Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = impedance tunable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5469 KB  
Article
Synthesis of ZIF-67/CoX-LDH-Derived Composites Through Cation Engineering Strategy: The Electromagnetic Wave Absorbers with Dielectric–Magnetic Loss Synergy
by Aixiong Ge, Anqi Ju and Shaobo Qu
Molecules 2025, 30(22), 4386; https://doi.org/10.3390/molecules30224386 - 13 Nov 2025
Abstract
Electromagnetic wave interference has escalated into a pervasive global issue, driving intensified research efforts across both civilian and military domains. However, the development of advanced electromagnetic wave (EMW) absorbers with finely tunable dielectric and magnetic loss properties has emerged as a pivotal strategy [...] Read more.
Electromagnetic wave interference has escalated into a pervasive global issue, driving intensified research efforts across both civilian and military domains. However, the development of advanced electromagnetic wave (EMW) absorbers with finely tunable dielectric and magnetic loss properties has emerged as a pivotal strategy for mitigating electromagnetic pollution. Herein, we propose a cation engineering strategy to tailor the absorption properties of ZIF-67-derived layered double hydroxide (LDH) composites through systematic substitution of Co2+ with Fe, Mn, Zn, or Ni and stoichiometric control (Co/X = 1:4, 1:1). Mn/Zn doping enhances dipole polarization via lattice distortion, while structural analysis confirms that higher Co/X ratios preserve core–shell architectures, optimizing impedance matching. In contrast, Fe incorporation leads to excessive conductivity and impedance mismatch. The optimized CoNi1-4 composite exhibits superior broadband absorption (EAB = 4.52 GHz at 1.8 mm thickness, RLmin = −24.5 dB), attributed to synergistic interface polarization and magnetic coupling. This study delivers a highly tailorable materials platform that enables a deeper fundamental understanding of the synergy between dielectric and magnetic loss processes, thereby offering new pathways for optimizing electromagnetic wave absorption. Full article
Show Figures

Figure 1

50 pages, 1648 KB  
Review
Progress in the Application of Nanomaterials in Tumor Treatment
by Xingyu He, Lilin Wang, Tongtong Zhang and Tianqi Lu
Biomedicines 2025, 13(11), 2666; https://doi.org/10.3390/biomedicines13112666 - 30 Oct 2025
Viewed by 691
Abstract
Cancer continues to pose a major global health burden, with conventional therapeutic modalities such as surgical resection, chemotherapy, radiotherapy, and immunotherapy often hindered by limited tumor specificity, substantial systemic toxicity, and the emergence of multidrug resistance. The rapid advancement of nanotechnology has introduced [...] Read more.
Cancer continues to pose a major global health burden, with conventional therapeutic modalities such as surgical resection, chemotherapy, radiotherapy, and immunotherapy often hindered by limited tumor specificity, substantial systemic toxicity, and the emergence of multidrug resistance. The rapid advancement of nanotechnology has introduced functionalized nanomaterials as innovative tools in the realm of precision oncology. These nanoplatforms possess desirable physicochemical properties, including tunable particle size, favorable biocompatibility, and programmable surface chemistry, which collectively enable enhanced tumor targeting and reduced off-target effects. This review systematically examines recent developments in the application of nanomaterials for cancer therapy, with a focus on several representative nanocarrier systems. These include lipid-based formulations, synthetic polymeric nanoparticles, inorganic nanostructures composed of metallic or non-metallic elements, and carbon-based nanomaterials. In addition, the article outlines key strategies for functionalization, such as ligand-mediated targeting, stimulus-responsive drug release mechanisms, and biomimetic surface engineering to improve in vivo stability and immune evasion. These multifunctional nanocarriers have demonstrated significant potential across a range of therapeutic applications, including targeted drug delivery, photothermal therapy, photodynamic therapy, and cancer immunotherapy. When integrated into combinatorial treatment regimens, they have exhibited synergistic therapeutic effects, contributing to improved efficacy by overcoming tumor heterogeneity and resistance mechanisms. A growing body of preclinical evidence supports their ability to suppress tumor progression, minimize systemic toxicity, and enhance antitumor immune responses. This review further explores the design principles of multifunctional nanoplatforms and their comprehensive application in combination therapies, highlighting their preclinical efficacy. In addition, it critically examines major challenges impeding the clinical translation of nanomedicine. By identifying these obstacles, the review provides a valuable roadmap to guide future research and development. Overall, this work serves as an important reference for researchers, clinicians, and regulatory bodies aiming to advance the safe, effective, and personalized application of nanotechnology in cancer treatment. Full article
(This article belongs to the Special Issue Application of Biomedical Materials in Cancer Therapy)
Show Figures

Figure 1

69 pages, 84358 KB  
Review
Advances and Prospects of Lignin-Derived Hard Carbons for Next-Generation Sodium-Ion Batteries
by Narasimharao Kitchamsetti and Sungwook Mhin
Polymers 2025, 17(20), 2801; https://doi.org/10.3390/polym17202801 - 20 Oct 2025
Viewed by 912
Abstract
Lignin-derived hard carbon (LHC) has emerged as a highly promising anode material for sodium-ion batteries (SIBs), owing to its renewable nature, structural tunability, and notable electrochemical properties. Although considerable advancements have been made in the development of LHCs in recent years, the absence [...] Read more.
Lignin-derived hard carbon (LHC) has emerged as a highly promising anode material for sodium-ion batteries (SIBs), owing to its renewable nature, structural tunability, and notable electrochemical properties. Although considerable advancements have been made in the development of LHCs in recent years, the absence of a comprehensive and critical review continues to impede further innovation in the field. To address this deficiency, the present review begins by examining the intrinsic characteristics of lignin and hard carbon (HC) to elucidate the underlying mechanisms of LHC microstructure formation. It then systematically categorizes the synthesis strategies, structural attributes, and performance influences of various LHCs, focusing particularly on how feedstock characteristics and fabrication parameters dictate final material behavior. Furthermore, optimization methodologies such as feedstock pretreatment, controlled processing, and post-synthesis modifications are explored in detail to provide a practical framework for performance enhancement. Finally, informed recommendations and future research directions are proposed to facilitate the integration of LHCs into next-generation SIB systems. This review aspires to deepen scientific understanding and guide rational design for improved LHC applications in energy storage. Full article
(This article belongs to the Special Issue Advances in Polymer Applied in Batteries and Capacitors, 2nd Edition)
Show Figures

Figure 1

14 pages, 797 KB  
Article
Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy
by Julian Sutaria and Cristian Staii
Molecules 2025, 30(19), 3929; https://doi.org/10.3390/molecules30193929 - 30 Sep 2025
Viewed by 526
Abstract
We report combined scanning probe microscopy and electrical measurements to investigate local electronic transport in reduced graphene oxide (rGO) devices. We demonstrate that quantum transport in these materials can be significantly tuned by the electrostatic potential applied with a conducting atomic force microscope [...] Read more.
We report combined scanning probe microscopy and electrical measurements to investigate local electronic transport in reduced graphene oxide (rGO) devices. We demonstrate that quantum transport in these materials can be significantly tuned by the electrostatic potential applied with a conducting atomic force microscope (AFM) tip. Scanning gate microscopy (SGM) reveals a clear p-type response in which local gating modulates the source–drain current, while scanning impedance microscopy (SIM) indicates corresponding shifts of the Fermi level under different gating conditions. The observed transport behavior arises from the combined effects of AFM tip-induced Fermi-level shifts and defect-mediated scattering. These results show that resonant scattering associated with impurities or structural defects plays a central role and highlight the strong influence of local electrostatic potentials on rGO conduction. Consistent with this electrostatic control, the device also exhibits chemical gating and sensing: during exposure to electron-withdrawing molecules (acetone), the source–drain current increases reversibly and returns to baseline upon purging with air. Repeated cycles over 15 min show reproducible amplitudes and recovery. Using a simple transport model, we estimate an increase of about 40% in carrier density during exposure, consistent with p-type doping by electron-accepting analytes. These findings link nanoscale electrostatic control to macroscopic sensing performance, advancing the understanding of charge transport in rGO and underscoring its promise for nanoscale electronics, flexible chemical sensors, and tunable optoelectronic devices. Full article
Show Figures

Graphical abstract

27 pages, 8496 KB  
Review
Progress in Electromagnetic Wave Absorption of Multifunctional Structured Metamaterials
by Zhuo Lu, Luwei Liu, Zhou Chen, Changxian Wang, Xiaolei Zhu, Xiaofeng Lu, Hui Yuan and Hao Huang
Polymers 2025, 17(18), 2559; https://doi.org/10.3390/polym17182559 - 22 Sep 2025
Viewed by 1226
Abstract
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. [...] Read more.
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. This review focuses on an integrated structure-material-function co-design strategy, highlighting advances in three-dimensional (3D) lattice architectures, composite laminates, conformal geometries, bio-inspired topologies, and metasurfaces. When synergized with multicomponent composites, these structural innovations enable the co-regulation of impedance matching and EM loss mechanisms (dielectric, magnetic, and resistive dissipation), thereby achieving broadband absorption and enhanced multifunctionality. Key findings demonstrate that 3D lattice structures enhance mechanical load-bearing capacity by up to 935% while enabling low-frequency broadband absorption. Composite laminates achieve breakthroughs in ultra-broadband coverage (1.26–40 GHz), subwavelength thickness (<5 mm), and high flexural strength (>23 MPa). Bio-inspired topologies provide wide-incident-angle absorption with bandwidths up to 31.64 GHz. Metasurfaces facilitate multiphysics functional integration. Despite the significant potential of MF-MMs in resolving broadband stealth and multifunctional synergy challenges via EM wave absorption, their practical application is constrained by several limitations: limited dynamic tunability, incomplete multiphysics coupling mechanisms, insufficient adaptability to extreme environments, and difficulties in scalable manufacturing and reliability assurance. Future research should prioritize intelligent dynamic response, deeper integration of multiphysics functionalities, and performance optimization under extreme conditions. Full article
Show Figures

Figure 1

15 pages, 13787 KB  
Article
High-Q Terahertz Perfect Absorber Based on a Dual-Tunable InSb Cylindrical Pillar Metasurface
by Rafael Charca-Benavente, Jinmi Lezama-Calvo and Mark Clemente-Arenas
Telecom 2025, 6(3), 70; https://doi.org/10.3390/telecom6030070 - 22 Sep 2025
Viewed by 659
Abstract
Perfect absorbers operating in the terahertz (THz) band are key enablers for next-generation wireless systems. However, conventional metal–dielectric designs suffer from Ohmic losses and limited reconfigurability. Here, we propose an all-dielectric indium antimonide (InSb) cylindrical pillar metasurface that achieves near-unity absorption at [...] Read more.
Perfect absorbers operating in the terahertz (THz) band are key enablers for next-generation wireless systems. However, conventional metal–dielectric designs suffer from Ohmic losses and limited reconfigurability. Here, we propose an all-dielectric indium antimonide (InSb) cylindrical pillar metasurface that achieves near-unity absorption at f0=1.83 THz with a high quality factor of Q=72.3. Critical coupling between coexisting electric and magnetic dipoles enables perfect impedance matching, while InSb’s low damping minimizes energy loss. The resonance is tunable via temperature and magnetic bias at sensitivities of ST2.8GHz·K1, SBTE132.7GHz·T1, and SBTM34.7GHz·T1, respectively, without compromising absorption strength. At zero magnetic bias (B=0), the metasurface is polarization-independent under normal incidence; under magnetic bias (B0), it maintains near-unity absorbance for both TE and TM, while the resonance frequency becomes polarization-dependent. Additionally, the 90% absorptance bandwidth (ΔfA0.9) can be modulated from 8.3 GHz to 3.3 GHz with temperature, or broadened from 8.5 GHz to 14.8 GHz under magnetic bias. This allows gapless suppression of up to 14 consecutive 1 GHz-spaced channels. This standards-agnostic bandwidth metric illustrates dynamic spectral filtering for future THz links and beyond-5G/6G research. Owing to its sharp selectivity, dual-mode tunability, and metal-free construction, the proposed absorber offers a compact and reconfigurable platform for advanced THz filtering applications. Full article
Show Figures

Graphical abstract

18 pages, 3294 KB  
Article
Compact and Efficient First-Order All-Pass Filter in Voltage Mode
by Khushbu Bansal, Bhartendu Chaturvedi and Jitendra Mohan
Microelectronics 2025, 1(1), 4; https://doi.org/10.3390/microelectronics1010004 - 20 Sep 2025
Viewed by 488
Abstract
This paper presents a new compact and efficient first-order all-pass filter in voltage mode based on a second-generation voltage conveyor, along with two resistors, and a capacitor. This circuit delivers an all-pass response from the low-impedance node and eliminates the need for a [...] Read more.
This paper presents a new compact and efficient first-order all-pass filter in voltage mode based on a second-generation voltage conveyor, along with two resistors, and a capacitor. This circuit delivers an all-pass response from the low-impedance node and eliminates the need for a voltage buffer in cascading configurations. A thorough non-ideal analysis, accounting for parasitic impedances and the non-ideal gains of the active module, shows negligible effects on the filter performance. Furthermore, a sensitivity analysis with respect to both active and passive components further validates the robustness of the design. The proposed all-pass filter is validated by Cadence PSPICE simulations, utilizing 0.18 µm TSMC CMOS process parameter and ±0.9 V power supply, including Monte Carlo analysis and temperature variations. Additionally, experimental validation is carried out using commercially available IC AD844, showing great consistency between theoretical and experimental results. Resistor-less realization of the proposed filter provides tunability feature. A quadrature sinusoidal oscillator is presented to validate the proposed structure. The introduced circuit provides a simple and effective solution for low-power and compact analog signal processing applications. Full article
Show Figures

Figure 1

33 pages, 2623 KB  
Review
Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future
by Eunbin Hwang, Yung-Hun Yang, Jiho Choi, See-Hyoung Park, Kyungmoon Park and Jongbok Lee
Materials 2025, 18(18), 4247; https://doi.org/10.3390/ma18184247 - 10 Sep 2025
Cited by 2 | Viewed by 2147
Abstract
This review explores the current state and future potential of bioplastics as sustainable alternatives to conventional fossil-based polymers. It provides a detailed examination of the classification, molecular structures, and synthetic routes of major bioplastics, including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), [...] Read more.
This review explores the current state and future potential of bioplastics as sustainable alternatives to conventional fossil-based polymers. It provides a detailed examination of the classification, molecular structures, and synthetic routes of major bioplastics, including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate-co-terephthalate (PBAT), and polyhydroxyalkanoates (PHAs). Special emphasis is placed on the unique properties and degradation behaviors of each material across various environmental conditions, such as industrial composting, soil, and marine ecosystems. The manuscript further discusses advanced strategies in polymer design, such as copolymerization, reactive blending, and incorporation of nano- or micro-scale additives, to enhance flexibility, thermal resistance, barrier properties, and mechanical integrity. In addition to technical advancements, the review critically addresses key limitations impeding large-scale commercialization, including high production costs, limited availability of bio-based monomers, and inadequate end-of-life treatment infrastructure. Finally, future research directions are proposed to advance the development of fully bio-based, functionally tunable, and circular bioplastics that meet the performance demands of modern applications while reducing environmental impact. Full article
Show Figures

Figure 1

40 pages, 3625 KB  
Review
Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
by John Paolo Ramoso, Manoochehr Rasekh and Wamadeva Balachandran
Biosensors 2025, 15(9), 586; https://doi.org/10.3390/bios15090586 - 6 Sep 2025
Cited by 1 | Viewed by 6235
Abstract
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse [...] Read more.
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse surface functionalisation through bio-interfacing. This review highlights the core detection mechanisms in graphene-based biosensors. Optical sensing techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), benefit significantly from graphene’s strong light–matter interaction, which enhances signal sensitivity. Although graphene itself lacks intrinsic piezoelectricity, its integration with piezoelectric substrates can augment the performance of piezoelectric biosensors. In electrochemical sensing, graphene-based electrodes support rapid electron transfer, enabling fast response times across a range of techniques, including impedance spectroscopy, amperometry, and voltammetry. Graphene field-effect transistors (GFETs), which leverage graphene’s high carrier mobility, offer real-time, label-free, and highly sensitive detection of biomolecules. In addition, the review also explores multiplexed detection strategies vital for point-of-care diagnostics. Graphene’s nanoscale dimensions and tunable surface chemistry facilitate both array-based configurations and the simultaneous detection of multiple biomarkers. This adaptability makes graphene an ideal material for compact, scalable, and accurate biosensor platforms. Continued advancements in graphene biofunctionalisation, sensing modalities, and integrated multiplexing are driving the development of next-generation biosensors with superior sensitivity, selectivity, and diagnostic reliability. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

17 pages, 3090 KB  
Article
Conveyor-Based Single-Input Triple-Output Second-Order LP/BP and Cascaded First-Order HP Filters
by Riccardo Olivieri, Giuseppe Alessandro Di Lizio, Gianluca Barile, Vincenzo Stornelli, Giuseppe Ferri and Shahram Minaei
Electronics 2025, 14(17), 3514; https://doi.org/10.3390/electronics14173514 - 2 Sep 2025
Viewed by 575
Abstract
In this paper a new single-input independent multiple-output universal tunable filter employing second-generation current conveyors (CCII) and second-generation voltage conveyors (VCII) as active elements is presented. The proposed filter has been analyzed at transistor level, using a CMOS standard AMS 0.35 μm technology, [...] Read more.
In this paper a new single-input independent multiple-output universal tunable filter employing second-generation current conveyors (CCII) and second-generation voltage conveyors (VCII) as active elements is presented. The proposed filter has been analyzed at transistor level, using a CMOS standard AMS 0.35 μm technology, and implemented using discrete components based on the commercially available AD844. A detailed mathematical analysis is carried out, considering also parasitic impedances and non-ideal parameters. The low-pass, band-pass, and high-pass responses are simultaneously obtained and experimentally verified at 10 kHz central frequency where the voltage gain is about 27 dB for each output. THD analysis has been performed to evaluate the proposed work. Full article
Show Figures

Figure 1

25 pages, 4412 KB  
Review
MXenes: Manufacturing, Properties, and Tribological Insights
by Subin Antony Jose, Alessandro M. Ralls, Ashish K. Kasar, Alexander Antonitsch, Daniel Cerrillo Neri, Jaybon Image, Kevin Meyer, Grace Zhang and Pradeep L. Menezes
Materials 2025, 18(17), 3927; https://doi.org/10.3390/ma18173927 - 22 Aug 2025
Cited by 2 | Viewed by 824
Abstract
MXenes, a novel class of two-dimensional (2D) transition metal carbides and nitrides, have garnered significant attention due to their exceptional thermal conductivity, electrical properties, and mechanical strength. This review offers a comprehensive overview of MXenes, focusing on their synthesis methods, material properties, tribological [...] Read more.
MXenes, a novel class of two-dimensional (2D) transition metal carbides and nitrides, have garnered significant attention due to their exceptional thermal conductivity, electrical properties, and mechanical strength. This review offers a comprehensive overview of MXenes, focusing on their synthesis methods, material properties, tribological performance, and potential challenges and opportunities. Typically synthesized through the selective etching of layered precursors, MXenes offer highly tunable structures, allowing for precise tailoring for specific functionalities. Their outstanding properties, such as high electrical conductivity, chemical versatility, mechanical durability, and intrinsic lubricity, make them promising candidates for various applications, including energy storage, electromagnetic shielding, water purification, biosensing, biomedicine, and advanced tribological systems. While many of these applications are briefly acknowledged, this review primarily emphasizes MXenes’ potential in tribological applications, where recent studies have highlighted their promise as solid lubricants and tribological additives due to their low shear strength, layered structure, and ability to form protective tribofilms under sliding contact. However, challenges such as oxidation resistance, long-term stability, and performance under extreme environments continue to impede their full potential. With less than a decade of focused research, the field is still evolving, but MXenes hold tremendous promise for revolutionizing modern material science, especially in next-generation lubrication and wear-resistant systems. This review explores both the opportunities and challenges associated with MXenes, emphasizing their emerging role in tribology alongside their broader engineering applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

40 pages, 7071 KB  
Review
Electrical Properties of Composite Materials: A Comprehensive Review
by Thomaz Jacintho Lopes, Ary Machado de Azevedo, Sergio Neves Monteiro and Fernando Manuel Araujo-Moreira
J. Compos. Sci. 2025, 9(8), 438; https://doi.org/10.3390/jcs9080438 - 15 Aug 2025
Cited by 1 | Viewed by 2729
Abstract
Conductive composites are a flexible class of engineered materials that combine conductive fillers with an insulating matrix—usually made of ceramic, polymeric, or a hybrid material—to customize a system’s electrical performance. By providing tunable electrical properties in addition to benefits like low density, mechanical [...] Read more.
Conductive composites are a flexible class of engineered materials that combine conductive fillers with an insulating matrix—usually made of ceramic, polymeric, or a hybrid material—to customize a system’s electrical performance. By providing tunable electrical properties in addition to benefits like low density, mechanical flexibility, and processability, these materials are intended to fill the gap between conventional insulators and conductors. The increasing need for advanced technologies, such as energy storage devices, sensors, flexible electronics, and biomedical interfaces, has significantly accelerated their development. The electrical characteristics of composite materials, including metallic, ceramic, polymeric, and nanostructured systems, are thoroughly examined in this review. The impact of various reinforcement phases—such as ceramic fillers, carbon-based nanomaterials, and metallic nanoparticles—on the electrical conductivity and dielectric behavior of composites is highlighted. In addition to conduction models like correlated barrier hopping and Debye relaxation, the study investigates mechanisms like percolation thresholds, interfacial polarization, and electron/hole mobility. Because of the creation of conductive pathways and improved charge transport, developments in nanocomposite engineering, especially with regard to graphene derivatives and silver nanoparticles, have shown notable improvements in electrical performance. This work covers the theoretical underpinnings and physical principles of conductivity and permittivity in composites, as well as experimental approaches, characterization methods (such as SEM, AFM, and impedance spectroscopy), and real-world applications in fields like biomedical devices, sensors, energy storage, and electronics. This review provides important insights for researchers who want to create and modify multifunctional composite materials with improved electrical properties by bridging basic theory with technological applications. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

13 pages, 3341 KB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 580
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

13 pages, 3046 KB  
Article
Stability Analysis of Non-Foster Impedance Inverters
by Boris Okorn and Silvio Hrabar
Electronics 2025, 14(13), 2721; https://doi.org/10.3390/electronics14132721 - 5 Jul 2025
Viewed by 689
Abstract
Recently, active impedance inverters based on non-Foster negative capacitors have been proposed for applications in widely tunable filters. These designs use a traditional Linvill’s topology of the negative capacitor. Unfortunately, the range of external loads needed for the stable operation of such active [...] Read more.
Recently, active impedance inverters based on non-Foster negative capacitors have been proposed for applications in widely tunable filters. These designs use a traditional Linvill’s topology of the negative capacitor. Unfortunately, the range of external loads needed for the stable operation of such active inverters is rather limited. However, there is also the negative capacitor based on a recently proposed loss-compensated passive structure. This novel design promises stability-robust behavior for an extremely wide range of external loads. In this study, we compare the stability properties of both approaches and show that the design based on the loss-compensated passive structure is more robust. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 2767 KB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Cited by 2 | Viewed by 1150
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

Back to TopTop