Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = high-throughput metrology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 13590 KB  
Review
A Review of Optical Metrology Techniques for Advanced Manufacturing Applications
by Fangyuan Zhao, Hanyao Tang, Xuerong Zou and Xinghui Li
Micromachines 2025, 16(11), 1224; https://doi.org/10.3390/mi16111224 - 28 Oct 2025
Viewed by 908
Abstract
Advanced manufacturing places stringent demands on measurement technologies, requiring ultra-high precision, non-contact operation, high throughput, and real-time adaptability. Optical metrology, with its distinct advantages, has become a key enabler in this context. This paper reviews optical metrology techniques from the perspective of precision [...] Read more.
Advanced manufacturing places stringent demands on measurement technologies, requiring ultra-high precision, non-contact operation, high throughput, and real-time adaptability. Optical metrology, with its distinct advantages, has become a key enabler in this context. This paper reviews optical metrology techniques from the perspective of precision manufacturing applications, emphasizing precision positioning and surface topography measurement while noting the limitations of traditional contact-based methods. For positioning, interferometers, optical encoders, and time-of-flight methods enable accurate linear and angular measurements. For surface characterization, techniques such as interferometry, structured light profilometry, and confocal microscopy provide reliable evaluation across scales, from large structures to micro- and nano-scale features. By integrating these approaches, optical metrology is shown to play a central role in bridging macroscopic and nano-scale characterization, supporting both structural assessment and process optimization. This review highlights its essential contribution to advanced manufacturing, and offers a concise reference for future progress in high-precision and intelligent production. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 3171 KB  
Article
Transforming Industrial Manipulators via Kinesthetic Guidance for Automated Inspection of Complex Geometries
by Charalampos Loukas, Momchil Vasilev, Rastislav Zimmerman, Randika K. W. Vithanage, Ehsan Mohseni, Charles N. MacLeod, David Lines, Stephen Gareth Pierce, Stewart Williams, Jialuo Ding, Kenneth Burnham, Jim Sibson, Tom O’Hare and Michael R. Grosser
Sensors 2023, 23(7), 3757; https://doi.org/10.3390/s23073757 - 5 Apr 2023
Viewed by 3295
Abstract
The increased demand for cost-efficient manufacturing and metrology inspection solutions for complex-shaped components in High-Value Manufacturing (HVM) sectors requires increased production throughput and precision. This drives the integration of automated robotic solutions. However, the current manipulators utilizing traditional programming approaches demand specialized robotic [...] Read more.
The increased demand for cost-efficient manufacturing and metrology inspection solutions for complex-shaped components in High-Value Manufacturing (HVM) sectors requires increased production throughput and precision. This drives the integration of automated robotic solutions. However, the current manipulators utilizing traditional programming approaches demand specialized robotic programming knowledge and make it challenging to generate complex paths and adapt easily to unique specifications per component, resulting in an inflexible and cumbersome teaching process. Therefore, this body of work proposes a novel software system to realize kinesthetic guidance for path planning in real-time intervals at 250 Hz, utilizing an external off-the-shelf force–torque (FT) sensor. The proposed work is demonstrated on a 500 mm2 near-net-shaped Wire–Arc Additive Manufacturing (WAAM) complex component with embedded defects by teaching the inspection path for defect detection with a standard industrial robotic manipulator in a collaborative fashion and adaptively generating the kinematics resulting in the uniform coupling of ultrasound inspection. The utilized method proves superior in performance and speed, accelerating the programming time using online and offline approaches by an estimate of 88% to 98%. The proposed work is a unique development, retrofitting current industrial manipulators into collaborative entities, securing human job resources, and achieving flexible production. Full article
(This article belongs to the Special Issue New Advances in Robotically Enabled Sensing)
Show Figures

Figure 1

14 pages, 12122 KB  
Article
Damped Cantilever Microprobes for High-Speed Contact Metrology with 3D Surface Topography
by Michael Fahrbach, Min Xu, Wilson Ombati Nyang’au, Oleg Domanov, Christian H. Schwalb, Zhi Li, Christian Kuhlmann, Uwe Brand and Erwin Peiner
Sensors 2023, 23(4), 2003; https://doi.org/10.3390/s23042003 - 10 Feb 2023
Cited by 4 | Viewed by 3137
Abstract
We addressed the coating 5 mm-long cantilever microprobes with a viscoelastic material, which was intended to considerably extend the range of the traverse speed during the measurements of the 3D surface topography by damping contact-induced oscillations. The damping material was composed of epoxy [...] Read more.
We addressed the coating 5 mm-long cantilever microprobes with a viscoelastic material, which was intended to considerably extend the range of the traverse speed during the measurements of the 3D surface topography by damping contact-induced oscillations. The damping material was composed of epoxy glue, isopropyl alcohol, and glycerol, and its deposition onto the cantilever is described, as well as the tests of the completed cantilevers under free-oscillating conditions and in contact during scanning on a rough surface. The amplitude and phase of the cantilever’s fundamental out-of-plane oscillation mode was investigated vs. the damping layer thickness, which was set via repeated coating steps. The resonance frequency and quality factor decreased with the increasing thickness of the damping layer for both the free-oscillating and in-contact scanning operation mode, as expected from viscoelastic theory. A very low storage modulus of E100kPa, a loss modulus of E434kPa, and a density of ρ1.2gcm3 were yielded for the damping composite. Almost critical damping was observed with an approximately 130 µm-thick damping layer in the free-oscillating case, which was effective at suppressing the ringing behavior during the high-speed in-contact probing of the rough surface topography. Full article
(This article belongs to the Special Issue Cantilever Sensors for Industrial Applications: 2nd Edition)
Show Figures

Figure 1

Back to TopTop