Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,555)

Search Parameters:
Keywords = index of dispersion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9246 KB  
Article
Structure, Composition and Optical Properties of Thin Films of Copper Sulphide and Bismuth Sulphide Deposited on Various Textiles by the SILAR Method
by Vėja Sruogaitė and Valentina Krylova
Coatings 2025, 15(11), 1266; https://doi.org/10.3390/coatings15111266 (registering DOI) - 2 Nov 2025
Abstract
The synthesis of thin films in multilayer structures on different textiles is of interest due to their potential use in flexible solar absorber coatings and thin-film solar cells. The aim of the study was to deposit bismuth(III) sulphide and copper(II) sulphide thin films [...] Read more.
The synthesis of thin films in multilayer structures on different textiles is of interest due to their potential use in flexible solar absorber coatings and thin-film solar cells. The aim of the study was to deposit bismuth(III) sulphide and copper(II) sulphide thin films on various textiles at the same time. This was achieved using the sustainable and cost-effective successive ionic layer adsorption and reaction (SILAR) method. The study examined how the elemental distribution, phase composition, crystallinity, surface morphology, and optical features of the resulting films are determined by the intrinsic structure and material makeup of structural textiles. The analysis used data from scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD), as well as ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. Depending on the textiles used, the formed films were polycrystalline and rich in copper. According to the findings, the normalised atomic percentages were as follows: Cu, 57.66–68.75%; Bi, 1.19–5.26%; S, 30.06–38.63%. The direct transition optical energy gap values varied from 1.3 to 2.88 eV, while the indirect varied from 0.9 to 2.25 eV, and the refractive index from 1.3 to 1.8. These properties were influenced by the composition of the textiles and the films themselves. These properties directly impact the films’ applications. Full article
(This article belongs to the Special Issue Advances in Coated Fabrics and Textiles)
Show Figures

Figure 1

26 pages, 3720 KB  
Article
Digital Economy, Spatial Imbalance, and Coordinated Growth: Evidence from Urban Agglomerations in the Middle and Lower Reaches of the Yellow River Basin
by Yuan Li, Bin Xu, Yuxuan Wan, Yan Li and Hui Li
Sustainability 2025, 17(21), 9743; https://doi.org/10.3390/su17219743 (registering DOI) - 31 Oct 2025
Abstract
Amid the rapid evolution of the digital economy reshaping global competitiveness, China has advanced regional coordination through the Digital China initiative and the “Data Elements ×” Three-Year Action Plan (2024–2026). To further integrate digital transformation with high-quality growth in the urban agglomerations of [...] Read more.
Amid the rapid evolution of the digital economy reshaping global competitiveness, China has advanced regional coordination through the Digital China initiative and the “Data Elements ×” Three-Year Action Plan (2024–2026). To further integrate digital transformation with high-quality growth in the urban agglomerations of the middle and lower Yellow River, this study aims to strengthen regional competitiveness, expand digital industries, foster new productivity, refine the development pathway, and safeguard balanced economic, social, and ecological progress. Taking the Yellow River urban clusters as the research object, a comprehensive assessment framework encompassing seven subsystems is established. By employing a mixed-weighting approach, entropy-based TOPSIS, hotspot analysis, coupling coordination models, spatial gravity shift techniques, and grey relational methods, this study investigates the spatiotemporal dynamics between the digital economy and high-quality development. The findings reveal that: (1) temporally, the coupling–coordination process evolves through three distinct phases—initial fluctuation and divergence (1990–2005), synergy consolidation (2005–2015), and high-level stabilization (2015–2022)—with the average coordination index rising from 0.21 to 0.41; (2) spatially, a persistent “core–periphery” structure emerges, while subsystem coupling consistently surpasses coordination levels, reflecting a pattern of “high coupling but insufficient coordination”; (3) hot–cold spot analysis identifies sharp east–west contrasts, with the gravity center shift and ellipse trajectory showing weaker directional stability but greater dispersion; and (4) grey correlation results indicate that key drivers have transitioned from economic scale and infrastructure inputs to green innovation performance and data resource allocation. Overall, this study interprets the empirical results in both temporal and spatial dimensions, offering insights for policymakers seeking to narrow the digital divide and advance sustainable, high-quality development in the Yellow River region. Full article
19 pages, 1270 KB  
Article
Synergistic Interactions Between Natural Phenolic Compounds and Antibiotics Against Multidrug-Resistant K. pneumoniae: A Pooled Analysis of 216 In Vitro Tests
by Victor-Pierre Ormeneanu, Corina Andrei, Anca Zanfirescu, Ciprian Pușcașu, Octavian Tudorel Olaru and Simona Negreș
Microorganisms 2025, 13(11), 2497; https://doi.org/10.3390/microorganisms13112497 - 30 Oct 2025
Abstract
The rapid global emergence of multidrug-resistant (MDR) Klebsiella pneumoniae threatens public health, as treatment options remain limited and resistance to last-line antibiotics is rising. Natural phenolic compounds emerge as promising adjuvants to restore antibiotic activity. This study pooled data from 216 in vitro [...] Read more.
The rapid global emergence of multidrug-resistant (MDR) Klebsiella pneumoniae threatens public health, as treatment options remain limited and resistance to last-line antibiotics is rising. Natural phenolic compounds emerge as promising adjuvants to restore antibiotic activity. This study pooled data from 216 in vitro assays evaluating interactions between phenolic compounds and conventional antibiotics against MDR K. pneumoniae. Fractional inhibitory concentration index (FICI) values were analyzed at the individual-test level, and structure–activity relationships were explored using a binary chemotype flagging approach. Overall, synergy was highly context-dependent, varying by both antibiotic class and phenolic chemotype. Polymyxin B combined with resveratrol demonstrated the most consistent and robust synergy (median FICI = 0.25, synergy rate = 96.2%), with no antagonism observed. For carbapenems, meropenem showed strong synergy when paired with flavonoids containing catechol or gallol motifs (e.g., quercetin, kaempferol), whereas curcumin exhibited inconsistent or antagonistic effects. Variability analysis revealed that combinations with low dispersion, such as polymyxin B + resveratrol, offer greater translational potential than high-variability pairs. These findings highlight the structural determinants of synergy and support further preclinical evaluation of select phenolic compounds as adjuvants to conventional antibiotics in the fight against MDR K. pneumoniae. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

35 pages, 6178 KB  
Article
Application of Principal Component and Multi-Criteria Analysis to Evaluate Key Physical and Chemical Soil Indicators for Sustainable Land Use Management in Arid Rangeland Ecosystems
by Hesham M. Ibrahim, Zafer Alasmary, Mosaed A. Majrashi, Meshal Abdullah Harbi, Abdullah Abldubise and Abdulaziz G. Alghamdi
Land 2025, 14(11), 2167; https://doi.org/10.3390/land14112167 (registering DOI) - 30 Oct 2025
Abstract
Vast areas of natural rangelands in the Kingdom of Saudi Arabia (KSA) suffer from deterioration due to the scarcity of vegetation cover and poor soil quality. Assessing soil quality in rangelands is crucial to identifying degraded lands and to implementing proper sustainable management [...] Read more.
Vast areas of natural rangelands in the Kingdom of Saudi Arabia (KSA) suffer from deterioration due to the scarcity of vegetation cover and poor soil quality. Assessing soil quality in rangelands is crucial to identifying degraded lands and to implementing proper sustainable management practices. In this study, a total data set (TDS) containing 27 physical and chemical soil indicators was generated for three rangelands (Al-Fahyhyl, Al-Sahwa, and Al-Tamryate) in KSA. Principal component analysis (PCA) and analytic hierarchy process (AHP) analysis were employed to establish a minimum data set (MDS) and to evaluate key physical and chemical properties affecting soil quality, along with the associated weight factor for each indicator. Results indicated that the MDS represented ≥70% of the total variability of the TDS and accurately estimated the soil quality index (SQI) based on determined physical and chemical soil properties in the study regions. Linear regression indicated high correlation between SQI-TDS and SQI-MDS, with the R2 ranging between 0.51–0.87. On the surface layer (0–30 cm), the MDS contained seven soil indicators (sand, dispersion ratio (DR), mean weight diameter (MWD), bulk density (BD), total organic carbon (TOC), available phosphorus (Pa), and available potassium (Ka)), whereas in the sub-surface layer it contained six indicators (sand, DR, MWD, BD, TOC, Pa, and Ka). In all regions, sand had the largest weight factor (0.4514–0.4835), followed by TOC (0.2441–0.2512). Under the arid climate present in all the study sites, sand and TOC levels are crucial for nutrient retention, soil structure, and water retention. Most of the study areas had very low and low SQI (Al-Fahyhyl, 74.4%; Al-Sahwa, 61.8%; and Al-Tamryate, 81.7%), indicating an immediate need for suitable agricultural practices such as reduced tillage, increased organic amendments, and proper water management. The outcomes of this study offer valuable insights for land managers, legislators, and agricultural stakeholders to pinpoint regions in need of development, conduct comprehensive and continuous monitoring of SQI in rangeland areas, and implement land management plans for rangeland rehabilitation and environmental sustainability. Full article
Show Figures

Figure 1

15 pages, 2111 KB  
Article
Reproductive Characteristics of Odontobutis potamophila: Implications for Sustainable Fisheries Management
by Miao Xiang, Shasha Zhao, Bo Li, Li Li, Man Wang, Jie Wang, Ruru Lin and Lei Zhang
Animals 2025, 15(21), 3150; https://doi.org/10.3390/ani15213150 - 30 Oct 2025
Viewed by 26
Abstract
Odontobutis potamophila, a small benthic carnivorous fish endemic to the Yangtze River basin, holds considerable ecological and commercial value. However, overfishing and habitat degradation have led to a severe decline in its wild population. A lack of quantitative reproductive data has further [...] Read more.
Odontobutis potamophila, a small benthic carnivorous fish endemic to the Yangtze River basin, holds considerable ecological and commercial value. However, overfishing and habitat degradation have led to a severe decline in its wild population. A lack of quantitative reproductive data has further hampered effective conservation and resource management. To address this, we conducted monthly sampling, collecting a total of 894 individuals from Nansi Lake between August 2017 and July 2018. By integrating gonadal histological staging, gonadosomatic index (GSI) analysis, logistic regression, and fecundity assessments, we provide a foundational understanding of the species’ reproductive biology. The annual sex ratio was 1.06:1, with a temporary female bias in April (2.14:1) shifting due to male nest-guarding behavior. Both sexes reached maturity at one year and approximately 73.6 mm in length. Spawning occurred from March to June, peaking in May (GSI = 28.92%). Absolute fecundity ranged 2306 ± 1430 eggs and correlated positively with body size and age, while relative fecundity stabilized after age two. Individuals aged two years and older contributed over 80% of total egg production, reflecting a strategy of early maturation with high reproductive output at older ages. This study aims to systematically understand the reproductive biology of O. potamophila. These results support science-based measures such as Covering the entire window from gonadal maturation to fry dispersal, an annual fish ban established from March to June, a minimum catch size of 80 mm, and improved broodstock management for aquaculture and conservation efforts aimed at this and related benthic fishes in shallow lake ecosystems. Full article
(This article belongs to the Special Issue Fish Reproductive Biology and Embryogenesis)
Show Figures

Figure 1

14 pages, 1772 KB  
Article
Exploring the Association Between Heart Rate Variability and Intracranial Atherosclerosis in Middle-Aged or over Community-Dwelling Adults
by Yangyang Cheng, Lihua Lai, Jieqi Luo and Michael Tin Cheung Ying
Diagnostics 2025, 15(21), 2731; https://doi.org/10.3390/diagnostics15212731 - 28 Oct 2025
Viewed by 179
Abstract
Background/Objectives: Heart rate variability (HRV) is associated with the risk of vascular events. However, the predictive value of HRV for the presence of intracranial atherosclerosis (ICAS) is unclear. This study aimed to investigate the relationship between daytime HRV measured by 3 min [...] Read more.
Background/Objectives: Heart rate variability (HRV) is associated with the risk of vascular events. However, the predictive value of HRV for the presence of intracranial atherosclerosis (ICAS) is unclear. This study aimed to investigate the relationship between daytime HRV measured by 3 min ECG monitoring and ICAS identified by high-resolution magnetic resonance imaging (HR-MRI). Methods: A total of 272 adults (mean age, 63.4 ± 6.8; 43% male) were recruited from November 2022 to December 2024. A series of cardiac function parameters is automatically generated through a 3 min analysis by the electrocardiographic dispersion mapping (ECG-DM) software, including heart rate variability and myocardial ischemic metabolic impairment. HRV was assessed as the standard deviation of normal-to-normal intervals (SDNN), which was categorized into tertiles for data analysis. Myocardial micro-alteration index (MMI, %) was used as an indicator of ischemia, reflecting myocardial abnormalities at the metabolic level. Atrial and ventricular myocardial oxygenation deficits were directly visualized in a color-coded scatter plot, with different colors indicating the severity of pathological changes. On HR-MRI intracranial artery wall scanning, the prevalence of ICAS was assessed in middle cerebral arteries (MCAs), vertebral arteries (VAs), and basilar arteries (BAs), and the associated plaque characteristics (eccentricity, thickening patterns, remodeling index, and surface morphology) were evaluated. Results: Among the subjects, 209 arterial lesions caused by ICAS were detected in 152 subjects (56%), including MCAs (105/544), VAs (68/526), and BAs (36/272). Ninety-four subjects (94/272) with significant HRV deviation had ICAS (p = 0.040). Furthermore, subjects with ICAS were more likely to present with atrial hypoxia (p = 0.030) compared to those without ICAS. In multivariate analyses, lower standard deviation of normal-to-normal intervals (SDNN, odds ratio, OR = 1.55, 95% CI 1.10–2.18, p = 0.012) and atrial deviation (OR = 1.85, 95% CI 1.10–3.14, p = 0.022) were independently associated with the presence of ICAS. Conclusions: Among middle-aged or older adults in a local community, our study suggested that lower HRV and significant atrial hypoxia were independently associated with the presence of ICAS. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 4465 KB  
Article
Genetic Algorithm Optimization for Designing Polarization-Maintaining Few-Mode Fibers with Uniform Doping Profiles
by Hao Gu, Jian Wang, Zhiyu Chang, Kun Li, Xingcheng Han and Bin Liu
Photonics 2025, 12(11), 1063; https://doi.org/10.3390/photonics12111063 - 28 Oct 2025
Viewed by 130
Abstract
To support mode-division multiplexing with reduced inter-modal crosstalk, we propose a novel polarization-maintaining few-mode fiber design with a uniform doping profile and no air holes. The fiber employs two placed low-index inclusions to lift modal degeneracy and achieve strong birefringence while maintaining compatibility [...] Read more.
To support mode-division multiplexing with reduced inter-modal crosstalk, we propose a novel polarization-maintaining few-mode fiber design with a uniform doping profile and no air holes. The fiber employs two placed low-index inclusions to lift modal degeneracy and achieve strong birefringence while maintaining compatibility with standard MCVD and OVD fabrication processes. A genetic algorithm is used to optimize the geometrical and refractive index parameters. Finite element simulations show that the optimized design supports ten guided modes with a minimum effective index difference exceeding 3.8×104 across the C+L band. The fiber exhibits moderate dispersion and strong modal isolation. Tolerance analysis confirms good robustness against index fluctuations and moderate sensitivity to dimensional variations. These features suggest that the proposed PM-FMF is a promising candidate for short-reach spatial-division multiplexing applications where intrinsic polarization and mode separation are desired. Full article
Show Figures

Figure 1

20 pages, 6267 KB  
Article
Assessment of Continuous Flow-Dependent Red Cell Aggregation Using a Microfluidic Chip
by Yang Jun Kang
Appl. Sci. 2025, 15(21), 11481; https://doi.org/10.3390/app152111481 - 27 Oct 2025
Viewed by 137
Abstract
Measuring RBC aggregation can be considered as a valuable tool for detecting pathological diseases. Most previous methods need to stop and run blood flows periodically. Thus, it is impossible to probe RBC aggregation in continuously varying infusion flow. To resolve the issues, a [...] Read more.
Measuring RBC aggregation can be considered as a valuable tool for detecting pathological diseases. Most previous methods need to stop and run blood flows periodically. Thus, it is impossible to probe RBC aggregation in continuously varying infusion flow. To resolve the issues, a novel bifurcated continuous-flow mechanism is suggested to probe RBC aggregation without periodic interruption of blood flow. A microfluidic chip is then designed to split single flow into two branches (low flow rate and high flow rate). RBC aggregation occurs in the low flow-rate channel, whereas it is dispersed fully in the high flow-rate channel. Using a syringe pump, blood is infused into a microfluidic chip at constant and sinusoidal pattern. RBC aggregation index (AI) is calculated from time-lapse imaging intensity within each channel. From fluidic circuit analysis and experimental results, the optimal infusion flow rate is determined as Qsp = 0.5~2 mL/h. The AI is higher at Hct = 30% than at Hct = 50%. The high concentration of dextran solution increases AI considerably. The period of pulsatile infusion flow rate has a strong influence on time-lapse AI. In conclusion, the present method can be capable of measuring time-lapse AI consistently, without interrupting infusion flow. Full article
(This article belongs to the Special Issue Current Applications of Microfluidics for Biosensing and Diagnostics)
Show Figures

Figure 1

22 pages, 27580 KB  
Article
Reconstruction of Ethnic Villages Under the Intervention of Relocation: Functional Improvement and Suitability Enhancement: A Case Study of Yongcong Township in Liping County
by Xiaojian Chen, Fangqin Yang, Jianwei Sun, Lingling Deng, Jing Luo and Jiaxing Cui
Land 2025, 14(11), 2138; https://doi.org/10.3390/land14112138 - 27 Oct 2025
Viewed by 268
Abstract
Ethnic villages are a multidimensional interactive space between cultural inheritance and modernization; analyzing their spatial reconstruction is fundamental for promoting agricultural and rural modernization and sustainable ethnic development. This study examined ethnic villages in Yongcong Township, Liping Country, from 2016 to 2022, focusing [...] Read more.
Ethnic villages are a multidimensional interactive space between cultural inheritance and modernization; analyzing their spatial reconstruction is fundamental for promoting agricultural and rural modernization and sustainable ethnic development. This study examined ethnic villages in Yongcong Township, Liping Country, from 2016 to 2022, focusing on changes in function and suitability under relocation through a function and suitability evaluation index. Case comparisons were made between administrative villages with high functional and suitability levels and those with resettlement sites. In 2016, ethnic villages followed a growth pattern of Yongcong–Dundong–Guantuan, with low patch density, dispersed distribution, and simple shapes. By 2022, functionality and suitability significantly improved, with an increase in village patches and larger patch areas shifting toward spatial aggregation. Horizontally, land use within reconstruction boundaries diversified by function, whereas vertically, housing structures were reorganized: non-settlement villages retained traditional and modern types while settlement villages combined both, leading to a shift from functional singularity to multifunctionality. Relocation-induced reconstruction may lag local knowledge systems and reduce well-being. Initially, government-led suitability enhancement dominates; gradually, villages increasingly internalize regional identity and competitiveness. By analyzing post-relocation village reconstruction, this study supports the integration of ethnic and regional dynamics, achieving high-quality sustainable development in minority regions. Full article
Show Figures

Figure 1

32 pages, 3406 KB  
Article
Enhancing Policy Insights: Machine Learning-Based Forecasting of Euro Area Inflation HICP and Subcomponents
by László Vancsura, Tibor Tatay and Tibor Bareith
Forecasting 2025, 7(4), 63; https://doi.org/10.3390/forecast7040063 - 26 Oct 2025
Viewed by 264
Abstract
Accurate inflation forecasting is of central importance for monetary authorities, governments, and businesses, as it shapes economic decisions and policy responses. While most studies focus on headline inflation, this paper analyses the Harmonised Index of Consumer Prices (HICP) and its 12 subcomponents in [...] Read more.
Accurate inflation forecasting is of central importance for monetary authorities, governments, and businesses, as it shapes economic decisions and policy responses. While most studies focus on headline inflation, this paper analyses the Harmonised Index of Consumer Prices (HICP) and its 12 subcomponents in the euro area over the period 2000–2023, covering episodes of financial crisis, economic stability, and recent inflationary shocks. We apply a broad set of machine learning and deep learning models, systematically optimized through grid search, and evaluate their performance using the Normalized Mean Absolute Error (NMAE). To complement traditional accuracy measures, we introduce the Forecastability Index (FI) and the Interquartile Range (IQR), which jointly capture both the difficulty and robustness of forecasts. Our results show that RNN and LSTM architectures consistently outperform traditional approaches such as SVR and RFR, particularly in volatile environments. Subcomponents such as Health and Education proved easier to forecast, while Recreation and culture and Restaurants and hotels were among the most challenging. The findings demonstrate that macroeconomic stability enhances forecasting accuracy, whereas crises amplify errors and inter-model dispersion. By highlighting the heterogeneous predictability of inflation subcomponents, this study provides novel insights with strong policy relevance, showing which categories can be forecast with greater confidence and where uncertainty requires more cautious intervention. Full article
Show Figures

Figure 1

22 pages, 7889 KB  
Article
Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets
by Philipp Kiryukhantsev-Korneev, Alina Chertova, Yury Pogozhev and Evgeny Levashov
Coatings 2025, 15(11), 1243; https://doi.org/10.3390/coatings15111243 - 25 Oct 2025
Viewed by 330
Abstract
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow [...] Read more.
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow discharge optical emission spectroscopy. The coating properties were determined by nanoindentation, scratch testing, and tribological pin-on-disc testing at room and elevated temperatures. The oxidation resistance and diffusion barrier properties of the coatings were also evaluated. The results obtained showed that non-reactive coatings had a coarse crystalline structure and contained Cr5Si3, CrBx, and Cr2Al phases. The introduction of nitrogen into the coating composition promoted crystallite refinement and structural amorphization. Non-reactive CrAl4Si11B21 coatings had a maximum hardness up to 29 GPa and an elastic modulus up to 365 GPa. The introduction of nitrogen into the coating composition resulted in a 16–32% reduction in mechanical properties. The CrAl6Si12B5N25 coating, which exhibited maximal plasticity index H/E = 0.100 and resistance to plastic deformation H3/E2 = 0.247 GPa, was characterized by a minimum wear rate Vw = 5.7 × 10−6 mm3N−1m−1 and a friction coefficient of 0.47. While the CrAl18Si11B5N26 coating demonstrated a record level of oxidation resistance and successfully resisted oxidation up to a temperature of 1300 °C. Full article
Show Figures

Figure 1

18 pages, 9691 KB  
Article
Solitons in a One-Dimensional Rhombic Waveguide Array
by Dmitry V. Shaykin and Nikita V. Bykov
Photonics 2025, 12(11), 1054; https://doi.org/10.3390/photonics12111054 - 24 Oct 2025
Viewed by 201
Abstract
We present an analytical and numerical study of nonlinear wave localization in a one-dimensional rhombic (diamond) waveguide array that combines forward- and backward-propagating channels. This mixed-index configuration, realizable through Bragg-type couplers or corrugated waveguides, produces a tunable spectral gap and supports nonlinear self-localized [...] Read more.
We present an analytical and numerical study of nonlinear wave localization in a one-dimensional rhombic (diamond) waveguide array that combines forward- and backward-propagating channels. This mixed-index configuration, realizable through Bragg-type couplers or corrugated waveguides, produces a tunable spectral gap and supports nonlinear self-localized states in both transmission and forbidden-band regimes. Starting from the full set of coupled-mode equations, we derive the effective evolution model, identify the role of coupling asymmetry and nonlinear coefficients, and obtain explicit soliton solutions using the method of multiple scales. The resulting envelopes satisfy a nonlinear Schrödinger equation with an effective nonlinear parameter θ, which determines the conditions for soliton existence (θ>0) for various combinations of focusing and defocusing nonlinearities. We distinguish solitons formed outside and inside the bandgap and analyze their dependence on the dispersion curvature and nonlinear response. Direct numerical simulations confirm the analytical predictions and reveal robust propagation and interactions of counter-propagating soliton modes. Order-of-magnitude estimates show that the predicted effects are accessible in realistic integrated photonic platforms. These results provide a unified theoretical framework for soliton formation in mixed-index lattices and suggest feasible routes for realizing controllable nonlinear localization in Bragg-type photonic structures. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

27 pages, 9862 KB  
Article
Post-Synthesis Modulation of the Physicochemical Properties of Green-Synthesized Iron Oxide Nanoparticles with Tween 80 to Enhance Their Antibacterial Activity and Biocompatibility
by Marwa R. Bakkar, Alaa M. Ali, Gehad E. Elkhouly, Nermeen R. Raya, Terry W. Bilverstone, Nicholas P. Chatterton, Gary R. McLean and Yasmin Abo-Zeid
Pharmaceutics 2025, 17(11), 1371; https://doi.org/10.3390/pharmaceutics17111371 - 23 Oct 2025
Viewed by 919
Abstract
Background: Iron oxide nanoparticles (IONPs) have broad-spectrum antimicrobial activity, with negligible potential for resistance development, excellent biocompatibility, and therefore, could be promising alternatives to conventional antimicrobials. However, their industrial-scale production relies on chemical synthesis that involves toxic reagents, imposing potential environmental hazards. [...] Read more.
Background: Iron oxide nanoparticles (IONPs) have broad-spectrum antimicrobial activity, with negligible potential for resistance development, excellent biocompatibility, and therefore, could be promising alternatives to conventional antimicrobials. However, their industrial-scale production relies on chemical synthesis that involves toxic reagents, imposing potential environmental hazards. In contrast, green synthesis offers an eco-friendly alternative, but our previous study found that green-synthesized IONPs (IONPs-G) exhibited a lower antibacterial activity and a higher cytotoxicity compared to chemically synthesized counterparts, likely due to nanoparticle aggregation. Objectives: To address this challenge, the current study presents a simple, effective, economic, scalable, and eco-friendly strategy to optimize the physicochemical properties of IONPs-G post-production without requiring extensive modifications to synthesis parameters. Methods: IONPs-G were dispersed in a solvent mixture containing Tween 80 (Tw80). Subsequently, in vitro antimicrobial and in vivo cytotoxicity studies on rabbits’ skin and eye were conducted. Results: The formed nanoparticles’ dispersion (IONPs-GTw80) had a particle size of 9.7 ± 2.1 nm, a polydispersity index of 0.111 ± 0.02, and a zeta potential of −11.4 ± 2.4 mV. MIC of IONPs-GTw80 values against S. aureus and E. coli were reduced by more than ten-fold compared to IONPs-G. MBC was twice MIC, confirming the bactericidal activity of IONPs-GTw80. In vivo studies of IONPs-GTw80 confirmed their biocompatibility with intact/abraded skin and eyes; this was further confirmed by histopathological and biochemical analyses. Conclusions: IONPs-GTw80 might be recommended as a disinfectant in healthcare settings or a topical antimicrobial agent for treatment of infected wounds. Nevertheless, further studies are required for their clinical translation. Full article
Show Figures

Figure 1

19 pages, 5641 KB  
Article
One-Pot Preparation of Easily Dispersible Hexagonal Mg(OH)2 Modified with THPS and Its Flame-Retardant EVA Copolymer
by Xia Liu, Haihui Xu and Jinyang Chen
Materials 2025, 18(21), 4847; https://doi.org/10.3390/ma18214847 - 23 Oct 2025
Viewed by 249
Abstract
As an eco-friendly flame-retardant additive, magnesium hydroxide (MH) is widely employed in low-smoking, halogen-free polymer materials due to its environmentally benign nature. In order to enhance flame retardancy performance, the modified MH was modified with tetrakis(hydroxymethyl)phosphonium sulfate (THPS) by a one-pot hydrothermal method. [...] Read more.
As an eco-friendly flame-retardant additive, magnesium hydroxide (MH) is widely employed in low-smoking, halogen-free polymer materials due to its environmentally benign nature. In order to enhance flame retardancy performance, the modified MH was modified with tetrakis(hydroxymethyl)phosphonium sulfate (THPS) by a one-pot hydrothermal method. The resulting morphology was characterized using scanning electron microscopy (SEM), and it shows the dispersion of nanometer particles and almost no aggregation. The X-ray photoelectron spectroscopy (XPS) along with Raman spectroscopy show that the THPS is connected with the Mg(OH)2 by chemical bond. The sample was incorporated into ethylene–vinyl acetate (EVA) to evaluate the flame retardancy was assessed via limiting oxygen index (LOI) and vertical burning tests (UL-94). The results show that THPS modified MH effectively enhanced the flame retardancy, achieving a V-0 rating and an LOI value of 31.3%. In addition, the composites retain good mechanical integrity. The thermal analysis with TGA and DTG shows the formation of the MgO decomposition product, along with water vapor and phosphorus-containing radicals released by modified MH in the combustion process, forming a strong flame-retardant protective layer. In addition, the maximum smoke density of EVA/MHP-3 composite was 155.4, lower than 411.3 for EVA/MH, with a 62.2% reduction in total smoke production. The result shows that THPS is effective for improving the flame-retardant efficiency of inorganic metal hydroxide in polymer composites. Full article
Show Figures

Figure 1

17 pages, 954 KB  
Article
Transportation Link Risk Analysis Through Stochastic Link Fundamental Flow Diagram
by Orlando Giannattasio and Antonino Vitetta
Future Transp. 2025, 5(4), 150; https://doi.org/10.3390/futuretransp5040150 - 21 Oct 2025
Viewed by 227
Abstract
This paper proposes a method for assessing societal risk along a traffic link by integrating a stochastic formulation of the fundamental diagram. The approach accounts for uncertainty in vehicle speed due to user heterogeneity, vehicle characteristics, and environmental conditions. The risk index is [...] Read more.
This paper proposes a method for assessing societal risk along a traffic link by integrating a stochastic formulation of the fundamental diagram. The approach accounts for uncertainty in vehicle speed due to user heterogeneity, vehicle characteristics, and environmental conditions. The risk index is decomposed into occurrence, vulnerability, and exposure components, with the occurrence probability modeled as a function of stochastic speed. The inverse gamma distribution is adopted to represent speed variability, enabling analytical tractability and control over dispersion. Numerical results show that urban and suburban environments exhibit distinct sensitivity to model parameters, particularly the gamma shape parameter η and the composite parameter c = β · v0 obtained by the product of the occurrence parameter β and the free speed flow v0. Graphical representations illustrate the impact of uncertainty on risk estimation. The proposed framework enhances existing deterministic methods by incorporating probabilistic elements, offering a foundation for future applications in traffic safety management and infrastructure design. Full article
Show Figures

Figure 1

Back to TopTop