Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hydraulic-acidogenic phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12297 KB  
Article
Monensin Degradation and Methane Production from Sugarcane Vinasse in Two-Phase Thermophilic Anaerobic Fixed-Bed and Sludge Blanket Bioreactors
by Sami Chatila and Marcelo Zaiat
Fermentation 2025, 11(9), 518; https://doi.org/10.3390/fermentation11090518 - 3 Sep 2025
Viewed by 1658
Abstract
Sugarcane vinasse, a byproduct of ethanol production, presents environmental challenges due to its high organic content and occasional contamination with antibiotics, such as monensin. This study successfully evaluated thermophilic two-phase anaerobic digestion for simultaneous monensin degradation and biogas production. The system, consisting of [...] Read more.
Sugarcane vinasse, a byproduct of ethanol production, presents environmental challenges due to its high organic content and occasional contamination with antibiotics, such as monensin. This study successfully evaluated thermophilic two-phase anaerobic digestion for simultaneous monensin degradation and biogas production. The system, consisting of an acidogenic anaerobic structured-bed bioreactor (ASTBR) operating at with a hydraulic retention time (HRT) of 7.5 h followed by a methanogenic reactor at HRT = 24 h, with two options of the methanogenic phase, an upflow anaerobic sludge blanket (UASB), and an ASTBR, operated continuously for 254 days with incremental monensin concentrations (0–2000 ng·mL−1). The acidogenic reactor consistently removed over 70% of monensin across all phases, demonstrating its effectiveness as a pretreatment step. At realistic residual concentrations (20–100 ng·mL−1), monensin not only failed to inhibit biogas production but enhanced methane yield by up to 100% through selective pressure on the microbial community. This study demonstrated that anaerobic digestion can effectively degrade monensin while increasing the value of vinasse, providing a scalable solution for mitigating antibiotic contamination and enhancing bioenergy recovery in the sugarcane–ethanol industry. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

16 pages, 1526 KB  
Article
Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase
by Dejene Tsegaye, Mohammed Mazharuddin Khan and Seyoum Leta
Sustainability 2023, 15(6), 5544; https://doi.org/10.3390/su15065544 - 21 Mar 2023
Cited by 17 | Viewed by 4825
Abstract
In a two-phase anaerobic digestion process, enhanced biogas production and organic pollutant removal depend on the stability and performance of the hydrolytic–acidogenic and methanogenic phases. Additionally, the hydrolytic–acidogenic phase is a rate-limiting step, which calls for the further optimization of operating parameters. The [...] Read more.
In a two-phase anaerobic digestion process, enhanced biogas production and organic pollutant removal depend on the stability and performance of the hydrolytic–acidogenic and methanogenic phases. Additionally, the hydrolytic–acidogenic phase is a rate-limiting step, which calls for the further optimization of operating parameters. The objective of this study was to optimize the operating parameters of the hydrolytic–acidogenic reactor (HR) in the two-phase anaerobic digestion treating slaughterhouse wastewater. The experiment was carried using bench-scale sequential bioreactors. The hydrolytic–acidogenic reactor operating parameters were optimized for six different hydraulic retention times (HRTs) (6–1 day) and organic loading rates (OLRs) (894.41 ± 32.56–5366.43 ± 83.80 mg COD/L*day). The degree of hydrolysis and acidification were mainly influenced by lower HRT (higher OLR), and the highest values of hydrolysis and acidification were 63.92% and 53.26% at an HRT of 3 days, respectively. The findings indicated that, at steady state, the concentrations of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs) decrease as HRT decreases and OLR increases from HRTs of 3 to 1 day and 894.41–1788.81 mg COD/L*day, respectively, and increase as the HRT decreases from 6 to 4 days. The concentration of NH4+-N ranges from 278.67 to 369.46 mg/L, which is not in the range that disturbs the performance and stability of the hydrolytic acidogenic reactor. It was concluded that an HRT of 3 days and an ORL of 1788.81 mg COD/L*day were selected as optimal operating conditions for the high performance and stability of the two-phase anaerobic digestion of slaughterhouse wastewater in the hydrolytic–acidogenic reactor at a mesophilic temperature. The findings of this study can be applicable for other agro-process industry wastewater types with similar characteristics and biowaste for value addition and sustainable biowaste management and safe discharge. Full article
(This article belongs to the Special Issue Techno-Sustainable Biowaste Management Strategy)
Show Figures

Figure 1

Back to TopTop