Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = gravity miscible flooding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2594 KB  
Article
Gas Injection Gravity Miscible Displacement Development of Fractured-Vuggy Volatile Oil Reservoir in the Fuman Area of the Tarim Basin
by Xingliang Deng, Wei Zhou, Zhiliang Liu, Yao Ding, Chao Zhang and Liming Lian
Energies 2025, 18(19), 5317; https://doi.org/10.3390/en18195317 - 9 Oct 2025
Viewed by 419
Abstract
This study investigates gas injection gravity miscible flooding to enhance oil recovery in fractured-vuggy volatile oil reservoirs of the Fuman area, Tarim Basin. The Fuman 210 reservoir, containing light oil with high maturity, large column heights, and strong fracture control, provides favorable conditions [...] Read more.
This study investigates gas injection gravity miscible flooding to enhance oil recovery in fractured-vuggy volatile oil reservoirs of the Fuman area, Tarim Basin. The Fuman 210 reservoir, containing light oil with high maturity, large column heights, and strong fracture control, provides favorable conditions for gravity-driven flooding. Laboratory tests show that natural gas and CO2 achieve miscibility, while N2 reaches near-miscibility. Mixed gas injection, especially at a natural gas to nitrogen ratio of 1:4, effectively lowers minimum miscibility pressure and enhances displacement efficiency. Full-diameter core experiments confirm that miscibility improves oil washing and expands the sweep volume. Based on these results, a stepped three-dimensional well network was designed, integrating shallow injection with deep production. Optimal parameters were determined: injection rates of 50,000–100,000 m3/day per well and stage-specific injection–production ratios (1.2–1.5 early, 1.0–1.2 middle, 0.8–1.0 late). Field pilots validated the method, maintaining stable production for seven years and achieving a recovery factor of 30.03%. By contrast, conventional development relies on depletion and limited water flooding, and dry gas injection yields only 12.6%. Thus, the proposed approach improves recovery by 17.4 percentage points. The novelty of this work lies in establishing the feasibility of mixed nitrogen–natural gas miscible flooding for ultra-deep fault-controlled carbonate reservoirs and introducing an innovative stepped well network model. These findings provide new technical guidance for large-scale application in similar reservoirs. Full article
Show Figures

Figure 1

21 pages, 7500 KB  
Article
Numerical Investigation on Alkaline-Surfactant-Polymer Alternating CO2 Flooding
by Weirong Li, Xin Wei, Zhengbo Wang, Weidong Liu, Bing Ding, Zhenzhen Dong, Xu Pan, Keze Lin and Hongliang Yi
Processes 2024, 12(5), 916; https://doi.org/10.3390/pr12050916 - 29 Apr 2024
Cited by 1 | Viewed by 2246
Abstract
For over four decades, carbon dioxide (CO2) has been instrumental in enhancing oil extraction through advanced recovery techniques. One such method, water alternating gas (WAG) injection, while effective, grapples with limitations like gas channeling and gravity segregation. To tackle the aforementioned [...] Read more.
For over four decades, carbon dioxide (CO2) has been instrumental in enhancing oil extraction through advanced recovery techniques. One such method, water alternating gas (WAG) injection, while effective, grapples with limitations like gas channeling and gravity segregation. To tackle the aforementioned issues, this paper proposes an upgrade coupling method named alkaline-surfactant-polymer alternating gas (ASPAG). ASP flooding and CO2 are injected alternately into the reservoir to enhance the recovery of the WAG process. The uniqueness of this method lies in the fact that polymers could help profile modification, CO2 would miscible mix with oil, and alkaline surfactant would reduce oil–water interfacial tension (IFT). To analyze the feasibility of ASPAG, a couples model considering both gas flooding and ASP flooding processes is established by using the CMG-STARS (Version 2021) to study the performance of ASPAG and compare the recovery among ASPAG, WAG, and ASP flooding. Our research delved into the ASPAG’s adaptability across reservoirs varying in average permeability, interlayer heterogeneity, formation rhythmicity, and fluid properties. Key findings include that ASPAG surpasses the conventional WAG in sweep and displacement efficiency, elevating oil recovery by 12–17%, and in comparison to ASP, ASPAG bolsters displacement efficiency, leading to a 9–11% increase in oil recovery. The primary flooding mechanism of ASPAG stems from the ASP slug’s ability to diminish the interfacial tension, enhancing the oil and water mobility ratio, which is particularly efficient in medium-high permeability layers. Through sensitivity analysis, ASPAG is best suited for mid-high-permeability reservoirs characterized by low crude oil viscosity and a composite reverse sedimentary rhythm. This study offers invaluable insights into the underlying mechanisms and critical parameters that influence the alkaline-surfactant-polymer alternating gas method’s success for enhanced oil recovery. Furthermore, it unveils an innovative strategy to boost oil recovery in medium-to-high-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 5737 KB  
Article
Front Movement and Sweeping Rules of CO2 Flooding under Different Oil Displacement Patterns
by Xiang Qi, Tiyao Zhou, Weifeng Lyu, Dongbo He, Yingying Sun, Meng Du, Mingyuan Wang and Zheng Li
Energies 2024, 17(1), 15; https://doi.org/10.3390/en17010015 - 19 Dec 2023
Cited by 5 | Viewed by 2393
Abstract
CO2 flooding is a pivotal technique for significantly enhancing oil recovery in low-permeability reservoirs. The movement and sweeping rules at the front of CO2 flooding play a critical role in oil recovery; yet, a comprehensive quantitative analysis remains an area in [...] Read more.
CO2 flooding is a pivotal technique for significantly enhancing oil recovery in low-permeability reservoirs. The movement and sweeping rules at the front of CO2 flooding play a critical role in oil recovery; yet, a comprehensive quantitative analysis remains an area in need of refinement. In this study, we developed 1-D and 2-D numerical simulation models to explore the sweeping behavior of miscible, immiscible, and partly miscible CO2 flooding patterns. The front position and movement rules of the three CO2 flooding patterns were determined. A novel approach to the contour area calculation method was introduced to quantitatively characterize the sweep coefficients, and the sweeping rules are discussed regarding the geological parameters, oil viscosity, and injection–production parameters. Furthermore, the Random Forest (RF) algorithm was employed to identify the controlling factor of the sweep coefficient, as determined through the use of out-of-bag (OOB) data permutation analysis. The results showed that the miscible front was located at the point of maximum CO2 content in the oil phase. The immiscible front occurred at the point of maximum interfacial tension near the production well. Remarkably, the immiscible front moved at a faster rate compared with the miscible front. Geological parameters, including porosity, permeability, and reservoir thickness, significantly impacted the gravity segregation effect, thereby influencing the CO2 sweep coefficient. Immiscible flooding exhibited the highest degree of gravity segregation, with a maximum gravity segregation degree (GSD) reaching 78.1. The permeability ratio was a crucial factor, with a lower limit of approximately 5.0 for reservoirs suitable for CO2 flooding. Injection–production parameters also played a pivotal role in terms of the sweep coefficient. Decreased well spacing and increased gas injection rates were found to enhance sweep coefficients by suppressing gravity segregation. Additionally, higher gas injection rates could improve the miscibility degree of partly miscible flooding from 0.69 to 1.0. Oil viscosity proved to be a significant factor influencing the sweep coefficients, with high seepage resistance due to increasing oil viscosity dominating the miscible and partly miscible flooding patterns. Conversely, gravity segregation primarily governed the sweep coefficient in immiscible flooding. In terms of controlling factors, the permeability ratio emerged as a paramount influence, with a factor importance value (FI) reaching 1.04. The findings of this study can help for a better understanding of sweeping rules of CO2 flooding and providing valuable insights for optimizing oil recovery strategies in the field applications of CO2 flooding. Full article
Show Figures

Figure 1

19 pages, 12432 KB  
Article
Analysis of Factors Impacting CO2 Assisted Gravity Drainage in Oil Reservoirs with Bottom Water
by Hao Lu, Xiankang Xin, Jinxi Ye and Gaoming Yu
Processes 2023, 11(12), 3290; https://doi.org/10.3390/pr11123290 - 24 Nov 2023
Cited by 4 | Viewed by 1557
Abstract
In recent years, there has been significant focus on the issue of global carbon emissions. One of the most prominent areas of research in this regard is the use of carbon capture, utilization, and storage (CCUS) technology in the petrochemical industry. At present, [...] Read more.
In recent years, there has been significant focus on the issue of global carbon emissions. One of the most prominent areas of research in this regard is the use of carbon capture, utilization, and storage (CCUS) technology in the petrochemical industry. At present, the utilization of CO2 Assisted Gravity Drainage (CAGD) in oil reservoirs, particularly those containing bottom water, is considered to be in the early stages of exploration and development. In this study, a mechanistic model was built, and five key factors influencing CAGD were analyzed. These factors included the reservoir structure, CO2 injection site, initial formation pressure, reservoir thickness, and CO2 injection rate. Then, the applicable rules governing CAGD in oil reservoirs with bottom water were obtained. Finally, these rules were employed in an actual reservoir to optimize the injection-production parameters. The results of the influence factor analysis indicated that CAGD was more suitable for anticline structural reservoirs. The combined top-waist CO2 injection could fully utilize gravity differentiation in a short timeframe to expand the lateral sweep range of the CO2. CAGD was more effective when the reservoir pressure was greater than the minimum miscible pressure and the reservoir thickness was between 25–50 m. The generation of a secondary CO2 cap was favored when the CO2 injection rate was 35,000 m3/d. Results from A Oilfield applications indicated that, following the application of CAGD technology, A Oilfield experienced an increase in cumulative oil production of 15.76 × 104 t, a 10% reduction in water cut, and an amount of 82.15 × 106 m3 of CO2 that was sequestered in the subsurface. These findings can offer practical insights and guidance for the future development of CAGD techniques in similar reservoirs. Full article
Show Figures

Figure 1

Back to TopTop