Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (219)

Search Parameters:
Keywords = indica and japonica rice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 987 KB  
Article
Allelic Variations of the Waxy Gene and Their Associations with Indica–Japonica Differentiation and Amylose Content in Yunnan Local Rice Germplasm
by Ying Lv, Wei Deng, Xueqian Zuo, Duo Lan, Jing Tan, Jianhua Zhang, Yangjun Dong, Yuran Xu, Jinwen Zhang, Xiao Zhang, Jian Tu, Limei Kui, Anyu Gu, Xiqiong Shen and Xiaolin Li
Genes 2025, 16(10), 1198; https://doi.org/10.3390/genes16101198 - 14 Oct 2025
Viewed by 521
Abstract
Objectives: To provide insights for breeding high-quality rice varieties, we analyzed local rice (Oryza sativa L.) germplasm from Yunnan Province, China, focusing on the relationships among Waxy gene alleles, indica–japonica differentiation, and amylose content (AC). Methods: We examined 201 local rice accessions. [...] Read more.
Objectives: To provide insights for breeding high-quality rice varieties, we analyzed local rice (Oryza sativa L.) germplasm from Yunnan Province, China, focusing on the relationships among Waxy gene alleles, indica–japonica differentiation, and amylose content (AC). Methods: We examined 201 local rice accessions. Two functional molecular markers for the Waxy gene were used to detect four alleles (Wxa, Wxb, Wxin, Wxmw). Additionally, 33 InDel markers were employed to classify indica–japonica attributes, and AC was measured according to GB/T 15683-2008. Results: We detected 175 accessions with Wxa, 20 with Wxb, 4 with Wxin, and 2 with Wxmw, indicating Wxa dominance and a diverse genetic basis at the Waxy locus. Indica–japonica classification identified 180 indica-type, 19 japonica-type, and 2 intermediate-type accessions, confirming predominant indica differentiation in Yunnan rice. Integrating Waxy allele detection, indica–japonica attributes, and AC showed that Wxa occurred primarily in indica rice with higher AC (mean 22.55%), comparable to Wxin (mean 24.33%); Wxb was mainly found in japonica rice with lower AC (mean 13.46%), similar to Wxmw (mean 15.65%). Conclusions: Local Yunnan rice exhibits Wxa predominance at the Waxy locus and clear indica differentiation. The observed associations between Waxy alleles, subspecies attributes, and AC provide useful references for marker-assisted breeding of premium rice and for exploiting indica–japonica heterosis. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1678 KB  
Article
Development and Application of an SNP Marker for High-Throughput Detection and Utilization of the badh2 Gene in Rice Breeding
by Hao Fang, Huifang Huang, Lan Yu, Linyou Wang, Jue Lou and Yongbin Qi
Genes 2025, 16(10), 1132; https://doi.org/10.3390/genes16101132 - 25 Sep 2025
Viewed by 448
Abstract
Background: As a key rice breeding resource, aromatic rice is widely cultivated in agriculture due to its unique aroma. Badh2 mutations cause function loss, enabling rice’s characteristic aroma. Methods: In this study, we analyzed several badh2 mutation types across 8 japonica and [...] Read more.
Background: As a key rice breeding resource, aromatic rice is widely cultivated in agriculture due to its unique aroma. Badh2 mutations cause function loss, enabling rice’s characteristic aroma. Methods: In this study, we analyzed several badh2 mutation types across 8 japonica and 16 indica aromatic rice lines. Based on the 7 bp deletion in badh2-E2 identified in japonica aromatic lines, we developed a multiplex-ready PCR assay for badh2 genotyping. Additionally, leveraging the deletion mutation in badh2-E7 from the indica aromatic line Yexiang, we designed a KASP marker. Results: All 8 japonica aromatic lines carried a 7 bp deletion in badh2-E2, while 12 indica aromatic lines harbored an 8 bp deletion in badh2-E7, and 4 additional indica aromatic lines exhibited an 8 bp deletion in badh2-E2. The multiplex-ready PCR assay was used to screen 200 individual plants from the aromatic rice line Jia 58: 199 plants showed the expected results, while the remaining 1 exhibited two fluorescent signal peaks—suggesting that it may be a heterozygous individual. Using the KASP marker, we performed genotyping analysis on F7 progeny individuals derived from the cross between Yexiang (aromatic line) and Yuenongsimiao (non-aromatic line). Combined with phenotypic observations, we successfully screened out an elite aromatic line named Zhexiangzhenhe, which not only possesses aroma but also maintains superior agronomic traits. Conclusions: The multiplex-ready PCR assay and KASP markers facilitate high-throughput genotyping in large-scale breeding populations, providing breeders with a rapid and efficient selection tool to accelerate aromatic trait improvement in rice. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 13913 KB  
Article
Comparative Transcriptome Analysis Reveals Molecular Indicators of Embryogenic Initiation Divergence Between Rice Varieties CXJ and 9311 During Microspore Culture
by Wenqi Zhang, Runhong Gao, Yingjie Zong, Yulu Tao, Yu Wang, Zhiwei Chen, Yingbo Li and Chenghong Liu
Agronomy 2025, 15(9), 2206; https://doi.org/10.3390/agronomy15092206 - 17 Sep 2025
Viewed by 490
Abstract
This study elucidates the key molecular features underlying the embryogenic initiation divergence between japonica rice Chongxiangjing (CXJ) and indica rice 9311 during isolated microspore culture. Comparative transcriptome analysis across critical timepoints (0, 5, and 10 days post-culture initiation) revealed that while both varieties [...] Read more.
This study elucidates the key molecular features underlying the embryogenic initiation divergence between japonica rice Chongxiangjing (CXJ) and indica rice 9311 during isolated microspore culture. Comparative transcriptome analysis across critical timepoints (0, 5, and 10 days post-culture initiation) revealed that while both varieties initially exhibit comparable microspore viability, CXJ maintains transcriptional stability and activates developmental programs (e.g., hormone signaling, DNA replication, cell morphogenesis), enabling sustained callus formation. In contrast, 9311 undergoes drastic transcriptome reorganization by 5 days, characterized by maladaptive activation of stress-response pathways (glutathione metabolism, MAPK signaling, ER stress) and futile metabolic reactivation (photosynthesis, starch degradation), culminating in near-total cell death and failed callus induction. Transcription factor dynamics further explain this divergence: CXJ specifically upregulates regulators coordinating development and stress resilience (NAC, ERF, HSF, GRAS, bZIP), while 9311 exhibits detrimental upregulation of FAR1 and B3, leading to catastrophic energy misallocation. These findings identify master transcriptional networks and stress-response pathways as pivotal indicators of embryogenic initiation efficiency, providing strategic targets for enhancing indica rice microspore culture technology. Full article
(This article belongs to the Special Issue Innovative Research on Rice Breeding and Genetics)
Show Figures

Figure 1

22 pages, 9763 KB  
Article
The Development of a Transformation System for Four Local Rice Varieties and CRISPR/Cas9-Mediated Editing of the OsCCD7 Gene
by Hanjing Dai, Yuxia Sun, Yingrun Wang, Yiyang He, Jia Shi, Yulu Tao, Mengyue Liu, Xiaoxian Huang, Lantian Ren and Jiacheng Zheng
Agronomy 2025, 15(8), 2008; https://doi.org/10.3390/agronomy15082008 - 21 Aug 2025
Viewed by 857
Abstract
Agrobacterium-mediated transformation systems are extensively applied in japonica rice varieties. However, the adaptability of local rice varieties to existing transformation systems remains limited, owing to their complex genotypes, posing a substantial challenge to transformation. In this study, four local rice varieties were [...] Read more.
Agrobacterium-mediated transformation systems are extensively applied in japonica rice varieties. However, the adaptability of local rice varieties to existing transformation systems remains limited, owing to their complex genotypes, posing a substantial challenge to transformation. In this study, four local rice varieties were selected to optimize the effects of different culture media on callus induction, browning resistance, contamination resistance, callus tolerance, differentiation, regeneration, and root development, and then two varieties were selected to improve plant architecture and tiller development by CRISPR/Cas9-mediated gene editing, based on constructive transformation systems. The goal was to enhance the transformation efficiency of local varieties and innovate germplasms. The results demonstrated that japonica rice varieties XG293 and WD68 exhibited higher induction rates under the treatment of 2 mg/L 2,4-D (2,4-Dichlorophenoxyacetic acid) + 1 mg/L NAA (Naphthaleneacetic acid), whereas indica rice varieties H128 and E33 performed the best under 3 mg/L 2,4-D + 1 mg/L NAA. Severe browning in H128 was effectively mitigated by a carbon source of 20 g/L maltose supplemented with 40 mg/L ascorbic acid. Contamination after Agrobacterium infection was controlled by 300 mg/L Tmt (Timentin). Under a treatment of 200 µM/L acetosyringone +10 min infection duration, XG293 and WD68 exhibited higher callus tolerance, differentiation rates, and GUS staining rates, achieving transformation efficiencies of 43.24% and 52.38%, respectively. In contrast, H128 and E33 performed better under the treatment of 200 µM/L Acetosyringone + 5 min, with transformation efficiencies of 40.00% and 40.74%, respectively. The mutants after OsCCD7 gene editing in WD68 and H128 displayed a dwarfness of plant height, a significant increase in tiller numbers, and compact architecture. These findings demonstrate that an optimized combination of plant growth regulators and infection durations effectively improves transformation efficiency for local varieties, and the OsCCD7 gene regulates plant architecture and tiller development with variable effects, depending on the rice complex genotypes. This study provides a theoretical basis for the efficient transformation of local rice varieties and germplasm innovation. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

23 pages, 2082 KB  
Article
Synergistic Effect of Nitrogen Fertilizer Management on Rice Productivity and Quality
by Yongkang Teng, Rongjie Chen, Meng Guo, Xianguan Chen and Min Jiang
Agronomy 2025, 15(7), 1648; https://doi.org/10.3390/agronomy15071648 - 7 Jul 2025
Viewed by 967
Abstract
This study investigated how nitrogen fertilizer management influences the yield and grain quality of two rice cultivars, Nanjing 9108 (a late-maturing medium japonica) and Ming 1 Youzhenzhan (a three-line indica hybrid). Three field experiments were conducted to assess different nitrogen application strategies, including [...] Read more.
This study investigated how nitrogen fertilizer management influences the yield and grain quality of two rice cultivars, Nanjing 9108 (a late-maturing medium japonica) and Ming 1 Youzhenzhan (a three-line indica hybrid). Three field experiments were conducted to assess different nitrogen application strategies, including total nitrogen reduction, panicle-stage nitrogen reduction, and substitution of chemical fertilizer with compound fertilizer. The experiments analyzed changes in rice nitrogen uptake and transport efficiency, yield and its components, and quality and its components under different nitrogen application treatments, and fitted a function based on the effect of total nitrogen fertilizer on quality. Taking into account four quality indicators and ensuring yield reduction is less than 30%, replacing 100% chemical fertilizer with compound fertilizer in Nanjing 9108 was the optimal strategy for significantly improving quality. Reducing panicle fertilizer by 50% or omitting it also significantly improved quality. Replacing chemical fertilizers with 50% compound fertilizer also maintained nutritional quality. Reducing total nitrogen fertilizer by 25% in Ming 1 Youzhenzhan was the optimal strategy for significantly enhancing quality. Replacing chemical fertilizer with 100% compound fertilizer significantly improved quality. Reducing panicle fertilizer by 50% and substituting 50% of chemical fertilizer with compound fertilizer also significantly improved quality. Taking into account the synergistic effects of nitrogen application measures on rice yield and quality, the performance of the two rice varieties is not identical. The results showed that nitrogen fertilizer management significantly affected both yield and quality, with responses varying between the two varieties. But the two varieties can ensure optimal quality under yield conditions by reducing panicle fertilizer application by 50% and replacing chemical fertilizers with compound fertilizers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 5753 KB  
Protocol
Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
by Marion Barrera, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara and Humberto Prieto
Plants 2025, 14(13), 2059; https://doi.org/10.3390/plants14132059 - 5 Jul 2025
Cited by 1 | Viewed by 2499
Abstract
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary [...] Read more.
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary uses. Although some of these varieties are adapted to cooler climates, they often suffer from reduced productivity or increased disease susceptibility when cultivated in warmer productive environments. These limitations underscore the need for breeding programs to incorporate biotechnological tools that can enhance the adaptability and resilience of the plants. However, New Genomic Techniques (NGTs), including CRISPR-Cas9, require robust in vitro systems, which are still underdeveloped for temperate japonica genotypes. In this study, we developed a reproducible and adaptable protocol for protoplast isolation and regeneration from the temperate japonica cultivars ‘Ónix’ and ‘Platino’ using somatic embryos as the starting tissue. Protoplasts were isolated via enzymatic digestion (1.5% Cellulase Onozuka R-10 and 0.75% Macerozyme R-10) in 0.6 M AA medium over 18–20 h at 28 °C. Regeneration was achieved through encapsulation in alginate beads and coculture with feeder extracts in 2N6 medium, leading to embryogenic callus formation within 35 days. Seedlings were regenerated in N6R and N6F media and acclimatized under greenhouse conditions within three months. The isolated protoplast quality displayed viability rates of 70–99% within 48 h and supported transient PEG-mediated transfection with GFP. Additionally, the transient expression of a gene editing CRISPR-Cas9 construct targeting the DROUGHT AND SALT TOLERANCE (OsDST) gene confirmed genome editing capability. This protocol offers a scalable and genotype-adaptable system for protoplast-based regeneration and gene editing in temperate japonica rice, supporting the application of NGTs in the breeding of cold-adapted cultivars. Full article
Show Figures

Graphical abstract

13 pages, 2702 KB  
Article
Host-Adaptive Divergence Shapes the Genetic Architecture of Magnaporthe oryzae in Southern China’s Rice Agroecosystems
by Xin Liu, Jun Fu, Zhao Deng, Xinwei Chen, Xiaochun Hu, Zhouyi Tu, Qiuyi Wang, Yuxuan Zhu, Pengcheng Chen, Zhenan Bai, Tiangang Liu, Xuanwen Zhang, Peng Qin, Kai Wang, Nan Jiang and Yuanzhu Yang
J. Fungi 2025, 11(7), 485; https://doi.org/10.3390/jof11070485 - 26 Jun 2025
Viewed by 755
Abstract
Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae), poses a severe threat to global rice production. Southern China, a major rice-growing region characterized by diverse agroecological conditions, faces substantial challenges from blast disease, yet our understanding of [...] Read more.
Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae), poses a severe threat to global rice production. Southern China, a major rice-growing region characterized by diverse agroecological conditions, faces substantial challenges from blast disease, yet our understanding of the genetic structure of M. oryzae populations in this region remains limited. Here, we analyzed 885 M. oryzae strains from 18 nurseries across four rice ecological regions in Southern China using a panel of genome-wide SNP markers. Phylogenetic and principal component analyses revealed three distinct clonal lineages: lineage I (58.19%), lineage II (21.36%), and lineage III (20.45%). Lineage I exhibited a broader geographic distribution compared to the other two lineages. Host-adapted divergence was observed across rice subspecies, with lineage III predominantly associated with japonica growing-regions, while lineages I and II mainly colonized indica rice-growing regions. Genetic diversity exhibited significant spatial heterogeneity, with the nucleotide diversity (π) ranging from 0.17 in South China to 0.32 in the Middle–Lower Yangtze River region, reflecting differential cropping systems. The predominantly negative Tajima’s D values across populations suggested recent expansion or selective sweeps, likely driven by host resistance pressures. High genetic differentiation between lineage I and other lineages contrasted with low divergence between lineages II and III, indicating distinct evolutionary trajectories. Furthermore, an uneven distribution of mating types among three genetic lineages was observed, suggesting limited sexual recombination within clonal lineages. The information obtained in this study may be beneficial in devising suitable strategies to control rice blast disease in Southern China. Full article
Show Figures

Figure 1

11 pages, 1247 KB  
Article
Molecular-Marker-Based Design for Breeding Indica–Japonica Hybrid Rice with Bacterial Blight Resistance
by Junjie Dong, Xinyue Zhang, Youfa Li and Haowei Fu
Genes 2025, 16(6), 719; https://doi.org/10.3390/genes16060719 - 18 Jun 2025
Viewed by 821
Abstract
Background/Objectives: To overcome the limitations imposed by bacterial blight on widely adopted indica–japonica hybrid rice, this study employed molecular design breeding strategies to develop a resistant germplasm. Methods: Through conventional backcross breeding combined with molecular-marker-assisted selection, the Xa23-carrying material XR39 [...] Read more.
Background/Objectives: To overcome the limitations imposed by bacterial blight on widely adopted indica–japonica hybrid rice, this study employed molecular design breeding strategies to develop a resistant germplasm. Methods: Through conventional backcross breeding combined with molecular-marker-assisted selection, the Xa23-carrying material XR39 was hybridized with the wide-compatibility restorer line R5315 harboring the S5n gene. Progeny selection integrated evaluations of agronomic traits, disease resistance identification, and test-crossing with sterile lines. Results: Five wide-compatibility restorer lines simultaneously incorporating the Xa23 and S5n genes were successfully developed, demonstrating outstanding bacterial blight resistance and restoration ability. The selected hybrid combinations, A3/RP1, A1/RP4, and A4/RP4, exhibited yield increases of 2.6–8.6% compared to the control. Conclusions: This study not only established a novel germplasm for developing bacterial blight-resistant indica–japonica hybrid rice varieties, but also established a model for gene design breeding for rice improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

10 pages, 2006 KB  
Article
RiceReceptor: The Cell-Surface and Intracellular Immune Receptors of the Oryza Genus
by Baihui Jin, Jian Dong, Xiaolong Hu, Na Li, Xiaohua Li, Dawei Long and Xiaoni Wu
Genes 2025, 16(5), 597; https://doi.org/10.3390/genes16050597 - 18 May 2025
Viewed by 919
Abstract
Introduction: Rice, a cornerstone of global food security, faces escalating demands for enhanced yield and disease resistance. We collected 300 high-quality genomes, representing both cultivated (Oryza sativa indica, O. sativa japonica, and O. sativa aus) and wild species ( [...] Read more.
Introduction: Rice, a cornerstone of global food security, faces escalating demands for enhanced yield and disease resistance. We collected 300 high-quality genomes, representing both cultivated (Oryza sativa indica, O. sativa japonica, and O. sativa aus) and wild species (O. rufipogon, O. glaberrima, and O. barthii). Methods: Leveraging HMMER, NLR-Annotator, and OrthoFinder, we systematically identified 148,077 leucine-rich repeat (LRR) and 143,459 nucleotide-binding leucine-rich repeat (NLR) genes, with LRR receptor-like kinases (LRR-RLKs) dominating immune receptor proportions, followed by coiled-coil domain containing (CNL)-type NLRs and LRR receptor-like proteins (LRR-RLPs). Results: Benchmarking Universal Single-Copy Orthologs (BUSCO) assessments confirmed robust genome quality (average score: 94.78). Strikingly, 454 TIR-NB-LRR (TNL) genes—typically rare in monocots—were detected, challenging prior assumptions. Phylogenetic analysis with Arabidopsis TNLs highlighted five O. glaberrima genes clustering with dicot TNLs; these genes featured truncated PLN03210 motifs fused to nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) and LRR domains. Conclusions: By bridging structural genomics, evolutionary dynamics, and domestication-driven adaptation, this work provides a foundation for targeted breeding strategies and advances functional studies of plant immunity in rice. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 906 KB  
Article
Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China
by Zihao Li, Xinyu Sun, Shuo Yu, He Sun, Lei Lian, Xuegang Peng, Tao Jin, Weitang Liu and Hengzhi Wang
Plants 2025, 14(10), 1425; https://doi.org/10.3390/plants14101425 - 9 May 2025
Cited by 1 | Viewed by 1010
Abstract
Flusulfinam is a 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide applied post-emergence (POST) to control Echinochloa crus-galli (L.) P.Beauv., Leptochloa chinensis (L.) Nees, Digitaria sanguinalis (Linn.) Scop. and other annual weeds in directly seeded and transplanted paddy fields in China, registered in September 2024. Notably, compared [...] Read more.
Flusulfinam is a 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide applied post-emergence (POST) to control Echinochloa crus-galli (L.) P.Beauv., Leptochloa chinensis (L.) Nees, Digitaria sanguinalis (Linn.) Scop. and other annual weeds in directly seeded and transplanted paddy fields in China, registered in September 2024. Notably, compared with other HPPD inhibitors in rice, flusulfinam exhibits consistently high safety in both japonica and indica rice varieties. Meanwhile, flusulfinam has no target-site cross-resistance with traditional acetolactate synthase (ALS)-inhibiting, acetyl-CoA carboxylase (ACCase)-inhibiting, and auxin herbicides. Moreover, as the only heterocyclic-amide-structured herbicide in the HPPD inhibitors, it poses a low risk of metabolic cross-resistance with the other HPPD inhibitors, making it a promising candidate for managing herbicide-resistant weeds in rice fields. In this study, the baseline sensitivity to flusulfinam of E. crus-galli and L. chinensis in paddy fields in China was established using dose–response assays between June and October 2023. Thirty-nine populations of E. crus-galli and forty-three populations of L. chinensis, collected from rice fields across various major rice-producing regions in China, exhibited susceptibility to flusulfinam. The GR50 values ranged from 0.15 to 19.39 g active ingredient (a.i.) ha−1 for E. crus-galli and from 7.82 to 49.92 g a.i. ha−1 for L. chinensis, respectively, far below the field recommended rate of flusulfinam. Meanwhile, the GR50 values of E. crus-galli and L. chinensis to flusulfinam were both distributed as a unimodal curve, with baseline sensitivity (GR50b) of 6.48 g a.i. ha−1 and 22.38 g a.i. ha−1, respectively. The SI50 value showed 129.27-fold and 6.38-fold variability in flusulfinam sensitivity among the 39 E. crus-galli field populations and 43 L. chinensis filed populations, while the variability declined to 2.99-fold and 2.23-fold when the SI50b value was used. This study substantiated the efficacy of flusulfinam against E. crus-galli and L. chinensis in Chinese paddy fields and furnished a benchmark for monitoring temporal variations in the susceptibility of field populations of E. crus-galli and L. chinensis to flusulfinam. Full article
(This article belongs to the Special Issue The Bioecology and Sustainable Management of Weeds)
Show Figures

Figure 1

16 pages, 225 KB  
Article
Analysis of the Relationship Between Assimilate Production and Allocation and the Formation of Rice Quality
by Jianming Tu, Fengting Wen, Feitong Li, Tingting Chen, Baohua Feng, Jie Xiong, Guanfu Fu, Yebo Qin and Wenting Wang
Agriculture 2025, 15(9), 1011; https://doi.org/10.3390/agriculture15091011 - 7 May 2025
Cited by 1 | Viewed by 664
Abstract
Rice is one of China’s primary staple crops, serving as the main food source for over 60% of the population. With the resolution of basic food security issues in China in recent years, the demand for high-quality rice has been steadily increasing. The [...] Read more.
Rice is one of China’s primary staple crops, serving as the main food source for over 60% of the population. With the resolution of basic food security issues in China in recent years, the demand for high-quality rice has been steadily increasing. The taste quality of rice, a crucial indicator for evaluating rice quality, has attracted more attention from consumers. Although factors like variety, growing environment, and cultivation methods affect rice taste quality, the underlying mechanisms remain unknown, and no reliable control methods exist. This study selected 10 major rice cultivars, including 6 indica and 4 japonica varieties, and compared their differences in taste quality, focusing on yield and its components, taste quality, and dry matter accumulation. Among the tested varieties, Songxiangjing 1018 had the best taste quality, but not the highest yield. Zhongzheyou 8, Huazheyou 261, and Quanyousimiao showed both excellent taste quality and high yield. There was no significant correlation between taste quality and yield, suggesting the feasibility of breeding rice varieties with both superior taste and high productivity. Correlation analysis indicated that dry matter mass and net photosynthetic rate were significantly positively correlated with yield, but not with taste quality, highlighting the complexity of taste quality formation. Using a membership function comprehensive evaluation method (combines the outputs of multiple membership functions into a single composite value using specific rules (e.g., weighted average, extremum, logical operations) to produce a new membership degree.), a rice variety selection system balancing yield and quality was constructed, and three varieties (Zhongzheyou 8, Huazheyou 261, and Quanyousimiao) were identified as having both high yield and excellent quality. The results of this study can provide a theoretical basis for research on cultivation techniques and variety breeding aimed at synergistically improving rice yield and quality. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
15 pages, 3953 KB  
Article
Improvement of Rice Salt Tolerance by Pyramiding Two Genes in Xian and Geng Backgrounds Through CRISPR-Cas9 System
by Zhihu Ding, Laiyuan Zhai, Kai Chen, Fan Zhang, Xianjin Qiu and Jianlong Xu
Agronomy 2025, 15(5), 1014; https://doi.org/10.3390/agronomy15051014 - 23 Apr 2025
Viewed by 1911
Abstract
Salinity is one of the main environmental factors influencing rice production. Many genes affecting salt tolerance (ST) have been cloned in rice so far. In the present study, four genes negatively regulating ST, including HST1, LRRK1, STRK2, and PC1, [...] Read more.
Salinity is one of the main environmental factors influencing rice production. Many genes affecting salt tolerance (ST) have been cloned in rice so far. In the present study, four genes negatively regulating ST, including HST1, LRRK1, STRK2, and PC1, were edited by CRISPR-Cas9 technology in six rice varieties (three in indica (xian) and three in japonica (geng) backgrounds), and three two-gene editing combinations, including hst1-lrrk1, hst1-strk2, and hst1-pc1, were created. All combinations of hst1-pc1, hst1-lrrk1, and hst1-strk2 significantly improved the ST of all the tested materials in both xian and geng backgrounds and had much better ST than single-gene editing lines. The combination of hst1-pc1 had the poorest ST in CH70 and 8TX23 backgrounds but showed almost the same level of ST as the combinations of hst1-strk2 and hst1-lrrk1 in the C199S background for 17 days after salinization, which clearly brought out the background effect on ST and its utilization in ST breeding. As a comparison of the recipient varieties, almost all gene-edited lines except hst1-pc1 in the CH70 background showed significantly reduced grain weight owing to reduced seed setting rate in normal conditions. The hst1-strk2 showed the highest level of ST at the seedling stage and a relatively higher grain yield among all the lines; thus, it is feasible to enhance the ST of high-yielding rice varieties by simultaneously gene-editing against the two loci or pyramiding these two alleles with the other major ST genes of rice. Our results provide valuable gene resources and germplasms for improving rice salt tolerance and high yield. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 2807 KB  
Article
Morphological Diversity and Crop Mimicry Strategies of Weedy Rice Under the Transplanting Cultivation System
by Yi-Ting Hsu, Yuan-Chun Wang, Pei-Rong Du, Charng-Pei Li and Dong-Hong Wu
Agronomy 2025, 15(4), 984; https://doi.org/10.3390/agronomy15040984 - 19 Apr 2025
Viewed by 1003
Abstract
The continued emergence of weedy rice (Oryza sativa L.) in Taiwan poses serious challenges to seed purity and commercial rice cultivation, particularly under transplanting systems. These off-type individuals, often marked by a red pericarp, reduce varietal integrity and complicate seed propagation. This [...] Read more.
The continued emergence of weedy rice (Oryza sativa L.) in Taiwan poses serious challenges to seed purity and commercial rice cultivation, particularly under transplanting systems. These off-type individuals, often marked by a red pericarp, reduce varietal integrity and complicate seed propagation. This study evaluated the morphological variation among 117 Taiwan weedy rice (TWR) accessions and 55 control cultivars, which include 24 temperate japonica cultivars (TEJ), 24 indica cultivars, and seven U.S. weedy rice (UWR) types. Principal component analysis (PCA) showed that TWR shares vegetative traits with modern cultivars but exhibits grain morphology resembling indica landraces—indicating weak artificial selection pressure on grain traits during nursery propagation. TWR was also found to possess a suite of adaptive weedy traits, including semi-dwarfism, delayed heading, high shattering, and superior seed storability, facilitating its persistence in field conditions. These findings provide critical insights for integrated weed management and cultivar purity strategies, emphasizing the importance of certified seed use, stringent field hygiene, and disruption of weedy rice reproductive cycles. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Graphical abstract

19 pages, 2949 KB  
Article
Precision Estimation of Rice Nitrogen Fertilizer Topdressing According to the Nitrogen Nutrition Index Using UAV Multi-Spectral Remote Sensing: A Case Study in Southwest China
by Lijuan Wang, Qihan Ling, Zhan Liu, Mingzhu Dai, Yu Zhou, Xiaojun Shi and Jie Wang
Plants 2025, 14(8), 1195; https://doi.org/10.3390/plants14081195 - 11 Apr 2025
Cited by 2 | Viewed by 1231
Abstract
The precision estimation of N fertilizer application according to the nitrogen nutrition index (NNI) using unmanned aerial vehicle (UAV) multi-spectral measurements remains to be tested in different rice cultivars and planting areas. Therefore, two field experiments were conducted using varied N rates (0, [...] Read more.
The precision estimation of N fertilizer application according to the nitrogen nutrition index (NNI) using unmanned aerial vehicle (UAV) multi-spectral measurements remains to be tested in different rice cultivars and planting areas. Therefore, two field experiments were conducted using varied N rates (0, 60, 120, 160, and 200 kg N ha−1) on two rice cultivars, Yunjing37 (YJ-37, Oryza sativa subsp. Japonica Kato., the Institute of Food Crops at the Yunnan Academy of Agricultural Sciences, Kunming, China) and Jiyou6135 (JY-6135, Oryza sativa subsp. indica Kato., Hunan Longping Gaoke Nongping seed industry Co., Ltd., Changsha, China), in southwest China. The rice canopy spectral images were measured by the UAV’s multi-spectral remote sensing at three growing stages. The NNI was calculated based on the critical N (Nc) dilution curve. A random forest model integrating multi-vegetation indices established the NNI inversion, facilitating precise N topdressing through a linear platform of NNI-Relative Yield and the remote sensing NNI-based N balance approaches. The Nc dilution curve calibrated with aboveground dry matter demonstrated the highest accuracy (R2 = 0.93, 0.97 for shoot components in cultivars YJ-37 and JY-6135), outperforming stem (R2 = 0.70, 0.76) and leaf (R2 = 0.80, 0.89) based models. The RF combined with six vegetation index combinations was found to be the best predictor of NNI at each growing period (YJ-37: R2 is 0.70–0.97, RMSE is 0.02~0.04; JY-6135: R2 is 0.71–0.92, RMSE is 0.04~0.05). The RF surpassed BPNN/PLSR by 6.14–10.10% in R2 and 13.71–33.65% in error reduction across the critical rice growth stages. The topdressing amounts of YJ-37 and JY-6135 were 111–124 kg ha−1 and 80–133 kg ha−1, with low errors of 2.50~8.73 kg ha−1 for YJ-37 and 2.52~5.53 kg ha−1 for JY-6135 in the jointing (JT) and heading (HD) stages. These results are promising for the precise topdressing of rice using a remote sensing NNI-based N balance method. The combination of UAV multi-spectral imaging with the NNI-nitrogen balance method was tested for the first time in southwest China, demonstrating its feasibility and offering a regional approach for precise rice topdressing. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

15 pages, 2333 KB  
Article
Changes in Rice Yield and Quality from 1994 to 2023 in Shanghai, China
by Haixia Wang, Jianjiang Bai, Qi Zhao, Jianhao Tang, Ruifang Yang, Liming Cao and Ruoyu Xiong
Agronomy 2025, 15(3), 670; https://doi.org/10.3390/agronomy15030670 - 8 Mar 2025
Viewed by 1777
Abstract
In recent years, there has been widespread cultivation of high-quality rice along the southeast coast of China, particularly in Shanghai. However, the specific changes in the yield and quality performance of rice in the Shanghai region have not been well understood. A study [...] Read more.
In recent years, there has been widespread cultivation of high-quality rice along the southeast coast of China, particularly in Shanghai. However, the specific changes in the yield and quality performance of rice in the Shanghai region have not been well understood. A study conducted on 194 rice varieties in the Shanghai region from 1994 to 2023 focused on yield, growth characteristics, and quality. The findings revealed significant increases in rice yield (+16.8%) and spikelets per panicle (+45.4%) in the Shanghai region over the past 30 years, along with a decrease in amylose content (−27.9%). However, parameters such as grain filling, 1000-grain weight, plant height, panicle length, chalkiness, and gel consistency showed no significant changes over the same period. Additionally, the study found that the yield, nitrogen application amount, growth period, and head rice rate of japonica rice and indica-japonica hybrid rice were higher than those of indica rice, although the panicle length was lower in comparison. Japonica inbred rice exhibited the lowest amylose content and superior taste. Correlation analyses suggested that the breeding of japonica rice varieties in the Shanghai region should focus on balancing nitrogen absorption and high chalkiness, plant biomass, and amylose content, and yield and the appearance and taste quality of rice. In addition, the potential rice yield per unit area in the Shanghai region in the future depends on the promotion of hybrid japonica rice planting and developing best management practices. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop