Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = indirect tensile strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2549 KB  
Article
The Influence of Synthetic Reinforcing Fibers on Selected Properties of Asphalt Mixtures for Surface and Binder Layers
by Peter Gallo, Amira Ben Ameur and Jan Valentin
Infrastructures 2025, 10(11), 303; https://doi.org/10.3390/infrastructures10110303 - 11 Nov 2025
Abstract
Increasing traffic volumes, heavier axle loads, and the growing frequency of premature pavement distress pose major challenges for modern road infrastructure. In many regions, asphalt pavements experience early rutting, cracking, and moisture-induced damage, underscoring the need for improved material performance and longer service [...] Read more.
Increasing traffic volumes, heavier axle loads, and the growing frequency of premature pavement distress pose major challenges for modern road infrastructure. In many regions, asphalt pavements experience early rutting, cracking, and moisture-induced damage, underscoring the need for improved material performance and longer service life. Reinforcing fibres are increasingly used to enhance asphalt mixture properties, with aramid fibres recognised for their superior mechanical and thermal stability. This study evaluates the effect of FlexForce (FF) fibres on the mechanical and fracture behaviour of two dense-graded asphalt concretes, AC 16 surf and AC 16 bin, produced with different binders and fibre dosages (0.02% and 0.04% by mixture weight). Laboratory tests, including indirect tensile strength ratio (ITSR), indirect tensile stiffness modulus (IT-CY), crack propagation resistance, and dynamic modulus measurements, were performed to assess moisture susceptibility, stiffness, and viscoelastic behaviour. The results showed that fibre addition had little effect on compactability and stiffness under standard conditions but improved temperature stability and stiffness at elevated temperatures, particularly when used with polymer-modified binders. Moisture resistance decreased slightly, while fracture performance improved moderately at intermediate temperatures. Overall, low fibre dosages (~0.02%) provided the most balanced performance, indicating that the mechanical benefits of aramid reinforcement depend strongly on binder rheology, temperature, and interfacial compatibility. These findings contribute to optimising fibre dosage and binder selection for aramid-reinforced asphalt layers in practice. Full article
Show Figures

Figure 1

17 pages, 1778 KB  
Article
Experimental and Field Assessment of Mineral–Cement–Emulsion Mixtures Containing Recycled Components
by Elżbieta Szafranko, Magdalena Czyż and Maciej Lis
Materials 2025, 18(21), 4955; https://doi.org/10.3390/ma18214955 - 30 Oct 2025
Viewed by 403
Abstract
This study investigates the performance of mineral–cement–emulsion (MCE) mixtures produced with reclaimed asphalt pavement (RAP) and recycled mineral aggregates for use in road base layers. The aim was to evaluate the mechanical properties, field performance, and key factors influencing the cracking behavior of [...] Read more.
This study investigates the performance of mineral–cement–emulsion (MCE) mixtures produced with reclaimed asphalt pavement (RAP) and recycled mineral aggregates for use in road base layers. The aim was to evaluate the mechanical properties, field performance, and key factors influencing the cracking behavior of these sustainable cold-recycled mixtures. Approximately 160 laboratory tests were performed to determine indirect tensile strength (ITS), stiffness modulus (IT-CY), bulk density, and air-void content. The MCE mixture achieved an average ITS of 1.09 MPa and stiffness modulus of 5873 MPa after 28 days of curing, confirming compliance with design requirements. The field investigation of a test section showed good structural integrity and compaction, although several transverse cracks developed during the first year of service. The mechanistic interpretation attributed these cracks to combined cement hydration shrinkage and thermal contraction effects. The results indicate that MCE mixtures made with recycled materials can meet technical specifications while reducing environmental impact, provided that binder proportions and curing conditions are carefully optimized. Full article
Show Figures

Figure 1

19 pages, 2844 KB  
Article
Statistical Analysis of the Tensile Strength of Cold Recycled Cement-Treated Materials and Its Influence on Pavement Design
by William Fedrigo, Thaís Radünz Kleinert, Gabriel Grassioli Schreinert, Lélio Antônio Teixeira Brito and Washington Peres Núñez
Infrastructures 2025, 10(11), 284; https://doi.org/10.3390/infrastructures10110284 - 24 Oct 2025
Viewed by 344
Abstract
The tensile behavior of cold recycled cement-treated mixtures (CRCTMs), typically produced through full-depth reclamation (FDR), is critical for pavement design. Since no universal design method exists, different tests are applied, leading to varying results. In this context, this study aimed (a) to statistically [...] Read more.
The tensile behavior of cold recycled cement-treated mixtures (CRCTMs), typically produced through full-depth reclamation (FDR), is critical for pavement design. Since no universal design method exists, different tests are applied, leading to varying results. In this context, this study aimed (a) to statistically analyze the flexural tensile strength (FTS) and indirect tensile strength (ITS) of CRCTMs incorporating reclaimed asphalt pavement (RAP) and lateritic soil (LS); (b) to evaluate how using FTS or ITS influences the design of CRCTM layers. FTS and ITS tests were conducted with different cement (1–7%) and RAP (7–93%) contents at multiple curing times (3–28 days), and results were used for statistical and mechanistic analyses. Results showed that cement and RAP contents significantly increased FTS and ITS. RAP exhibited the strongest influence on ITS. This indicates that CRCTMs with similar materials benefit from higher RAP contents. Mechanistic analysis revealed that lower RAP contents require thicker pavement structures, suggesting that increasing RAP can reduce costs and environmental impacts. FTS was about 65% higher than ITS, but using ITS in design led to structures 1.7–3.3 times thicker for the same service life. These findings highlight the need for proper CRCTM characterization, with flexural tests recommended for more reliable and cost-effective pavement design. Full article
Show Figures

Figure 1

22 pages, 3648 KB  
Article
Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks
by René Sebastián Mora-Ortiz, Sergio Alberto Díaz Alvarado, Ebelia Del Angel-Meraz, Francisco Magaña-Hernández, Mayra Agustina Pantoja Castro and Emmanuel Munguía-Balvanera
Materials 2025, 18(21), 4854; https://doi.org/10.3390/ma18214854 - 23 Oct 2025
Viewed by 414
Abstract
This study presents the development of hybrid masonry mortars by incorporating two waste materials: recycled plastic strips from disposable face masks (FM) as mechanical reinforcement and calcined oyster shell powder (OSP) as a filler. The objective was to evaluate the combined effect of [...] Read more.
This study presents the development of hybrid masonry mortars by incorporating two waste materials: recycled plastic strips from disposable face masks (FM) as mechanical reinforcement and calcined oyster shell powder (OSP) as a filler. The objective was to evaluate the combined effect of FM and OSP on the mechanical behavior of mortars. Three types of mixes were prepared: a reference mix, a mix with 5% OSP (by cement weight), and mixes with 5% OSP reinforced with FM strips. FM strips were incorporated at three different lengths, dividing the FM-reinforced group into three subgroups (0.1%, 0.2%, 0.5%, and 0.8%). The results showed an approximately 10% increase in compressive strength with the addition of 5% OSP compared to the control mortar, as well as an improvement in bond strength of about 21%. Furthermore, an optimum content of 0.2% of 6 mm strips allowed for adequate dispersion and maintained indirect tensile strengths similar to the control + OSP. OSP acted as a reactive filler, increasing compressive strength and improving both density and adhesion. However, higher FM contents or longer strips increased porosity and water absorption, while reducing strength. This combination represents an innovative strategy for valorizing post-pandemic and marine waste. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Graphical abstract

24 pages, 2660 KB  
Article
Determination of Mohr–Coulomb Failure Criterion of Cement-Treated Materials Using Mixture Design Properties
by Mario Castaneda-Lopez, Thomas Lenoir, Luc Thorel and Jean-Pierre Sanfratello
Infrastructures 2025, 10(10), 267; https://doi.org/10.3390/infrastructures10100267 - 9 Oct 2025
Cited by 1 | Viewed by 602
Abstract
The compressive, tensile, and shear strength properties of two cement-stabilized soils (CSS) treated with 2% to 4% of cement are investigated for several different curing times at several densities. The measured Mohr–Coulomb (MC) shear strength features, cohesion (c), and friction angle [...] Read more.
The compressive, tensile, and shear strength properties of two cement-stabilized soils (CSS) treated with 2% to 4% of cement are investigated for several different curing times at several densities. The measured Mohr–Coulomb (MC) shear strength features, cohesion (c), and friction angle (φ) are compared with values reported in the literature for similar materials and are subject to debate depending on the estimation methods used. In addition, an alternative geometric criterion based on indirect tensile strength (ITS) and unconfined compressive strength (UCS) is evaluated. The results show that the value of c determined using the alternative criterion is slightly higher than the value of c measured using the direct shear (DS) test. A relationship between mixture variables and c is established and validated by combining numerical and experimental approaches. The friction angle appears to be constant, independent of mixture parameters. This parameter is underestimated using the geometric approach. Full article
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Effect of Fiber Characteristics on Cracking Resistance Properties of Stone Mastic Asphalt (SMA) Mixture
by Kai Yang, Wenyuan Huang, Mutian Sun, Zhixian Zheng and Hongwei Lin
Polymers 2025, 17(19), 2623; https://doi.org/10.3390/polym17192623 - 28 Sep 2025
Viewed by 478
Abstract
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection [...] Read more.
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection in practice. This study systematically evaluated the influence of four representative fiber types on the anti-cracking performance of Stone Mastic Asphalt (SMA) mixture, combining mechanical testing and microstructural analysis. The fibers included lignin fiber (LF); polyester fiber (PF); chopped basalt fiber (CBF) with lengths of 3 mm, 6 mm, 9 mm; and flocculent basalt fiber (FBF). Key mechanical tests assessed specific cracking behaviors: three-point bending (low-temperature cracking), indirect tensile (tensile cracking), pre-cracked semi-circular bending (crack propagation), overlay (reflective cracking), and four-point bending (fatigue resistance) tests. A scanning electron microscopy (SEM) test characterized fiber morphology and fiber–asphalt interface interactions, revealing microstructural mechanisms underlying performance improvements. The results showed that all fibers improved anti-cracking performance, but their efficacy varied with fiber type, appearance, and length. PF exhibited the best low-temperature cracking resistance, with a 26.8% increase in bending strength and a 16.6% increase in maximum bending strain. For tensile and crack propagation resistance, 6 mm CBF and FBF outperformed the other fibers, with fracture energy increases of up to 53.2% (6 mm CBF) and CTindex improvements of 72.8% (FBF). FBF optimized reflective cracking resistance, increasing the loading cycles by 48.0%, while 6 mm CBF achieved the most significant fatigue life improvement (36.9%) by balancing rigidity and deformation. Additionally, SEM analysis confirmed that effective fiber dispersion and strong fiber–asphalt bonding were critical for enhancing stress transfer and inhibiting crack initiation/propagation. These findings provide quantitative insights into the relationship between fiber characteristics (type, morphology, length) and anti-cracking performance, offering practical guidance for rational fiber selection to improve pavement durability. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Graphical abstract

23 pages, 4319 KB  
Article
Performance Evaluation of Asphalt Concrete Incorporating Polyethylene Terephthalate-Coated Steel Slag Using Marshall Stability, Indirect Tensile Strength, and Moisture Susceptibility Tests
by Mahiman Zinnurain, Md. Kamrul Hasan Kawsar, Md. Mizanur Rahman, Md. Kamrul Islam, Md. Arifuzzaman and Mohammad Anwar Parvez
Processes 2025, 13(9), 2862; https://doi.org/10.3390/pr13092862 - 7 Sep 2025
Viewed by 3631
Abstract
This study evaluates the performance of asphalt concrete incorporating steel slag aggregates coated with recycled polyethylene terephthalate (PET). The aim was to enhance adhesion between aggregate and binder while addressing environmental concerns related to waste management. Laboratory testing was carried out to assess [...] Read more.
This study evaluates the performance of asphalt concrete incorporating steel slag aggregates coated with recycled polyethylene terephthalate (PET). The aim was to enhance adhesion between aggregate and binder while addressing environmental concerns related to waste management. Laboratory testing was carried out to assess Marshall stability, indirect tensile strength, and tensile strength ratio, which are commonly used indicators of strength and moisture resistance in asphalt mixtures. The results showed that PET coating enhanced binder-aggregate bonding, resulting in higher stability, which indicates an improved resistance to plastic deformation and moisture damage compared to uncoated slag mixtures. Among the tested combinations, the mixes containing 20% slag with 10% PET and 30% slag with 15% PET demonstrated the most balanced performance. These mixes achieved greater durability while maintaining satisfactory strength values, indicating that PET-coated slag can serve as an effective partial replacement for natural aggregates in asphalt concrete. The study also highlights that the approach can help reduce reliance on natural stone, lower construction costs, and promote recycling of industrial byproducts and plastic waste. This contributes to more sustainable pavement practices while addressing issues of waste disposal and environmental degradation. The findings suggest that PET-coated steel slag can be considered a practical and resource-efficient material for asphalt mixtures. The research not only adds technical evidence to the growing interest in waste-based construction materials but also provides guidance for adopting such methods in developing countries, where cost and sustainability are critical factors. Full article
(This article belongs to the Special Issue Advances in Modifications Processes of Bitumen and Asphalt Mixtures)
Show Figures

Figure 1

18 pages, 1918 KB  
Article
Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies
by Judita Škulteckė, Ovidijus Šernas, Donatas Čygas, Igoris Kravcovas, Laura Žalimienė and Rafal Mickevič
Buildings 2025, 15(17), 3203; https://doi.org/10.3390/buildings15173203 - 5 Sep 2025
Viewed by 609
Abstract
The development of sustainable and energy-efficient asphalt pavements is essential to address the growing demand for climate-neutral transportation infrastructure. This study investigates the structural design and functional performance of low rolling resistance asphalt mixtures utilizing reclaimed asphalt pavement (RAP) and warm mix asphalt [...] Read more.
The development of sustainable and energy-efficient asphalt pavements is essential to address the growing demand for climate-neutral transportation infrastructure. This study investigates the structural design and functional performance of low rolling resistance asphalt mixtures utilizing reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies. Ten mixtures with WMA additive—including asphalt concrete (AC) and stone mastic asphalt (SMA) with and without RAP—were evaluated for volumetric and mechanical performance. Laboratory results show that RAP addition did not compromise compaction nor indirect tensile strength ratio (ITSR), and in some cases improved these properties. SMA and SMA RAP-modified mixtures achieved the highest resistance to rutting (as low as 5.0% rut depth), while AC and SMA mixtures both demonstrated low rolling resistance (coefficients of energy loss 0.00604–0.00636). Resistance to low-temperature cracking was strong for all mixtures, with thermal stress restrained specimen test (TSRST) fracture temperatures ranging from −32.8 °C to −36.0 °C. SMA mixtures generally exhibited superior resistance to fatigue (up to 63 με at 1 million cycles). Overall, three asphalt mixtures with different particle size distribution containing 14% RAP and a WMA additive (SMA 8 S_1 R, SMA 8 S_3 R, and AC 11 VS_2 R) demonstrated the best balance of rolling resistance, durability, and circularity, and are recommended for field trials to support climate-neutral and sustainable road infrastructure. These results encourage broader adoption of circular practices in road infrastructure projects, contributing to lower emissions and life-cycle costs. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure: 2nd Edition)
Show Figures

Figure 1

20 pages, 3117 KB  
Article
Effect of Waste Mask Fabric Scraps on Strength and Moisture Susceptibility of Asphalt Mixture with Nano-Carbon-Modified Filler
by Mina Al-Sadat Mirjalili and Mohammad Mehdi Khabiri
Infrastructures 2025, 10(9), 233; https://doi.org/10.3390/infrastructures10090233 - 3 Sep 2025
Viewed by 498
Abstract
This research investigates the influence of waste mask fabric scraps (WMFSs) and nano-carbon-modified filler (NCMF) on the mechanical characteristics and durability of hot mix asphalt, aiming to improve pavement performance concerning tensile stress, fatigue, and moisture damage using recycled materials. Asphalt mixtures were [...] Read more.
This research investigates the influence of waste mask fabric scraps (WMFSs) and nano-carbon-modified filler (NCMF) on the mechanical characteristics and durability of hot mix asphalt, aiming to improve pavement performance concerning tensile stress, fatigue, and moisture damage using recycled materials. Asphalt mixtures were created with aggregate and WMFS/NCMF at 0.3% and 0.5% weight percentages (relative to aggregate), with fiber lengths of 8, 12, and 18 mm, utilizing a ‘wet mixing’ method where fibers were incrementally added to aggregates during mixing. The samples underwent indirect tensile strength, moisture susceptibility, and Marshall stability testing. The results demonstrated that incorporating WMFSs and NCMF initially enhanced tensile strength, moisture susceptibility resistance, and Marshall stability, reaching an optimal point; beyond this, further fiber addition diminished these properties. Data analysis identified the sample containing 0.3% fibers at a 12 mm length as the superior performer, showcasing the highest ITS and Marshall stability values. Statistical t-tests revealed significant differences between fiber-containing samples and control groups, verifying the beneficial impact of WMFSs and NCMF. Design-Expert software (Design-Expert 12.0.3) was used to develop functional models predicting asphalt properties based on fiber percentage and length. The optimal combination—12 mm fiber length and 0.3% WMFS/NCMF—demonstrated a 33% increase in tensile strength, a 17% improvement in moisture resistance, and a 70% reduction in fatigue deformation. Safety protocols, including thermal decontamination of WMFSs, were implemented to mitigate potential health risks. Full article
Show Figures

Figure 1

14 pages, 1954 KB  
Article
Microtensile Bond Strength of Composite Restorations: Direct vs. Indirect Techniques Using Cohesive Zone Models
by Maria A. Neto, Ricardo Branco, Ana M. Amaro and Ana Messias
J. Compos. Sci. 2025, 9(9), 475; https://doi.org/10.3390/jcs9090475 - 2 Sep 2025
Viewed by 616
Abstract
The purpose of this in silico study was to evaluate the main difference of the adhesion strength of direct and semi-direct composite resin restorations in dentin using micro-tensile testing (μTBS) and finite element analysis (FEA). This in silico study employed cohesive zone traction [...] Read more.
The purpose of this in silico study was to evaluate the main difference of the adhesion strength of direct and semi-direct composite resin restorations in dentin using micro-tensile testing (μTBS) and finite element analysis (FEA). This in silico study employed cohesive zone traction and shear laws to investigate interfacial damage in both restoration groups. Tridimensional finite element models of both restoration specimens were created. A 20 μm thick resin cement layer was created for the semi-direct case. The Clearfil SE Bond 2 adhesive system and the restorative material, Ceram X Spectra ST HV composite resin, were used on both restorations. The numerical bond strength of both restoration techniques was evaluated using two different analysis assumptions. In the first assumption, the numerical analysis procedure included only the non-linear behavior of dentin and the von Mises damage criterion, whereas cohesive zone models were included in the second analysis assumption. The influence of dentin-adhesive cohesive mechanical properties was studied using values reported in the literature, and a sensitivity study helped improve the correlation between experimental and numerical results. The mechanical properties of the composite cohesive zone were defined assuming that the interface strength of dentin and composite follows the values reported by the manufacturer of Spectra ST. Damage initiation and progression were analyzed, and strains and stresses of the cohesive zone models (CZM) were compared with the corresponding perfect bonded models. The experimental µTBS results for the direct restoration strategy showed an adhesive strength of 38.156 ± 10.750 MPa, while the CZM predicted a slightly higher value of 40.4 ± 10.8 MPa. For the indirect restoration strategy, the experimental adhesive strength was 25.449 ± 10.193 MPa, compared to a numerically predicted strength of 28.1 ± 9.3 MPa. Overall, the CZM tends to overestimate the adhesive strength relative to experimental values. The statistical analysis of dentin extension strains for direct (DR) and semi-direct (SR) group models reveals that the SR configuration yields higher strain levels. Hence, these results suggest that, assuming identical dentin properties across both restoration groups, the material configuration in the direct restoration offers better mechanical protection to the dentin. These findings highlight the critical role of incorporating damage mechanics to more accurately characterize stress distribution during tooth rehabilitation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

17 pages, 1914 KB  
Systematic Review
Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review
by Giuseppe Loprencipe, Laura Moretti and Mario Saltaren Daniel
Designs 2025, 9(5), 104; https://doi.org/10.3390/designs9050104 - 1 Sep 2025
Cited by 1 | Viewed by 1056
Abstract
The use of Reclaimed Asphalt Pavement (RAP) in asphalt mixtures offers environmental and economic advantages by reducing reliance on virgin aggregates and minimizing construction waste. However, the aged binder in RAP increases mixture stiffness, which can compromise fatigue resistance. This systematic review evaluates [...] Read more.
The use of Reclaimed Asphalt Pavement (RAP) in asphalt mixtures offers environmental and economic advantages by reducing reliance on virgin aggregates and minimizing construction waste. However, the aged binder in RAP increases mixture stiffness, which can compromise fatigue resistance. This systematic review evaluates the influence of RAP content on fatigue performance compared to conventional mixtures, with a focus on the Indirect Tensile Test (IDT) as the primary assessment method. Following the parameters of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, five studies published between 2014 and 2024 were identified through searches in Web of Science, ScienceDirect, ASCE, and Scopus. Study quality was assessed using the Cochrane Risk of Bias tool. The results indicate that although RAP enhances rutting resistance, higher contents (>30%) often lead to reduced fatigue performance due to binder hardening and reduced mixture flexibility. The incorporation of rejuvenators—such as heavy paraffinic extracts—and modifiers, including high-modulus agents, polymers, and epoxy binders, can partially restore aged binder properties and improve performance. Sustainable innovations, such as lignin-based industrial by-products and warm-mix asphalt technologies, show promise in balancing mechanical performance with reduced environmental impact. Variability in material sources, modification strategies, and test protocols limits direct comparability among studies, underscoring the need for standardized evaluation frameworks. Overall, this review highlights that optimizing RAP content and selecting effective rejuvenation or modification strategies are essential for achieving durable, cost-effective, and environmentally responsible asphalt pavements. Future research should integrate advanced laboratory methods with performance-based design to enable high RAP utilization without compromising fatigue resistance. Full article
Show Figures

Figure 1

20 pages, 2387 KB  
Article
A Rubberized-Aerogel Composite Binder Modifier for Durable and Sustainable Asphalt Pavements
by Carlos J. Obando, Jolina J. Karam, Jose R. Medina and Kamil E. Kaloush
Buildings 2025, 15(17), 2998; https://doi.org/10.3390/buildings15172998 - 23 Aug 2025
Viewed by 613
Abstract
The United States produces approximately 500 million tons of asphalt mixtures annually, while generating vast amounts of waste materials that could be repurposed for sustainable infrastructure. Each year, 1.4 billion gallons of lubricating oils are available for reuse and recycling. Additionally, 280 million [...] Read more.
The United States produces approximately 500 million tons of asphalt mixtures annually, while generating vast amounts of waste materials that could be repurposed for sustainable infrastructure. Each year, 1.4 billion gallons of lubricating oils are available for reuse and recycling. Additionally, 280 million tires are discarded, contributing to significant environmental challenges. Given the critical role of the roadway network in economic growth, mobility, and infrastructure sustainability, there is a pressing need for innovative material solutions that integrate recycled materials without compromising performance. This study introduces a Rubberized-Aerogel Composite (RaC), a novel asphalt binder modifier combining crumb rubber, recycled oil, and a silica-based aerogel to enhance the sustainability and durability of asphalt pavements. The research methodology involved blending the RaC with the PG70-10 asphalt binder at a 5:1 ratio and conducting comprehensive laboratory tests on binders and mixtures, including rheology, thermal conductivity (TC), specific heat capacity (Cp), the Hamburg Wheel-Tracking Test (HWTT), and indirect tensile strength (IDT). Pavement performance was simulated using AASHTOWare Pavement ME under hot and cold climates with thin and thick pavement structures. Results showed that RaC-modified binders reduced thermal conductivity by up to 30% and increased specific heat capacity by 15%, improving thermal stability. RaC mixtures exhibited a 50% reduction in rut depth in the HWTT and lower thermal expansion/contraction coefficients. Pavement ME simulations predicted up to 40% less permanent deformation and 60% reduced thermal cracking for RaC mixtures compared to the controls. RaC enhances pavement lifespan, reduces maintenance costs, and promotes environmental sustainability by repurposing waste materials, offering a scalable solution for resilient infrastructure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 1344 KB  
Article
Effect of Nanoclay on the Performance Characteristics of SBS-Modified Asphalt Concrete Mixtures
by Asmat Khan, Sarfraz Ahmed, Naqeeb Ullah Khattak, Menglim Hoy and Chamroeun Se
Coatings 2025, 15(9), 984; https://doi.org/10.3390/coatings15090984 - 22 Aug 2025
Viewed by 968
Abstract
This study examined the synergistic effects of Styrene–Butadiene–Styrene (SBS) polymer and nanoclay on asphalt concrete mixture performance through a systematic experimental program using 4.5% SBS with varying nanoclay concentrations (0–8%). Performance evaluation included Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ERI [...] Read more.
This study examined the synergistic effects of Styrene–Butadiene–Styrene (SBS) polymer and nanoclay on asphalt concrete mixture performance through a systematic experimental program using 4.5% SBS with varying nanoclay concentrations (0–8%). Performance evaluation included Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ERI), and Hamburg Wheel Tracking Tests (HWTT), along with novel quantitative analysis of visco-plastic and moisture resistance indices. Results demonstrated that 4.5% SBS with 6% nanoclay (4.5S6N) yielded optimal performance, achieving 38% increase in dry ITS, 68% improvement in wet ITS, and enhanced moisture resistance with Tensile strength Ratio (TSR) improving from 79.53% to 97.14%. The ERI value increased by 39%, while rutting resistance improved by 39.3%. At this optimal concentration, nanoclay’s uniform dispersion and layered silicate structure created an effective reinforcement network, enhancing stress distribution and interfacial bonding with the SBS polymer network and asphalt components. However, exceeding 6% nanoclay content led to performance deterioration due to particle agglomeration. These findings demonstrate that optimized SBS–nanoclay modification effectively addresses both mechanical and moisture-related performance requirements for modern pavement applications. Full article
Show Figures

Figure 1

23 pages, 5546 KB  
Article
Evaluation of a Method for Determining Material Strength Based on Hardness Measurements: A Case Study of the Ti6Al4V Alloy
by Karolina Karolewska, Mateusz Wirwicki and Bogdan Ligaj
Materials 2025, 18(16), 3726; https://doi.org/10.3390/ma18163726 - 8 Aug 2025
Viewed by 653
Abstract
The aim of this study was to evaluate the feasibility of estimating the tensile strength of Ti6Al4V alloy, based on HV measurements. The investigation included samples that were manufactured using both additive technology and conventional methods, under various conditions: as-built, heat-treated, and untested [...] Read more.
The aim of this study was to evaluate the feasibility of estimating the tensile strength of Ti6Al4V alloy, based on HV measurements. The investigation included samples that were manufactured using both additive technology and conventional methods, under various conditions: as-built, heat-treated, and untested mechanically. Static tensile tests and HV measurements were performed to assess the influence of the manufacturing method, heat treatment, and mechanical loading on material performance. The highest tensile strength was recorded for as-built samples, while the greatest ductility was observed in conventionally drawn bar samples. Hardness values generally correlated with tensile strength trends; however, in heat-treated specimens, the relationship between hardness and tensile strength was found to be nonlinear. Specimens that were not subjected to tensile testing exhibited higher HV values than their mechanically tested counterparts, indicating a potential effect of prior deformation on the local material condition. The results confirm that hardness testing can be a useful indirect method for estimating the tensile strength of Ti6Al4V, particularly in materials with controlled and uniform microstructures. For additively manufactured and heat-treated materials, however, the current empirical models may require adjustment or enhancement using advanced predictive approaches. The proposed indirect method offers an alternative to destructive testing, especially in the industrial quality control context for metal AM. Full article
Show Figures

Figure 1

17 pages, 1428 KB  
Article
The Influence of Bitumen Nature and Production Conditions on the Mechanical and Chemical Properties of Asphalt Mixtures Containing Reclaimed Asphalt Pavement
by Emiliano Prosperi, Edoardo Bocci and Giovanni Marchegiani
Materials 2025, 18(15), 3713; https://doi.org/10.3390/ma18153713 - 7 Aug 2025
Viewed by 657
Abstract
Several variables influence the performance of hot asphalt mixtures including reclaimed asphalt pavement (RAP). Among these, the virgin bitumen’s origin, the mix production temperature and the time the mix is kept at a high temperature between mixing and compaction play a fundamental role [...] Read more.
Several variables influence the performance of hot asphalt mixtures including reclaimed asphalt pavement (RAP). Among these, the virgin bitumen’s origin, the mix production temperature and the time the mix is kept at a high temperature between mixing and compaction play a fundamental role but are often neglected. This study aimed to quantify the negative effects associated with the improper choice of these variables. Therefore, their influence on the mechanical (indirect tensile stiffness modulus and strength, Cracking Tolerance Index) and chemical (Fourier Transform Infra-Red spectroscopy) characteristics of asphalt mixtures containing 50% RA were investigated. In particular, two rejuvenators, two types of virgin bitumen (visbreaker and straight-run), two production temperatures (140 °C and 170 °C) and three conditioning times in the oven (30 min, 90 min and 180 min) were analyzed. The results showed interesting findings that allow us to recommend selecting the virgin bitumen type carefully and to avoid excessively stressing the binder during the production of the mix. Full article
Show Figures

Figure 1

Back to TopTop