Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = humic-like

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5539 KB  
Article
Composition Characteristics of Dissolved Organic Matter and Its Coupling with Nutrient Stoichiometry in Tea Garden Soils
by Hongmeng Ye, Mengqian Hou, Aowen Shi, Yuting Liang and Yongbin Zhang
Agronomy 2025, 15(11), 2449; https://doi.org/10.3390/agronomy15112449 - 22 Oct 2025
Viewed by 330
Abstract
Nutrient stoichiometry and dissolved organic matter (DOM) govern essential ecosystem processes; however, their coupling in tea garden soils remains obscure, and cultivar-specific effects on this linkage remain virtually unknown. In this study, soil carbon (C), nitrogen (N), and phosphorus (P) contents and their [...] Read more.
Nutrient stoichiometry and dissolved organic matter (DOM) govern essential ecosystem processes; however, their coupling in tea garden soils remains obscure, and cultivar-specific effects on this linkage remain virtually unknown. In this study, soil carbon (C), nitrogen (N), and phosphorus (P) contents and their C/N/P stoichiometry were measured in two contrasting tea cultivars, Rougui and Shuixian. DOM composition and sources were resolved using UV–visible spectroscopy, three-dimensional fluorescence spectroscopy, and parallel factor analysis. The tea garden soils exhibited low C/N/P ratios but high nutrient availability. DOM was dominated by fulvic- and tyrosine-like components, indicating low humification and high biodegradability. Soil organic matter and C/N/P stoichiometry jointly controlled the quantity and quality of DOM. In Rougui soils, protein-like DOM accounted for 61.92% ± 7.27% of total fluorescence and was primarily regulated by the N/P ratio. In Shuixian soils, humic-like DOM increased to 53.13% ± 8.58% of total fluorescence and was positively driven by the C/P ratio. These findings demonstrate that tea cultivars modulate the coupling between DOM and C/N/P stoichiometry, providing a basis for cultivar-specific fertilization strategies, efficient regulation of soil nutrient cycling, and sustainable tea garden management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 3046 KB  
Article
Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils
by Qiaobo Song, Jian Ma, Xin Chen, Caiyan Lu, Huaihai Chen, Guangyu Chi and Yanyu Hu
Agronomy 2025, 15(10), 2382; https://doi.org/10.3390/agronomy15102382 - 13 Oct 2025
Viewed by 629
Abstract
Different types of organic materials demonstrate varying efficacy in ameliorating saline–alkali soils, while the combined application of organic materials can potentially enhance the remediation effects on saline–alkali land. To verify this assumption, our study conducted a pot experiment with spinach in saline–alkali soil, [...] Read more.
Different types of organic materials demonstrate varying efficacy in ameliorating saline–alkali soils, while the combined application of organic materials can potentially enhance the remediation effects on saline–alkali land. To verify this assumption, our study conducted a pot experiment with spinach in saline–alkali soil, observing the improvement effect of saline–alkali soil and the growth of crops when acid fermentation products of vegetables, humic acid-like substances, and corn straw were applied either individually or in combination. The results revealed that both the sole and combined application of organic materials could enhance the yield of spinach. Particularly, humic acid-like substances increased spinach yield to six times that of the chemical fertilizer treatment. Although the application of organic materials led to a decline in the diversity and richness indices of the microbial community in saline–alkali soil (except fungal richness), the combined use of organic materials contributed to a healthier trend in the soil microbial community structure. Beyond its effects on soil nutrients such as total carbon and total nitrogen, the improvement in soil organic matter activity caused by the joint application of organic materials was identified as the primary factor responsible for enhancing the health of the soil microbial community and the remediation effects on saline–alkali soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

22 pages, 3537 KB  
Article
Enhanced Treatment of Swine Farm Wastewater Using an O3/Fe2+/H2O2 Process: Optimization and Performance Evaluation via Response Surface Methodology
by Hang Yu, Kexin Tang, Jingqi Li, Linxi Dong, Zuo Tong How, Dongming Wu and Rui Qin
Separations 2025, 12(10), 277; https://doi.org/10.3390/separations12100277 - 10 Oct 2025
Viewed by 465
Abstract
Biologically treated swine farm wastewater still contains high levels of refractory organics, humic substances and antibiotic residues, posing environmental risks and limiting opportunities for water reuse. Wastewater treatment by ozonation alone suffers from low mass transfer efficiency and selective oxidation. To overcome these [...] Read more.
Biologically treated swine farm wastewater still contains high levels of refractory organics, humic substances and antibiotic residues, posing environmental risks and limiting opportunities for water reuse. Wastewater treatment by ozonation alone suffers from low mass transfer efficiency and selective oxidation. To overcome these limitations, a catalytic ozonation process (O3/Fe2+/H2O2) was applied and optimized using Response Surface Methodology (RSM) based on single-factor experiments and Central Composite Design (CCD) for advanced swine farm wastewater treatment. The optimal conditions ([O3] = 25.0 mg/L, [Fe2+] = 25.9 mg/L, [H2O2] = 41.1 mg/L) achieved a COD removal of 44.3%, which was 86.8% higher than that of ozonation alone, and increased TOC removal to 29.5%, indicating effective mineralization. Biodegradability (BOD5/COD) of swine farm wastewater effluent increased from 0.01 to 0.34 after the catalytic ozonation treatment. Humic-like and fulvic-like substances were removed by 93.7% and 95.4%, respectively, and antibiotic degradation was significantly accelerated and enhanced. The synergistic process improved ozone utilization efficiency by 33.1% and removed 53.95% of total phosphorus through Fe3+-mediated coprecipitation. These findings demonstrate that with catalytic ozone decomposition and production of hydroxyl radicals, the O3/Fe2+/H2O2 system effectively integrates enhanced ozone utilization efficiency, radical synergy, and simultaneous pollutant removal, providing a cost-effective and technically feasible strategy for advanced swine farm wastewater treatment and safe reuse. Full article
Show Figures

Graphical abstract

18 pages, 2398 KB  
Article
Synergistic Radical and Non-Radical Pathways in Phenol Degradation: Electron Transfer Mechanism Dominated by N-Doped Carbon/Peroxymonosulfate System
by Qiongqiong He, Xuewen Wu, Ping Ma, Xiaoqi Wu and Zhenyong Miao
Catalysts 2025, 15(10), 968; https://doi.org/10.3390/catal15100968 - 10 Oct 2025
Viewed by 617
Abstract
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this [...] Read more.
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this catalyst (NC-800) to activate PMS for phenol degradation achieved 100% phenol removal across a wide pH range (1–9). The removal rate remained at 99.62% even with high concentrations of inorganic anions or natural organic matter, breaking through the limitations of traditional Fenton-like reactions in terms of acid–base environment and anion influence. The quenching experiment and electron spin resonance (ESR) spectroscopy results indicated that the N-C/PMS system generated three active species hydroxyl radicals (•OH), superoxide radicals (O2•−), and singlet oxygen (1O2) through the active sites in electron-rich regions such as graphite nitrogen, pyrrole nitrogen, and C=O. An electrochemical test revealed that the system formed a metastable NC-800-PMS* complex during the reaction, indicating the existence of a non-radical pathway of electron transfer. The combination of free radicals (•OH, O2•−) and non-free radicals (1O2, electron transfer) facilitated the rapid degradation of phenol, providing a theoretical basis for phenol degradation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

26 pages, 2688 KB  
Article
Investigation of the Influencing Parameters of the H2O2-Assisted Photochemical Treatment of Waste Liquid from the Hydrothermal Carbonization Process in a Microreactor Flow System
by Aleksandra Petrovič, Tjaša Cenčič Predikaka, Silvo Hribernik and Andreja Nemet
Processes 2025, 13(9), 2934; https://doi.org/10.3390/pr13092934 - 14 Sep 2025
Viewed by 514
Abstract
Due to its complex composition and toxicity, the waste liquid from hydrothermal carbonization (HTC) poses a serious environmental challenge that must be addressed before disposal. In this study, the photochemical treatment of HTC liquid in a microreactor flow system was investigated. The effects [...] Read more.
Due to its complex composition and toxicity, the waste liquid from hydrothermal carbonization (HTC) poses a serious environmental challenge that must be addressed before disposal. In this study, the photochemical treatment of HTC liquid in a microreactor flow system was investigated. The effects of wavelength, the presence of atmospheric oxygen, oxidizing agent (H2O2) and catalyst (FeSO4), residence time and pH on the efficiency of the photo-treatment were investigated. In addition, the influence of the addition of deep eutectic solvent (DES) on photo-treatment was studied. The results showed that the photochemical treatment was more efficient at 365 nm than at 420 nm, and that the acidic conditions gave better results than the basic ones. UV365 treatment in the presence of H2O2 (at a dosage of 1 vol%) resulted in removal efficiencies of 31.6% for COD, 17.6% for TOC, 16.9% for NH4-N and 17.2% for PO4-P. The addition of FeSO4 caused coagulation/flocculation effects, but improved phosphorus removal. The addition of DES resulted in slight discolouration of the liquid and proved unsuccessful in COD removal. The GC-MS analysis and 3D-EEM spectra showed significant changes in the fate of organics and in the fluorescence intensity of aromatic proteins and humic acid-like substances. Photochemical treatment in a microreactor flow system in the presence of H2O2 under the selected operating conditions reduced the content of organics and nutrients in the HTC liquid, but the process liquids still showed toxic effects on the organisms V. fischeri and Daphnia magna. Full article
Show Figures

Graphical abstract

19 pages, 4940 KB  
Article
Unraveling Seasonal Dynamics of Dissolved Organic Matter in Agricultural Ditches Using UV-Vis Absorption and Excitation–Emission Matrix (EEM) Fluorescence Spectroscopy
by Keyan Li, Jinfeng Ge, Qiaozhuan Hu, Wenrui Yao, Xiaoli Fu, Chao Ma and Yulin Qi
Chemosensors 2025, 13(9), 346; https://doi.org/10.3390/chemosensors13090346 - 10 Sep 2025
Viewed by 801
Abstract
Seasonal dynamics of dissolved organic matter (DOM) in agricultural ditches significantly impact carbon cycling and water quality in connected rivers. This study aimed to characterize seasonal variations in DOM composition and dynamics within hierarchical agricultural ditch systems in Tianjin, northern China. Surface water [...] Read more.
Seasonal dynamics of dissolved organic matter (DOM) in agricultural ditches significantly impact carbon cycling and water quality in connected rivers. This study aimed to characterize seasonal variations in DOM composition and dynamics within hierarchical agricultural ditch systems in Tianjin, northern China. Surface water samples were collected from river channels, main ditches, branch ditches, lateral ditches, and field ditches during wet (June 2021) and dry (December 2021) seasons. DOM characteristics were analyzed using dissolved organic carbon (DOC) quantification, ultraviolet-visible (UV-Vis) absorption spectroscopy, and three-dimensional excitation–emission matrix spectroscopy (3D-EEMs) coupled with parallel factor analysis (PARAFAC). The concentration of DOC in ditch surface water exhibited significant seasonal variations, with significantly higher levels observed during the wet season (Huangzhuang: 6.72 ± 0.7 mg/L; Weixing: 13.15 ± 3.1 mg/L) compared to the dry season (Huangzhuang: 5.93 ± 0.3 mg/L; Weixing: 9.35 ± 2.6 mg/L). Both UV-Vis spectral and EEM-PARAFAC analysis revealed that DOM in ditch systems was predominantly composed of fulvic-like and tryptophan-like components, representing the portion of organic matter in water bodies that is highly biologically active, highly mobile, relatively “fresh”, or “not fully humified”. PARAFAC identified microbial humic-like (C1: wet season 40.36%, dry season 34.42%) and protein-like (C3: wet season 40.3%, dry season 49.87%) components as dominant. DOM sources were influenced by dual inputs from terrestrial and autochthonous origins during the wet season, while primarily deriving from autochthonous sources in the dry season. This study elucidates the advances of spectroscopic techniques in deciphering the composition, sources, and influencing factors of DOM in aquatic systems. The findings support implementing riparian buffer strips and optimized fertilizer management to mitigate seasonal peaks of bioavailable DOM in agricultural ditch systems. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

20 pages, 5917 KB  
Article
Montmorillonite and Composite Amino Acid Overcome the Challenges of Straw Return in Cold-Region Soil: Synergistic Mechanisms of Rapid Straw Humification and Carbon Sequestration
by Xingyan Chen, Tchoumtchoua Foka Joseline Galliane, Chongyang Zhao, Yanhui Feng and Mingtang Li
Agronomy 2025, 15(8), 1979; https://doi.org/10.3390/agronomy15081979 - 17 Aug 2025
Viewed by 701
Abstract
This study aimed to develop an effective method to overcome the challenge of straw return in cold-region soil. We systematically investigated the synergistic mechanism of montmorillonite (MMT) and composite amino acid (CAA) on straw humification and carbon sequestration through a low-temperature litterbag field [...] Read more.
This study aimed to develop an effective method to overcome the challenge of straw return in cold-region soil. We systematically investigated the synergistic mechanism of montmorillonite (MMT) and composite amino acid (CAA) on straw humification and carbon sequestration through a low-temperature litterbag field experiment. The results indicate that the combined treatment (MMT-CAA) significantly increased the decomposition rate of straw by 42.1% compared to the control (CK), with MMT showing particular efficacy in lignin degradation (28.3% reduction), while the CAA preferentially decomposed cellulose (19.7% reduction). An FTIR analysis of the decomposition products confirmed these findings. Water-soluble organic carbon (WEOC) and its three-dimensional fluorescence spectra exhibited a 25.0% increase in MMT-CAA and enhanced aromaticity of humic acid-like substances. Humic substances and their 13C-NMR revealed that MMT-CAA enhanced humic acid formation and molecular stability by 31.4% (with a 47.8% increase in aromaticity). A further redundancy analysis and symbiotic network of microorganisms demonstrated that MMT-CAA increased the abundance of lignocellulose-degrading phyla (Actinomycetes and Stramenomycetes) and the formation of a complex co-degradation network. Field corn planting trials indicated that MMT-CAA increased plant height by 55.1%, stem thickness by 58.7%, leaf area by 70.2%, and the SPAD value by 41.1%. Additionally, MMT significantly reduced CO2 and N2O emission fluxes by 35.6% and 15.8%, respectively, while MMT-CAA increased CH4 uptake fluxes by 13.4%. This study presents an innovative strategy, providing mechanistic insights and practical solutions to synergistically address the challenges of slow straw decomposition and carbon loss in cold regions. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

23 pages, 5336 KB  
Article
Hydrochemistry of Blackwaters in a Shoreline Zone of São Paulo State, Brazil
by Daniel M. Bonotto, Marina Lunardi and Ashantha Goonetilleke
J. Mar. Sci. Eng. 2025, 13(8), 1575; https://doi.org/10.3390/jmse13081575 - 16 Aug 2025
Viewed by 850
Abstract
Blackwater rivers are enriched in humic acids and impoverished in nutrients, sometimes discharging into oceans. Brazil has a coastal zone of about 8700 km, with several blackwater rivers discharging into the Atlantic Ocean, in addition to the Rio Negro of the northern Amazon [...] Read more.
Blackwater rivers are enriched in humic acids and impoverished in nutrients, sometimes discharging into oceans. Brazil has a coastal zone of about 8700 km, with several blackwater rivers discharging into the Atlantic Ocean, in addition to the Rio Negro of the northern Amazon basin, which is the largest (about 1700 km long) and best-known tropical backwater river. On the other hand, only a few attempts have been made to deal with their hydrochemical composition and how it is related to the hydrochemistry of different water bodies nearby. This paper focuses on a sector of the Atlantic Ocean shore occurring in São Paulo State, enclosing two important Ecological Reserves, i.e., the Restinga State Park of Bertioga and the State Park of Serra do Mar–São Sebastião Nucleus, located at Bertioga and São Sebastião cities, respectively. Physicochemical parameters such as pH and electrical conductivity, as well as the composition of major constituents like sodium, potassium, calcium, magnesium, bicarbonate, chloride, sulfate, nitrate, etc., have been evaluated in two blackwater rivers and one blackwater stream to compare their relative inputs into the Atlantic Ocean. Traditional hydrogeochemical diagrams such as the Piper, Schoeller, Gibbs, van Wirdum, and Wilcox graphs were utilized for investigating the major features of the blackwater’s composition, revealing in some cases that they suffer an accentuated influence of the constituents occurring in the Atlantic Ocean waters, due to backward currents (coastal upwelling or tidal currents). Another highlight of this paper is the measurement of an enhanced concentration of dissolved iron in one blackwater sample analyzed, reaching a value of 1.9 mg/L. Such a finding has also been often reported in the literature for blackwater rivers and streams, as humic and fulvic acids are used to bind Fe3+, keeping it in solution. Nowadays, iron in solution has been considered a very important element acting as a natural fertilizer of the coastal ocean because it is an essential nutrient to marine phytoplankton. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

19 pages, 1124 KB  
Article
Assessing the Potential Agronomic Value of Spent Mushroom Substrates: Evaluating Their Suitability to Contribute to Soil Carbon Storage
by María R. Yagüe, José A. González-Pérez, Gonzalo Almendros and M. Carmen Lobo
Sustainability 2025, 17(16), 7335; https://doi.org/10.3390/su17167335 - 14 Aug 2025
Viewed by 1209
Abstract
The EU’s Circular Economy Action Plan promotes the use of organic waste as fertilizer, thus allowing the recycling of nutrients in the agricultural system. Research on the agronomic reuse of composted substrates previously employed for mushroom cultivation remains limited, despite their rich content [...] Read more.
The EU’s Circular Economy Action Plan promotes the use of organic waste as fertilizer, thus allowing the recycling of nutrients in the agricultural system. Research on the agronomic reuse of composted substrates previously employed for mushroom cultivation remains limited, despite their rich content of plant residues and fungal biomass, which could be repurposed as soil amendments under suitable conditions. This study evaluated the agronomic potential of spent mushroom substrates from Agaricus bisporus and Pleurotus ostreatus, including recomposted A. bisporus residues. A range of analytical procedures was employed to assess their suitability for soil improvement and the formation of humic-like substances, including physical, chemical, microbiological, phytotoxicity, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analyses. The spent Pleurotus substrate exhibited low nutrient content (1.1% N, negligible P, 0.9% K), but high water retention (820 kg water Mg−1) and 48% organic carbon (OC), indicating its potential as a soil amendment or seedling substrate. In contrast, spent and composted Agaricus substrates showed moderate nutrient content (1.8–2.7% N; 0.8–0.7% P and 1.3–1.8% K), appropriate C/N ratios (10–15), and sufficient OC levels (24–30%), supporting their use as fertilizers. However, elevated salinity levels (18–23 dS m−1) may restrict their application for salt-sensitive crops. No significant phytotoxic effects on seed germination were observed, and microbiological analyses confirmed the absence of Salmonella spp. in the three substrates. Py-GC/MS revealed a humic acid-like fraction comprising altered lignin structures enriched with lipid and nitrogen compounds. Overall, the studied materials demonstrate promising agronomic value and the capacity to contribute to long-term soil carbon storage. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

20 pages, 2614 KB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Viewed by 1374
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

17 pages, 1416 KB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Viewed by 994
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

20 pages, 2299 KB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 613
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

17 pages, 3221 KB  
Article
Removal of Chemical Oxygen Demand (COD) from Swine Farm Wastewater by Corynebacterium xerosis H1
by Jingyi Zhang, Meng Liu, Heshi Tian, Lingcong Kong, Wenyan Yang, Lianyu Yang and Yunhang Gao
Microorganisms 2025, 13(7), 1621; https://doi.org/10.3390/microorganisms13071621 - 9 Jul 2025
Viewed by 967
Abstract
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate [...] Read more.
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate an effective COD-degrading strain of SW, characterize (at the molecular level) its transformation of SW, and apply it to practical production. A strain of Corynebacterium xerosis H1 was isolated and had a 27.93% ± 0.68% (mean ± SD) degradation rate of COD in SW. This strain precipitated growth in liquids, which has the advantage of not needing to be immobilized, unlike other wastewater-degrading bacteria. Based on analysis by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), this bacterium removed nitrogen-containing compounds in SW, with proteins and lipids decreasing from 41 to 10% and lignins increasing from 51 to 82%. Furthermore, the enhancement of the sequencing batch reactor (SBR) with strain H1 improved COD removal in effluent, with reductions in the fluorescence intensity of aromatic protein I, aromatic protein II, humic-like acids, and fulvic acid regions. In addition, based on 16S rRNA gene sequencing analysis, SBRH1 successfully colonized some H1 bacteria and had a higher abundance of functional microbiota than SBRC. This study confirms that Corynebacterium xerosis H1, as a carrier-free efficient strain, can be directly applied to swine wastewater treatment, reducing carrier costs and the risk of secondary pollution. The discovery of this strain enriches the microbial resource pool for SW COD degradation and provides a new scheme with both economic and environmental friendliness for large-scale treatment. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 2348 KB  
Article
Sedimentary Differentiation Characteristics of Organic Matter and Phosphorus in Eutrophic Lake Special Zones
by Ya-Ping Liu, Di Song, Li-Xin Jiao, Jin-Long Zheng, Miao Zhang, Bo Yao, Jing-Yi Yan, Jian-Xun Wu and Xin Wen
Water 2025, 17(13), 1899; https://doi.org/10.3390/w17131899 - 26 Jun 2025
Viewed by 1085
Abstract
Lake eutrophication, often driving harmful algal blooms (HABs) and ecosystem degradation, involves complex biogeochemical shifts within sediments. Changes in the sedimentary dissolved organic matter (DOM) composition during transitions from macrophyte to algal dominance are thought to critically regulate internal phosphorus (P) loading, yet [...] Read more.
Lake eutrophication, often driving harmful algal blooms (HABs) and ecosystem degradation, involves complex biogeochemical shifts within sediments. Changes in the sedimentary dissolved organic matter (DOM) composition during transitions from macrophyte to algal dominance are thought to critically regulate internal phosphorus (P) loading, yet the underlying mechanisms, especially in vulnerable plateau lakes like Qilu Lake, require further elucidation. This study investigated the coupled cycling of carbon (C) and P in response to historical ecosystem succession and anthropogenic activities using a 0–24 cm sediment core from Qilu Lake. We analyzed the total organic carbon (TOC), total phosphorus (TP), sequential P fractions, and DOM fluorescence characteristics (EEM-PARAFAC), integrated with chronological series data. The results revealed an asynchronous vertical distribution of TOC and TP, reflecting the shift from a submerged macrophyte-dominated, oligotrophic state (pre-1980s; high TOC, low TP, stable Ca-P dominance) to an algae-dominated, eutrophic state. The eutrophication period (~1980s–2010s) showed high TP accumulation (Ca-P and NaOH85 °C-P enrichment), despite a relatively low TOC (due to rapid mineralization), while recent surface sediments (post-2010s) exhibited a high TOC, but a lower TP following input controls. Concurrently, the DOM composition shifted from microbial humic-like dominance (C1) in deeper sediments to protein-like dominance (C3) near the surface. This study demonstrates that the ecosystem shift significantly regulates P speciation and mobility by altering sedimentary DOM abundance and chemical characteristics (e.g., protein-like DOM correlating negatively with Ca-P), reinforcing a positive feedback mechanism that sustains internal P loading and potentially exacerbates HABs. DOM molecular characteristics emerged as a key factor controlling the internal P cycle in Qilu Lake, providing critical insights for managing eutrophication in plateau lakes. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Graphical abstract

13 pages, 2391 KB  
Article
Stable Carbon Isotope Fractionation of Trichloroethylene Oxidized by Potassium Permanganate Under Different Environmental Conditions
by Yaqiong Dong, Yufeng Wang, Lantian Xing, Ghufran Uddin, Yuanxiao Guan, Zhengyang E, Jianjun Liang, Ping Li, Changjie Liu and Qiaohui Fan
Appl. Sci. 2025, 15(13), 7142; https://doi.org/10.3390/app15137142 - 25 Jun 2025
Viewed by 624
Abstract
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for [...] Read more.
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for the degradation of trichloroethylene (TCE); however, the influence of environmental factors on the isotope fractionation during this process remains unclear. In this study, compound-specific isotope analysis (CSIA) was conducted to investigate the variability in carbon isotope effects during the KMnO4-mediated degradation of TCE under varying conditions, including initial concentrations of KMnO4 and TCE, the presence of humic acid (HA), pH levels, and inorganic ions. The results showed that the overall carbon isotope enrichment factors (ε) of TCE ranged from −26.5 ± 0.5‰ to −22.8 ± 0.9‰, indicating relatively small variations across conditions. At low KMnO4/TCE molar ratio (n(KMnO4)/n(TCE)), incomplete oxidation and/or MnO2-mediated oxidation of TCE likely resulted in smaller ε. For dense, non-aqueous phase liquid (DNAPL) TCE, which represents extremely high concentrations, the ε value was −13.0 ± 1.7‰ during KMnO4 oxidation. This may be attributed to the slow dissolution of isotopically light TCE from the DNAPL phase, altering the δ13C signature of the reacted TCE and resulting in a significantly larger ε value than observed for dissolved-phase TCE oxidation. The ε values increased with rising pH, probably due to the decrease in oxidation potential (E0) of KMnO4 from pH ~2 to ~12, as well as the emergence of different degradation pathways and intermediates under varying pH conditions. Both SO42− and NO3 slightly influenced the ε values, potentially due to the formation of H2SO4 and HNO3 at lower pH, which may act as auxiliary oxidants and contribute to TCE degradation. A high concentration (50 mM) of HA led to a decrease in ε values, likely due to competitive interactions between HA and TCE for KMnO4, which reduced the effective oxidation of TCE. Overall, the carbon isotope enrichment factors for KMnO4-mediated TCE degradation are relatively stable, although certain environmental conditions can exert minor influences. These findings highlight the need for caution when applying quantitative assessment based on CSIA for KMnO4 oxidation of TCE. Full article
Show Figures

Figure 1

Back to TopTop