Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = ground plane fitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1629 KB  
Article
Research on Ground Point Cloud Segmentation Algorithm Based on Local Density Plane Fitting in Road Scene
by Tao Wang, Yiming Fu, Zhi Zhang, Xing Cheng, Lin Li, Zhenxue He, Haonan Wang and Kexin Gong
Sensors 2025, 25(15), 4781; https://doi.org/10.3390/s25154781 - 3 Aug 2025
Cited by 1 | Viewed by 773
Abstract
In road scenes, the collected 3D point cloud data is usually accompanied by a large amount of interference mainly composed of ground point clouds and the property of uneven density distribution, which will bring difficulties to subsequent recognition and prediction. To address these [...] Read more.
In road scenes, the collected 3D point cloud data is usually accompanied by a large amount of interference mainly composed of ground point clouds and the property of uneven density distribution, which will bring difficulties to subsequent recognition and prediction. To address these problems, this paper proposes a ground point cloud segmentation algorithm based on local density plane fitting. Firstly, for the uneven density distribution of 3D point clouds, density segmentation is used to obtain several regions with balanced density. Then, candidate sample selection and plane validity detection are carried out for each region. The modified classical DBSCAN clustering algorithm is used to obtain effective fitting planes and perform clustering according to the fitting planes. Finally, different planes are divided according to the clustering results, and abnormal inspection is performed on the obtained results to screen out the most reasonable result. This scheme can effectively improve the scalability of the algorithm, reduce training costs, and improve deployment efficiency and universality. Experimental results show that the algorithm used in this paper has advantages compared with advanced algorithms of the same category, and can greatly reduce ground interference. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

14 pages, 2796 KB  
Article
Obtaining Rotational Stiffness of Wind Turbine Foundation from Acceleration and Wind Speed SCADA Data
by Jiazhi Dai, Mario Rotea and Nasser Kehtarnavaz
Sensors 2025, 25(15), 4756; https://doi.org/10.3390/s25154756 - 1 Aug 2025
Viewed by 809
Abstract
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus [...] Read more.
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus lowering the use of moment and tilt sensors that are currently being used for obtaining foundation stiffness. First, a convolutional neural network model is applied to map acceleration and wind speed data within a moving window to corresponding moment and tilt values. Rotational stiffness of the foundation is then estimated by fitting a line in the moment-tilt plane. The results obtained indicate that such a mapping model can provide stiffness values that are within 7% of ground truth stiffness values on average. Second, the developed mapping model is re-trained by using synthetic acceleration and wind speed data that are generated by an autoencoder generative AI network. The results obtained indicate that although the exact amount of stiffness drop cannot be determined, the drops themselves can be detected. This mapping model can be used not only to lower the cost associated with obtaining foundation rotational stiffness but also to sound an alarm when a foundation starts deteriorating. Full article
(This article belongs to the Special Issue Sensors Technology Applied in Power Systems and Energy Management)
Show Figures

Figure 1

28 pages, 7472 KB  
Article
Small but Mighty: A Lightweight Feature Enhancement Strategy for LiDAR Odometry in Challenging Environments
by Jiaping Chen, Kebin Jia and Zhihao Wei
Remote Sens. 2025, 17(15), 2656; https://doi.org/10.3390/rs17152656 - 31 Jul 2025
Viewed by 800
Abstract
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by [...] Read more.
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by reinforcing high-quality features throughout the optimization process. For non-ground features, the method employs statistical geometric analysis to identify stable points and incorporates a contribution-weighted optimization scheme to strengthen their impact in point-to-plane and point-to-line constraints. In parallel, for ground features, locally stable planar surfaces are fitted to replace discrete point correspondences, enabling more consistent point-to-plane constraint formulation during ground registration. Experimental results on the KITTI and M2DGR datasets demonstrated that the proposed method significantly improves localization accuracy and system robustness, while preserving real-time performance with minimal computational overhead. The performance gains were particularly notable in scenarios dominated by unstructured environments. Full article
(This article belongs to the Special Issue Laser Scanning in Environmental and Engineering Applications)
Show Figures

Figure 1

19 pages, 3137 KB  
Article
Estimation of Footprint-Scale Across-Track Slopes Based on Elevation Frequency Histogram from Single-Track ICESat-2 Photon Data of Strong Beam
by Qianyin Zhang, Hui Zhou, Yue Ma, Song Li and Heng Wang
Remote Sens. 2025, 17(15), 2617; https://doi.org/10.3390/rs17152617 - 28 Jul 2025
Viewed by 495
Abstract
Topographic slope is a key parameter for characterizing landscape geomorphology. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) offers high-resolution along-track slopes based on the ground profiles generated by dense signal photons. However, the across-track slopes are typically derived using the ground photon [...] Read more.
Topographic slope is a key parameter for characterizing landscape geomorphology. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) offers high-resolution along-track slopes based on the ground profiles generated by dense signal photons. However, the across-track slopes are typically derived using the ground photon geolocations from the weak-beam and strong-beam pair, limiting the retrieval accuracy and losing valid results over rugged terrains. The goal of this study is to propose a new method to derive the across-track slope merely using single-track photon data of a strong beam based on the theoretical formula of the received signal pulse width. Based on the ICESat-2 photon data over the Walker Lake area, the specific purposes are to (1) extract the along-track slope and surface roughness from the signal photon data on the ground; (2) generate an elevation frequency histogram (EFH) and calculate its root mean square (RMS) width; and (3) derive the across-track slope from the RMS width of the EFH and evaluate the retrieval accuracy against the across-track slope from the ICESat-2 product and plane fitting method. The results show that the mean absolute error (MAE) obtained by our method is 11.45°, which is comparable to the ICESat-2 method (11.61°) and the plane fitting method (12.51°). Our method produces the least invalid data proportion of ~2.5%, significantly outperforming both the plane fitting method (10.29%) and the ICESat-2 method (32.32%). Specifically, when the reference across-track slope exceeds 30°, our method can consistently yield the optimal across-track slopes, where the absolute median, inter quartile range, and whisker range of the across-track slope residuals have reductions greater than 4.44°, 1.31°, and 0.10°, respectively. Overall, our method is well-suited for the across-track slope estimation over rugged terrains and can provide higher-precision, higher-resolution, and more valid across-track slopes. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

19 pages, 41225 KB  
Article
High-Precision Reconstruction of Water Areas Based on High-Resolution Stereo Pairs of Satellite Images
by Junyan Ye, Ruiqiu Xu, Yixiao Wang and Xu Huang
Remote Sens. 2025, 17(13), 2139; https://doi.org/10.3390/rs17132139 - 22 Jun 2025
Viewed by 650
Abstract
The use of high-resolution satellite stereo pairs for dense image matching is a core technology for the low-cost generation of large-scale digital surface models (DSMs). However, water areas in satellite imagery often exhibit weak texture characteristics. This leads to serious issues in reconstructing [...] Read more.
The use of high-resolution satellite stereo pairs for dense image matching is a core technology for the low-cost generation of large-scale digital surface models (DSMs). However, water areas in satellite imagery often exhibit weak texture characteristics. This leads to serious issues in reconstructing water surface DSMs with traditional dense matching methods, such as significant holes and abnormal undulations. These problems significantly impact the intelligent application of satellite DSM products. To address these issues, this study innovatively proposes a water region DSM reconstruction method, boundary plane-constrained surface water stereo reconstruction (BPC-SWSR). The algorithm constructs a water surface reconstruction model with constraints on the plane’s tilt angle and boundary, combining effective ground matching data from the shoreline and the plane constraints of the water surface. This method achieves the seamless planar reconstruction of the water region, effectively solving the technical challenges of low geometric accuracy in water surface DSMs. This article conducts experiments on 10 high-resolution satellite stereo image pairs, covering three types of water bodies: river, lake, and sea. Ground truth water surface elevations were obtained through a manual tie point selection followed by forward intersection and planar fitting in water surface areas, establishing a rigorous validation framework. The DSMs generated by the proposed algorithm were compared with those generated by state-of-the-art dense matching algorithms and the industry-leading software Reconstruction Master version 6.0. The proposed algorithm achieves a mean RMSE of 2.279 m and a variance of 0.6613 m2 in water surface elevation estimation, significantly outperforming existing methods with average RMSE and a variance of 229.2 m and 522.5 m2, respectively. This demonstrates the algorithm’s ability to generate more accurate and smoother water surface models. Furthermore, the algorithm still achieves excellent reconstruction results when processing different types of water areas, confirming its wide applicability in real-world scenarios. Full article
Show Figures

Figure 1

28 pages, 8777 KB  
Article
Exploring Carbon-Fiber UAV Structures as Communication Antennas for Adaptive Relay Applications
by Cristian Vidan, Andrei Avram, Lucian Grigorie, Grigore Cican and Mihai Nacu
Electronics 2025, 14(12), 2473; https://doi.org/10.3390/electronics14122473 - 18 Jun 2025
Viewed by 999
Abstract
This study investigates the electromagnetic performance of two carbon fiber monopole antennas integrated into a UAV copter frame, with emphasis on design adaptation, impedance matching, and propagation behavior. A comprehensive experimental campaign was conducted to characterize key parameters such as center frequency, bandwidth, [...] Read more.
This study investigates the electromagnetic performance of two carbon fiber monopole antennas integrated into a UAV copter frame, with emphasis on design adaptation, impedance matching, and propagation behavior. A comprehensive experimental campaign was conducted to characterize key parameters such as center frequency, bandwidth, gain, VSWR, and S11. Both antennas exhibited dual-band resonance at approximately 381 MHz and 1.19 GHz, each achieving a 500 MHz bandwidth where VSWR ≤ 2. The modified antenna achieved a minimum reflection coefficient of –14.6 dB and a VSWR of 1.95 at 381.45 MHz, closely aligning with theoretical predictions. Gain deviations between measured (0.15–0.19 dBi) and calculated (0.19 dBi) values remained within 0.04 dB, while received power fluctuations did not exceed 1.3 dB under standard test conditions despite the composite material’s finite conductivity. Free-space link-budget tests at 0.5 m and 2 m of separation revealed received-power deviations of 0.9 dB and 1.3 dB, respectively, corroborating the Friis model. Radiation pattern measurements in both azimuth and elevation planes confirmed good directional behavior, with minor side lobe variations, where Antenna A displayed variations between 270° and 330° in azimuth, while Antenna B remained more uniform. A 90° polarization mismatch led to a 15 dBm signal drop, and environmental obstructions caused losses of 9.4 dB, 12.6 dB, and 18.3 dB, respectively, demonstrating the system’s sensitivity to alignment and surroundings. Additionally, signal strength changes observed in a Two-Ray propagation setup validated the importance of ground reflection effects. Small-scale fading analysis at 5 m LOS indicated a Rician-distributed envelope with mean attenuation of 53.96 dB, σdB = 5.57 dB, and a two-sigma interval spanning 42.82 dB to 65.11 dB; the fitted K-factor confirmed the dominance of the LOS component. The findings confirm that carbon fiber UAV frames can serve as effective directional antenna supports, providing proper alignment and tuning. These results support the future integration of lightweight, structure-embedded antennas in UAV systems, with potential benefits in communication efficiency, stealth, and design simplification. Full article
(This article belongs to the Special Issue Unmanned Aircraft Systems with Autonomous Navigation, 2nd Edition)
Show Figures

Figure 1

19 pages, 7788 KB  
Article
Research on Outdoor Navigation of Intelligent Wheelchair Based on a Novel Layered Cost Map
by Jianwei Cui, Siji Yu, Yucheng Shang, Yuxiang Dai and Wenyi Zhang
Actuators 2025, 14(2), 46; https://doi.org/10.3390/act14020046 - 22 Jan 2025
Cited by 1 | Viewed by 2221
Abstract
With the aging of the population and the increase in the number of people with disabilities, intelligent wheelchairs are essential in improving travel autonomy and quality of life. In this paper, we propose an autonomous outdoor navigation framework for intelligent wheelchairs based on [...] Read more.
With the aging of the population and the increase in the number of people with disabilities, intelligent wheelchairs are essential in improving travel autonomy and quality of life. In this paper, we propose an autonomous outdoor navigation framework for intelligent wheelchairs based on hierarchical cost maps to address the challenges of wheelchair navigation in complex and dynamic outdoor environments. First, the framework integrates multi-sensors such as RTK high-precision GPS, IMU, and 3D LIDAR; fuses RTK, IMU, and odometer data to realize high-precision positioning; and performs path planning and obstacle avoidance through dynamic hierarchical cost maps. Secondly, the drivable area layer is integrated into the traditional hierarchical cost map, in which the drivable area detection algorithm utilizes local plane fitting and elevation difference analysis to achieve efficient ground point cloud segmentation and real-time updating, which ensures the real-time safety of navigation. The experiments are validated in real outdoor scenes and simulation environments, and the results show that the speed of drivable region detection is about 30 ms, the positioning accuracy of wheelchair outdoor navigation is less than 10 cm, and the distance of active obstacle avoidance is 1 m. This study provides an effective solution for the autonomous navigation of the intelligent wheelchair in a complex outdoor environment, and it has a high robustness and application potential. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

19 pages, 2560 KB  
Article
Evaluation of Rapeseed Leave Segmentation Accuracy Using Binocular Stereo Vision 3D Point Clouds
by Lili Zhang, Shuangyue Shi, Muhammad Zain, Binqian Sun, Dongwei Han and Chengming Sun
Agronomy 2025, 15(1), 245; https://doi.org/10.3390/agronomy15010245 - 20 Jan 2025
Cited by 4 | Viewed by 1501
Abstract
Point cloud segmentation is necessary for obtaining highly precise morphological traits in plant phenotyping. Although a huge development has occurred in point cloud segmentation, the segmentation of point clouds from complex plant leaves still remains challenging. Rapeseed leaves are critical in cultivation and [...] Read more.
Point cloud segmentation is necessary for obtaining highly precise morphological traits in plant phenotyping. Although a huge development has occurred in point cloud segmentation, the segmentation of point clouds from complex plant leaves still remains challenging. Rapeseed leaves are critical in cultivation and breeding, yet traditional two-dimensional imaging is susceptible to reduced segmentation accuracy due to occlusions between plants. The current study proposes the use of binocular stereo-vision technology to obtain three-dimensional (3D) point clouds of rapeseed leaves at the seedling and bolting stages. The point clouds were colorized based on elevation values in order to better process the 3D point cloud data and extract rapeseed phenotypic parameters. Denoising methods were selected based on the source and classification of point cloud noise. However, for ground point clouds, we combined plane fitting with pass-through filtering for denoising, while statistical filtering was used for denoising outliers generated during scanning. We found that, during the seedling stage of rapeseed, a region-growing segmentation method was helpful in finding suitable parameter thresholds for leaf segmentation, and the Locally Convex Connected Patches (LCCP) clustering method was used for leaf segmentation at the bolting stage. Furthermore, the study results show that combining plane fitting with pass-through filtering effectively removes the ground point cloud noise, while statistical filtering successfully denoises outlier noise points generated during scanning. Finally, using the region-growing algorithm during the seedling stage with a normal angle threshold set at 5.0/180.0* M_PI and a curvature threshold set at 1.5 helps to avoid the under-segmentation and over-segmentation issues, achieving complete segmentation of rapeseed seedling leaves, while the LCCP clustering method fully segments rapeseed leaves at the bolting stage. The proposed method provides insights to improve the accuracy of subsequent point cloud phenotypic parameter extraction, such as rapeseed leaf area, and is beneficial for the 3D reconstruction of rapeseed. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture)
Show Figures

Figure 1

21 pages, 11350 KB  
Article
A Fast Obstacle Detection Algorithm Based on 3D LiDAR and Multiple Depth Cameras for Unmanned Ground Vehicles
by Fenglin Pang, Yutian Chen, Yan Luo, Zigui Lv, Xuefei Sun, Xiaobin Xu and Minzhou Luo
Drones 2024, 8(11), 676; https://doi.org/10.3390/drones8110676 - 15 Nov 2024
Cited by 2 | Viewed by 2722
Abstract
With the advancement of technology, unmanned ground vehicles (UGVs) have shown increasing application value in various tasks, such as food delivery and cleaning. A key capability of UGVs is obstacle detection, which is essential for avoiding collisions during movement. Current mainstream methods use [...] Read more.
With the advancement of technology, unmanned ground vehicles (UGVs) have shown increasing application value in various tasks, such as food delivery and cleaning. A key capability of UGVs is obstacle detection, which is essential for avoiding collisions during movement. Current mainstream methods use point cloud information from onboard sensors, such as light detection and ranging (LiDAR) and depth cameras, for obstacle perception. However, the substantial volume of point clouds generated by these sensors, coupled with the presence of noise, poses significant challenges for efficient obstacle detection. Therefore, this paper presents a fast obstacle detection algorithm designed to ensure the safe operation of UGVs. Building on multi-sensor point cloud fusion, an efficient ground segmentation algorithm based on multi-plane fitting and plane combination is proposed in order to prevent them from being considered as obstacles. Additionally, instead of point cloud clustering, a vertical projection method is used to count the distribution of the potential obstacle points through converting the point cloud to a 2D polar coordinate system. Points in the fan-shaped area with a density lower than a certain threshold will be considered as noise. To verify the effectiveness of the proposed algorithm, a cleaning UGV equipped with one LiDAR sensor and four depth cameras is used to test the performance of obstacle detection in various environments. Several experiments have demonstrated the effectiveness and real-time capability of the proposed algorithm. The experimental results show that the proposed algorithm achieves an over 90% detection rate within a 20 m sensing area and has an average processing time of just 14.1 ms per frame. Full article
Show Figures

Figure 1

20 pages, 4847 KB  
Article
A Small-Object-Detection Algorithm Based on LiDAR Point-Cloud Clustering for Autonomous Vehicles
by Zhibing Duan, Jinju Shao, Meng Zhang, Jinlei Zhang and Zhipeng Zhai
Sensors 2024, 24(16), 5423; https://doi.org/10.3390/s24165423 - 22 Aug 2024
Cited by 6 | Viewed by 5006
Abstract
3D object-detection based on LiDAR point clouds can help driverless vehicles detect obstacles. However, the existing point-cloud-based object-detection methods are generally ineffective in detecting small objects such as pedestrians and cyclists. Therefore, a small-object-detection algorithm based on clustering is proposed. Firstly, a new [...] Read more.
3D object-detection based on LiDAR point clouds can help driverless vehicles detect obstacles. However, the existing point-cloud-based object-detection methods are generally ineffective in detecting small objects such as pedestrians and cyclists. Therefore, a small-object-detection algorithm based on clustering is proposed. Firstly, a new segmented ground-point clouds segmentation algorithm is proposed, which filters out the object point clouds according to the heuristic rules and realizes the ground segmentation by multi-region plane-fitting. Then, the small-object point cloud is clustered using an improved DBSCAN clustering algorithm. The K-means++ algorithm for pre-clustering is used, the neighborhood radius is adaptively adjusted according to the distance, and the core point search method of the original algorithm is improved. Finally, the detection of small objects is completed using the directional wraparound box model. After extensive experiments, it was shown that the precision and recall of our proposed ground-segmentation algorithm reached 91.86% and 92.70%, respectively, and the improved DBSCAN clustering algorithm improved the recall of pedestrians and cyclists by 15.89% and 9.50%, respectively. In addition, visualization experiments confirmed that our proposed small-object-detection algorithm based on the point-cloud clustering method can realize the accurate detection of small objects. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Graphical abstract

29 pages, 15352 KB  
Article
Curvature-Adaptive Compact Triple-Band Metamaterial Uniplanar Compact Electromagnetic Bandgap-Based Printed Antenna for Wearable Wireless and Medical Body Area Network Applications
by Tarek Messatfa, Souad Berhab, Fouad Chebbara and Mohamed S. Soliman
Processes 2024, 12(7), 1380; https://doi.org/10.3390/pr12071380 - 2 Jul 2024
Cited by 4 | Viewed by 1842
Abstract
A novel, compact, monopole apple-shaped, triple-band metamaterial-printed wearable antenna backed by a uniplanar compact electromagnetic bandgap (UC-EBG) structure is introduced in this paper for wearable wireless and medical body area network (WBAN/MBAN) applications. A tri-band UC-EBG structure has been utilized as a ground [...] Read more.
A novel, compact, monopole apple-shaped, triple-band metamaterial-printed wearable antenna backed by a uniplanar compact electromagnetic bandgap (UC-EBG) structure is introduced in this paper for wearable wireless and medical body area network (WBAN/MBAN) applications. A tri-band UC-EBG structure has been utilized as a ground plane to minimize the impact of antenna radiation on the human body and improve antenna performance for the proposed wearable antenna. Metamaterial triangular complementary split ring resonators (TCSRRs) are incorporated into the antenna and UC-EBG structure, resulting in a compact UC-EBG-backed antenna with an overall size of 39 × 39 × 2.84 mm3 (0.41 λg × 0.41 λg × 0.029 λg). The printed textile antenna operates at 2.45 GHz for the wireless local area network (WLAN), 3.5 GHz for 5G new radio (NR), and 5.8 GHz for the industrial, scientific, and medical (ISM) bands with improved gain and high-efficiency values. Furthermore, the performance of the antenna is analyzed on the human body, where three models of curved body parts are considered: a child’s arm (worst case) with a 40 mm radius, an adult’s arm with a 60 mm radius, and an adult’s leg with a 70 mm radius. The results demonstrate that the proposed antenna is an attractive candidate for wearable healthcare and fitness monitoring devices and other WBAN/MBAN applications due to its compact size, high performance, and low SAR values. Full article
(This article belongs to the Special Issue Energy Process Systems Simulation, Modeling, Optimization and Design)
Show Figures

Figure 1

22 pages, 22021 KB  
Article
Development of an Uneven Terrain Decision-Aid Landing System for Fixed-Wing Aircraft Based on Computer Vision
by Chin-Sheng Chuang and Chao-Chung Peng
Electronics 2024, 13(10), 1946; https://doi.org/10.3390/electronics13101946 - 15 May 2024
Cited by 4 | Viewed by 1415
Abstract
This paper presents a computer vision-based standalone decision-aid landing system for light fixed-wing aircraft, aiming to enhance safety during emergency landings. Current landing assistance systems in airports, such as Instrument Landing Systems (ILSs) and Precision Approach Path Indicators (PAPIs), often rely on costly [...] Read more.
This paper presents a computer vision-based standalone decision-aid landing system for light fixed-wing aircraft, aiming to enhance safety during emergency landings. Current landing assistance systems in airports, such as Instrument Landing Systems (ILSs) and Precision Approach Path Indicators (PAPIs), often rely on costly and location-specific ground equipment, limiting their utility for low-payload light aircraft. Especially in emergency conditions, the pilot may be forced to land on an arbitrary runway where the road flatness and glide angle cannot be ensured. To address these issues, a stereo vision-based auxiliary landing system is proposed, which is capable of estimating an appropriate glide slope based on the terrain, to assist pilots in safe landing decision-making. Moreover, in real-world scenarios, challenges with visual-based methods arise when attempting emergency landings on complex terrains with diverse objects, such as roads and buildings. This study solves this problem by employing the Gaussian Mixture Model (GMM) to segment the color image and extract ground points, while the iterative weighted plane fitting (IWPF) algorithm is introduced to mitigate the interference of outlier feature points, reaching a highly robust plane normal estimation. With the aid of the proposed system, the pilot is able to evaluate the landing glide angle/speed with respect to the uneven terrain. Simulation results demonstrate that the proposed system can successfully achieve landing guidance in unknown environments by providing glide angle estimations with an average error of less than 1 degree. Full article
Show Figures

Figure 1

14 pages, 8257 KB  
Article
Evaluation of Whole Brain Intravoxel Incoherent Motion (IVIM) Imaging
by Kamil Lipiński and Piotr Bogorodzki
Diagnostics 2024, 14(6), 653; https://doi.org/10.3390/diagnostics14060653 - 20 Mar 2024
Cited by 4 | Viewed by 2665
Abstract
Intravoxel Incoherent Motion (IVIM) imaging provides non-invasive perfusion measurements, eliminating the need for contrast agents. This work explores the feasibility of IVIM imaging in whole brain perfusion studies, where an isotropic 1 mm voxel is widely accepted as a standard. This study follows [...] Read more.
Intravoxel Incoherent Motion (IVIM) imaging provides non-invasive perfusion measurements, eliminating the need for contrast agents. This work explores the feasibility of IVIM imaging in whole brain perfusion studies, where an isotropic 1 mm voxel is widely accepted as a standard. This study follows the validity of a time-limited, precise, segmentation-ready whole-brain IVIM protocol suitable for clinical reality. To assess the influence of SNR on the estimation of S0, f, D*, and D IVIM parameters, a series of measurements and simulations were performed in MATLAB for the following three estimation techniques: segmented grid search, segmented curve fitting, and one-step curve fitting, utilizing known “ground truth” and noised data. Scanner-specific SNR was estimated based on a healthy subject IVIM MRI study in a 3T scanner. Measurements were conducted for 25.6 × 25.6 × 14.4 cm FOV with a 256 × 256 in-plane resolution and 72 slices, resulting in 1 × 1 × 2 mm voxel size. Simulations were performed for 36 SNR levels around the measured SNR value. For a single voxel grid, the search algorithm mean relative error Ŝ0, f^, D^*, and D^ of at the expected SNR level were 5.00%, 81.91%, 76.31%, and 18.34%, respectively. Analysis has shown that high-resolution IVIM imaging is possible, although there is significant variation in both accuracy and precision, depending on SNR and the chosen estimation method. Full article
(This article belongs to the Special Issue Advanced MRI in Clinical Diagnosis)
Show Figures

Figure 1

15 pages, 10125 KB  
Article
A Staged Real-Time Ground Segmentation Algorithm of 3D LiDAR Point Cloud
by Weiye Deng, Xiaoping Chen and Jingwei Jiang
Electronics 2024, 13(5), 841; https://doi.org/10.3390/electronics13050841 - 22 Feb 2024
Cited by 10 | Viewed by 4118
Abstract
Ground segmentation is a crucial task in the field of 3D LiDAR perception for autonomous driving. It is commonly used as a preprocessing step for tasks such as object detection and road extraction. However, the existing ground segmentation algorithms often struggle to meet [...] Read more.
Ground segmentation is a crucial task in the field of 3D LiDAR perception for autonomous driving. It is commonly used as a preprocessing step for tasks such as object detection and road extraction. However, the existing ground segmentation algorithms often struggle to meet the requirements of robustness and real-time performance due to significant variations in ground slopes and flatness across different scenes, as well as the influence of objects such as grass, flowerbeds, and trees in the environment. To address these challenges, this paper proposes a staged real-time ground segmentation algorithm. The proposed algorithm not only achieves high real-time performance but also exhibits improved robustness. Based on a concentric zone model, the algorithm filters out reflected noise points and vertical non-ground points in the first stage, improving the validity of the fitted ground plane. In the second stage, the algorithm effectively addresses the issue of undersegmentation of ground points through three steps: ground plane fitting, ground plane validity judgment, and ground plane repair. The experimental results on the SemanticKITTI dataset demonstrate that the proposed algorithm outperforms the existing methods in terms of segmentation results. Full article
Show Figures

Figure 1

13 pages, 5048 KB  
Article
Structural Analysis, Characterization, and First-Principles Calculations of Bismuth Tellurium Oxides, Bi6Te2O15
by Sun Woo Kim and Hong Young Chang
Crystals 2024, 14(1), 23; https://doi.org/10.3390/cryst14010023 - 26 Dec 2023
Viewed by 2085
Abstract
A single crystal of Bi6Te2O15 was obtained from the melt of the solid-state reaction of Bi2O3 and TeO3. Bi6Te2O15 crystallizes in the Pnma space group (No. 62) and [...] Read more.
A single crystal of Bi6Te2O15 was obtained from the melt of the solid-state reaction of Bi2O3 and TeO3. Bi6Te2O15 crystallizes in the Pnma space group (No. 62) and exhibits a three-dimensional network structure with a =10.5831(12) Å, b = 22.694(3) Å, c = 5.3843(6) Å, α = β = γ = 90°, V = 1293.2(3) Å3, and Z = 4. The structure was determined using single-crystal X-ray diffraction. An asymmetric unit in the unit cell, Bi3Te1O7.5, uniquely composed of four Bi3+ sites, one Te6+ site, and nine O2− sites, was solved and refined. As a bulk phase, Bi6Te2O15 was also synthesized and characterized using powder X-ray diffraction (XRD), infrared (FT-IR) spectrometry, and the thermogravimetric analysis (TGA) method. Through bond valence sum (BVS) calculations from the single crystal structure, Bi and Te cations have +3 and +6 oxidation numbers, respectively. Each Bi3+ cation forms a square pyramidal structure with five O2− anions, and a single Te6+ cation forms a six-coordinated octahedral structure with O2− anions. Since the lone-pair electron (Lp) of the square pyramidal structure, [BiO5]7−, where the Bi+ cation occupies the center of the square base plane, exists in the opposite direction of the square plane, the asymmetric environments of all four Bi3+ cations were analyzed and explored by determining the local dipole moments. In addition, to determine the extent of bond strain and distortion in the unit cell, which is attributed to the asymmetric environments of the Bi3+ and Te6+ cations in Bi6Te2O15, bond strain index (BSI) and global instability index (GII) were also calculated. We also investigated the structural, electronic, and optical properties of the structure of Bi6Te2O15 using the full potential linear augmented plane wave (FP-LAPW) method and the density functional theory (DFT) with WIEN2k code. In order to study the ground state properties of Bi6Te2O15, the theoretical total energies were calculated as a function of reduced volumes and then fitted with the Birch–Murnaghan equation of state (EOS). The band gap energy within the modified Becke–Johnson potential with Tran–Blaha parameterization (TB-mBJ) revealed a value of 3.36 eV, which was higher than the experimental value of 3.29 eV. To explore the optical properties of Bi6Te2O15, the real and imaginary parts of the dielectric function, refraction index, optical absorption coefficient, reflectivity, the real part of the optical conductivity extinction function, and the energy loss function were also calculated. Full article
Show Figures

Figure 1

Back to TopTop