addressing cognitive impairment in ASD. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

24 pages, 6230 KB  
Article
Genetic Loss of VGLUT1 Alters Histogenesis of Retinal Glutamatergic Cells and Reveals Dynamic Expression of VGLUT2 in Cones
by Sriparna Majumdar and Vincent Wu
Brain Sci. 2025, 15(9), 1024; https://doi.org/10.3390/brainsci15091024 - 22 Sep 2025
Viewed by 747
Abstract
Background/Objectives: Glutamatergic neurotransmission is essential for the normal functioning of the retina. Photoreceptor to bipolar and bipolar to ganglion cell signaling is mediated by L-glutamate, which is stored in and released from vesicular glutamate transporter 1 (VGLUT1) containing synaptic vesicles. VGLUT1 is [...] Read more.
Background/Objectives: Glutamatergic neurotransmission is essential for the normal functioning of the retina. Photoreceptor to bipolar and bipolar to ganglion cell signaling is mediated by L-glutamate, which is stored in and released from vesicular glutamate transporter 1 (VGLUT1) containing synaptic vesicles. VGLUT1 is expressed postnatally, P2 onwards, and is required for the glutamatergic retinal wave observed between P10 and P12 in the developing mouse retina. P9–P13 postnatal age is critical for retinal development as VGLUT1 expressing ribbon synapses activate in the outer and inner plexiform layers, and rod/cone mediated visual signaling commences in that period. Although it has been hypothesized that glutamatergic extrinsic signaling drives cell cycle exit and initiates cellular differentiation in the developing retina, it is not clear whether intracellular, synaptic, or extrasynaptic vesicular glutamate release contributes to this process. Recent studies have attempted to decipher VGLUT’s role in retinal development. Here, we investigate the potential effect of genetic loss of VGLUT1 on early postnatal histogenesis and development of retinal neural circuitry. Methods: We employed immunohistochemistry and electrophysiology to ascertain the density of glutamatergic, cholinergic, and dopaminergic cells, spontaneous retinal activity, and light responses in VGLUT1 null retina, and contrasted them with wildtype (WT) and melanopsin null retina. Results: We have demonstrated here that VGLUT1 null retina shows signs of age dependent retinal degeneration, similar to other transgenic mice models with dysfunctional photoreceptor to bipolar cell synapses. The loss of VGLUT1 specifically alters glutamatergic cell density and morphological maturation of retinal ganglion cells. Moreover, VGLUT2 expression is lost in the majority of VGLUT2 cones in the absence of VGLUT1 coexpression, except when VGLUT2 coexpresses transiently with VGLUT3 in these cones, or when VGLUT1 null mice are dark reared. Conclusions: We present the first evidence that synaptic or extrasynaptic postnatal glutamate release from VGLUT1 containing vesicles impacts histogenesis of glutamatergic cells, pruning of retinal ganglion cell dendrites and VGLUT2 expression in cones. Full article
Show Figures

Graphical abstract

17 pages, 1248 KB  
Review
Mechanisms of GLP-1 in Modulating Craving and Addiction: Neurobiological and Translational Insights
by Gabriel Amorim Moreira Alves, Masatoki Teranishi, Ana Claudia Teixeira de Castro Gonçalves Ortega, Frank James and Arosh S. Perera Molligoda Arachchige
Med. Sci. 2025, 13(3), 136; https://doi.org/10.3390/medsci13030136 - 15 Aug 2025
Cited by 1 | Viewed by 3970
Abstract
Substance use disorders (SUDs) remain a major public health challenge, with existing pharmacotherapies offering limited long-term efficacy. Traditional treatments focus on dopaminergic systems but often overlook the complex interplay between metabolic signals, neuroplasticity, and conditioned behaviors that perpetuate addiction. Glucagon-like peptide-1 receptor agonists [...] Read more.
Substance use disorders (SUDs) remain a major public health challenge, with existing pharmacotherapies offering limited long-term efficacy. Traditional treatments focus on dopaminergic systems but often overlook the complex interplay between metabolic signals, neuroplasticity, and conditioned behaviors that perpetuate addiction. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), originally developed for type 2 diabetes and obesity, have recently emerged as promising modulators of reward-related brain circuits. This review synthesizes current evidence on the role of glucagon-like peptide-1 (GLP-1) and its receptor in modulating craving and substance-seeking behaviors. We highlight how GLP-1 receptors are expressed in addiction-relevant brain regions, including the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC), where their activation influences dopaminergic, glutamatergic, and GABAergic neurotransmission. In addition, we explore how GLP-1 signaling affects reward processing through gut–brain vagal pathways, hormonal crosstalk, and neuroinflammatory mechanisms. Preclinical studies demonstrate that GLP-1RAs attenuate intake and relapse-like behavior across a range of substances, including alcohol, nicotine, and cocaine. Early-phase clinical trials support their safety and suggest potential efficacy in reducing craving. By integrating findings from molecular signaling, neurocircuitry, and behavioral models, this review provides a translational perspective on GLP-1RAs as an emerging treatment strategy in addiction medicine. We propose that targeting gut–brain metabolic signaling could provide a novel framework for understanding and treating SUDs. Full article
Show Figures

Figure 1

12 pages, 2075 KB  
Communication
Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain
by Sara Marinelli, Flaminia Pavone and Siro Luvisetto
Toxins 2025, 17(8), 374; https://doi.org/10.3390/toxins17080374 - 28 Jul 2025
Cited by 1 | Viewed by 1125
Abstract
Botulinum neurotoxins (BoNTs) are known to inhibit synaptic transmission by targeting SNARE proteins, but their selectivity toward central excitatory and inhibitory pathways is not yet fully understood. In this study, the interaction of serotypes A (BoNT/A) and B (BoNT/B) with the glutamatergic and [...] Read more.
Botulinum neurotoxins (BoNTs) are known to inhibit synaptic transmission by targeting SNARE proteins, but their selectivity toward central excitatory and inhibitory pathways is not yet fully understood. In this study, the interaction of serotypes A (BoNT/A) and B (BoNT/B) with the glutamatergic and GABAergic systems has been investigated using a pharmacological approach in an animal model of inflammatory pain, i.e., the formalin test in mice. BoNTs were administered intracerebroventricularly, three days before testing, followed 15 min before testing by systemic administration of sub-analgesic doses of MK801, an NMDA receptor antagonist, or muscimol, a GABA_A receptor agonist. BoNT/A reduced the second phase of the formalin test without affecting both the first phase and the interphase, suggesting a selective action on excitatory glutamatergic circuits while sparing GABAergic inhibition. Co-administration of MK801 with BoNT/A did not enhance analgesia, and muscimol did not further reduce interphase, confirming preserved GABAergic transmission. In contrast, BoNT/B abolished the interphase, consistent with impaired GABA release. Co-administration of MK801 or muscimol with BoNT/B restored the interphase, indicating compensatory rebalancing of excitatory-inhibitory networks. These results demonstrate that BoNT/A and BoNT/B exert distinct effects on central neurotransmission and support the hypothesis that BoNT/A preferentially targets excitatory synapses, while BoNT/B targets inhibitory synapses. This work contributes to a deeper understanding of anti-inflammatory mechanisms of BoNTs and their selective interaction with central pain pathways. Full article
(This article belongs to the Special Issue Botulinum Toxins: New Uses in the Treatment of Diseases (2nd Edition))
Show Figures

Figure 1

27 pages, 1897 KB  
Article
A Proton Magnetic Resonance Spectroscopy (1H MRS) Pilot Study Revealing Altered Glutamatergic and Gamma-Aminobutyric Acid (GABA)ergic Neurotransmission in Social Anxiety Disorder (SAD)
by Sonja Elsaid, Ruoyu Wang, Stefan Kloiber, Kimberly L. Desmond and Bernard Le Foll
Int. J. Mol. Sci. 2025, 26(14), 6915; https://doi.org/10.3390/ijms26146915 - 18 Jul 2025
Viewed by 3874
Abstract
Social anxiety disorder (SAD) is characterized by fear and avoidance of social situations. Considering the reduced availability of conventional therapies, we aimed to improve our understanding of the biological mechanisms in SAD by evaluating gamma-aminobutyric acid (GABA) and other neurometabolites (including glutamate + [...] Read more.
Social anxiety disorder (SAD) is characterized by fear and avoidance of social situations. Considering the reduced availability of conventional therapies, we aimed to improve our understanding of the biological mechanisms in SAD by evaluating gamma-aminobutyric acid (GABA) and other neurometabolites (including glutamate + glutamine/glutamix (Glx), N-acetyl aspartate (NAA), myo-inositol (mI), total choline (tCho), and total creatine (tCr) in the dorsomedial prefrontal cortex/anterior cingulate cortex (dmPFC/ACC), dorsolateral prefrontal cortex (dlPFC), and the insula). In this pilot study, we recruited 26 (age: 25.3 ± 5.0 years; 61.5% female) individuals with SAD and 26 (age: 25.1 ± 4.4 years; 61.5% female) sex-age-matched controls. Using proton magnetic resonance spectroscopy, we found that compared to the controls, GABA+ macromolecular signal (GABA+) in dlPFC (t = 2.63; p = 0.012) and Glx in the insula (Mann–Whitney U = 178.3; p = 0.024) were higher in the participants with SAD. However, no between-group differences were observed in dmPFC/ACC (t = 0.39; p = 0.699). Increased GABA+ in dlPFC could be explained by aberrant GABA transporters. In the insula, increased Glx may be associated with the dysfunction of glutamate transporters or decreased activity of glutamic acid decarboxylase in the GABAergic inhibitory neurons. However, these proposed mechanisms need to be further investigated in SAD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

27 pages, 733 KB  
Review
The Role of Magnesium in Depression, Migraine, Alzheimer’s Disease, and Cognitive Health: A Comprehensive Review
by Péter Varga, Andrea Lehoczki, Mónika Fekete, Tamás Jarecsny, Agata Kryczyk-Poprawa, Virág Zábó, Dávid Major, Vince Fazekas-Pongor, Tamás Csípő and János Tamás Varga
Nutrients 2025, 17(13), 2216; https://doi.org/10.3390/nu17132216 - 4 Jul 2025
Cited by 1 | Viewed by 14341
Abstract
Magnesium is an essential mineral involved in hundreds of biochemical reactions, with particular relevance to maintaining neural homeostasis, modulating neurotransmitter systems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive review aims to evaluate the potential role of magnesium in the pathophysiology and [...] Read more.
Magnesium is an essential mineral involved in hundreds of biochemical reactions, with particular relevance to maintaining neural homeostasis, modulating neurotransmitter systems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive review aims to evaluate the potential role of magnesium in the pathophysiology and treatment of three prevalent neurological and psychiatric disorders—depression, migraine, and Alzheimer’s disease—as well as its broader implications for cognitive health. Current research suggests that magnesium deficiency is associated with the development of depression, as magnesium influences glutamatergic and GABAergic neurotransmission, as well as the activity of the hypothalamic–pituitary–adrenal (HPA) axis, both of which play critical roles in stress responses and mood regulation. Additionally, magnesium’s anti-inflammatory properties may contribute to the alleviation of depressive symptoms. In the context of migraine’s pathophysiology, magnesium plays a role in regulating cerebral vascular tone, modulating the trigeminovascular system, and reducing neuronal hyperexcitability, which may explain the observed correlation between magnesium levels and the incidence of migraines. Regarding Alzheimer’s disease, preclinical and epidemiological studies suggest that magnesium may contribute to modulating neurodegenerative processes and preserving cognitive function; however, due to the heterogeneity of the current findings, further longitudinal and interventional studies are necessary to determine its precise clinical relevance. This review aims to enhance the understanding of the relationship between magnesium and these disorders through a narrative review of relevant clinical studies. The findings may provide insights into the potential therapeutic applications of magnesium and guide the future directions of the research into the prevention and treatment of depression, migraine, and Alzheimer’s disease and overall cognitive health. Full article
(This article belongs to the Special Issue The Role of Magnesium Status in Human Health)
Show Figures

Figure 1

19 pages, 7023 KB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 1328
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

22 pages, 2332 KB  
Review
Glutamate-Mediated Neural Alterations in Lead Exposure: Mechanisms, Pathways, and Phenotypes
by Wagner A. Tamagno and Jennifer L. Freeman
Toxics 2025, 13(7), 519; https://doi.org/10.3390/toxics13070519 - 21 Jun 2025
Cited by 1 | Viewed by 2327
Abstract
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial [...] Read more.
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial use, and ongoing applications in modern technologies. This review focuses on the mechanisms by which Pb disrupts glutamatergic signaling, a critical pathway for learning, memory, and synaptic plasticity. Pb’s interference with glutamate receptors (ionotropic NMDA and AMPA, as well as metabotropic receptors), transporters (EAATs, VGLUTs, and SNATs), and metabolic pathways (glutamate–glutamine cycle, TCA cycle, and glutathione synthesis) are detailed. By mimicking divalent cations like Ca2+ and Zn2+, Pb2+ disrupts calcium homeostasis, exacerbates excitotoxicity, and induces oxidative stress, ultimately impairing neuronal communication and synaptic function. These molecular disruptions manifest cognitive deficits, behavioral abnormalities, and increased susceptibility to neurodevelopmental and neurodegenerative disorders. Understanding Pb’s impact on glutamatergic neurotransmission offers critical insights into its neurotoxic profile and highlights the importance of addressing its effects on neural function. Full article
Show Figures

Graphical abstract

28 pages, 13615 KB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Cited by 1 | Viewed by 3151
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

14 pages, 1835 KB  
Article
Dual Mechanisms of the Diazepine-Benzimidazole Derivative, DAB-19, in Modulating Glutamatergic Neurotransmission
by Maxim V. Nikolaev, Irina M. Fedorova, Oxana V. Chistyakova, Tatiana Yu. Postnikova, Kira Kh. Kim, Mikhail Yu. Dron, Aleksey V. Zaitsev and Denis B. Tikhonov
Int. J. Mol. Sci. 2025, 26(11), 5299; https://doi.org/10.3390/ijms26115299 - 30 May 2025
Viewed by 891
Abstract
The search for novel compounds with anticonvulsant properties remains a key focus in neuropharmacology. Recently, the diazepine-benzimidazole derivative, DAB-19, has emerged as a promising candidate due to its demonstrated anxiolytic and analgesic effects. In this study, we investigate the mechanisms underlying DAB-19’s activity, [...] Read more.
The search for novel compounds with anticonvulsant properties remains a key focus in neuropharmacology. Recently, the diazepine-benzimidazole derivative, DAB-19, has emerged as a promising candidate due to its demonstrated anxiolytic and analgesic effects. In this study, we investigate the mechanisms underlying DAB-19’s activity, focusing on its impact on glutamatergic transmission, a key target in the pathophysiology of various central nervous system disorders. Intriguingly, while DAB-19 suppressed evoked glutamatergic transmission in rat brain slices, it simultaneously enhanced spontaneous neurotransmission. Further experiments on glutamatergic neuromuscular synapses in fly larvae revealed two distinct mechanisms: calcium-dependent potentiation of glutamate release and inhibition of spike propagation via blockade of voltage-gated sodium channels. The latter effect was directly confirmed in rat brain neurons. Given its action on sodium channels, we tested DAB-19 in the pentylenetetrazole model, where it delayed seizure onset but did not prevent seizures. These findings position DAB-19 as a multifaceted compound with significant therapeutic potential. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy, 2nd Edition)
Show Figures

Figure 1

26 pages, 11403 KB  
Article
Unveiling the Polypharmacological Potency of FDA-Approved Rebamipide for Alzheimer’s Disease
by Israa J. Hakeem, Hadil Alahdal, Hanadi M. Baeissa, Tahani Bakhsh, Misbahuddin Rafeeq, Alaa Hamed Habib, Mohammed Matoog Karami, Maryam A. AL-Ghamdi, Ghadeer Abdullah and Abeer Al Tuwaijri
Pharmaceuticals 2025, 18(6), 772; https://doi.org/10.3390/ph18060772 - 22 May 2025
Viewed by 1537
Abstract
Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterised by the accumulation of neurotoxic substances in the brain, ultimately leading to progressive cognitive decline. The complex aetiology and involvement of multiple molecular targets in AD pathogenesis have made discovering effective therapeutic agents [...] Read more.
Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterised by the accumulation of neurotoxic substances in the brain, ultimately leading to progressive cognitive decline. The complex aetiology and involvement of multiple molecular targets in AD pathogenesis have made discovering effective therapeutic agents particularly challenging. Targeting multiple proteins simultaneously with a single therapeutic agent may offer a promising strategy to address the disease’s multifaceted nature. Methods: This study employed advanced computational methodologies to perform multitargeted molecular docking of FDA-approved drugs against four key AD-associated proteins implicated in disease progression. Among the screened compounds, Rebamipide—a drug conventionally used for treating gastrointestinal disorders—demonstrated notable binding affinities across all targets. Pharmacokinetic predictions, interaction fingerprinting, WaterMap analysis, density functional theory (DFT) calculations, and 100 ns MD simulations were performed for each protein–ligand complex to evaluate its multitarget potential. Results: Rebamipide bound effectively to the NR1 ligand-binding core, suggesting modulation of glutamatergic signalling while reducing β-secretase production and regulating neurotransmitter homeostasis through inhibiting monoamine oxidase-A. Furthermore, Rebamipide enhanced cholinergic neurotransmission by inhibiting human acetylcholinesterase, potentially improving cognitive function. Pharmacokinetic analyses confirmed favourable drug-like properties. Molecular interaction fingerprints revealed consistent hydrogen bonding, hydrophobic contacts, and π-π stacking interactions. WaterMap analysis indicated thermodynamically favourable water displacement upon binding, enhancing ligand affinity. DFT analysis of Rebamipide showed a 4.24 eV HOMO-LUMO gap, with ESP values ranging from −6.63 × 10−2 to +6.63 × 10−2 A.U., indicating reactive sites. TDDFT predicted strong UV absorption at 314 nm with a peak intensity of ~6500 L mol−1 cm−1. MD simulations over 100 ns demonstrated minimal structural deviations and stable ligand–protein complexes, reinforcing its multitarget efficacy. Conclusions: The comprehensive in silico investigation highlights Rebamipide as a promising multitargeted therapeutic candidate for Alzheimer’s disease. Its ability to modulate multiple pathogenic pathways simultaneously underscores its potential utility; however, these computational findings warrant further experimental validation to confirm its efficacy and therapeutic relevance in AD. Full article
Show Figures

Figure 1

19 pages, 1040 KB  
Review
Glutamate as a Therapeutic Substrate in Migraine
by Nazia Karsan, Luiza Bastos Alves and Peter J. Goadsby
Int. J. Mol. Sci. 2025, 26(7), 3023; https://doi.org/10.3390/ijms26073023 - 26 Mar 2025
Cited by 4 | Viewed by 4191
Abstract
Recurrent and intense headache is a well appreciated cardinal feature of migraine, a common and incapacitating neurological disorder. Often, there are associated canonical sensory abnormalities, such as light and sound sensitivity, as well as associated nausea. Given this phenotype of disordered sensory processing [...] Read more.
Recurrent and intense headache is a well appreciated cardinal feature of migraine, a common and incapacitating neurological disorder. Often, there are associated canonical sensory abnormalities, such as light and sound sensitivity, as well as associated nausea. Given this phenotype of disordered sensory processing and, in a third of patients, the phenomenon called aura accompanying migraine attacks, it has been suggested that the pathophysiology of migraine is likely to involve glutamate, the main excitatory neurotransmitter in the central nervous system (CNS). Glutamate plays a role in nociception, central sensitization, and cortical spreading depression (CSD), three processes that are deemed important in migraine biology. With an emphasis on the therapeutic potential of targeting various glutamate receptors in migraine, this review will discuss the currently available literature and emerging findings on the role of targeting glutamatergic pathways for the treatment of migraine. A thorough literature review was carried out on the functions of both metabotropic glutamate receptors (mGluRs), and the ionotropic glutamate receptors (NMDA, AMPA, and kainate) in migraine pathogenesis. The ever-present need for new treatments, the role of glutamate in the migraine aura phenomenon, and the consequences of monogenic migraine mutations on mediating prolonged, complex, or permanent aura are all discussed, culminating in a suggestion that glutamatergic targeting may hold particular promise in the management of migraine aura. There are plausible roles for metabotropic receptors in regulating pain processing in important migraine-related brain structures, like the thalamus and trigeminal nucleus. Similarly, ionotropic receptors contribute to excitatory neurotransmission and neuronal hyperexcitability. Recent studies have shown preclinical and early clinical results for treatments targeting these receptors, but there are still significant issues with treatment response, including drug transport, side effects, and efficacy. With ongoing and emerging discoveries in the field, there is increasing promise of new migraine medications targeting glutamate receptors. For bench to bedside translation in this area, continued study of the molecular basis of migraine, receptor subtypes, and exploration of potential drug delivery methods are needed. Full article
(This article belongs to the Special Issue Molecular and Cellular Neurobiology of Migraine: 2nd Edition)
Show Figures

Figure 1

15 pages, 920 KB  
Review
Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation
by Jacopo Sapienza, Giulia Agostoni, Federica Repaci, Marco Spangaro, Stefano Comai and Marta Bosia
Metabolites 2025, 15(3), 176; https://doi.org/10.3390/metabo15030176 - 5 Mar 2025
Cited by 2 | Viewed by 1822
Abstract
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of [...] Read more.
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of schizophrenia are neuroinflammation and alterations of neurotransmission. The kynurenine (KYN) pathway (KP) is of particular importance because it is inducted by systemic low-grade inflammation in peripheral tissues, producing metabolites that are neuroactive (i.e., modulating glutamatergic and cholinergic neurotransmission), neuroprotective, or neurotoxic. Consequently, the KP is at the crossroads between two primary systems involved in the pathogenesis of schizophrenia. It bridges the central nervous system (CNS) and the periphery, as KP metabolites can cross the blood–brain barrier and modulate neuronal activity. Metabolic syndrome plays a crucial role in this context, as it frequently co-occurs with schizophrenia, contributing to a sub-inflammatory state able to activate the KP. This narrative review provides valuable insights into these complex interactions, offering a framework for developing targeted therapeutic interventions or precision psychiatry approaches of the disorder. Full article
(This article belongs to the Special Issue The Interplay Between Inflammation and Metabolism in Disease)
Show Figures

Figure 1

Back to TopTop