Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = induced fibroblast-like (iF) cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4661 KB  
Article
The Activity of Human NK Cells Towards 3D Heterotypic Cellular Tumor Model of Breast Cancer
by Anastasia Leonteva, Maria Abdurakhmanova, Maria Bogachek, Tatyana Belovezhets, Anna Yurina, Olga Troitskaya, Sergey Kulemzin, Vladimir Richter, Elena Kuligina and Anna Nushtaeva
Cells 2025, 14(14), 1039; https://doi.org/10.3390/cells14141039 - 8 Jul 2025
Viewed by 1629
Abstract
Due to the complexity of modeling tumor-host interactions within the tumor microenvironment in vitro, we developed a 3D heterotypic cellular breast cancer (BC) model. We generated spheroid models using MCF7, MDA-MB-231, and SK-BR-3 cell lines alongside cancer-associated (BrC4f) and normal (BN120f) fibroblasts in [...] Read more.
Due to the complexity of modeling tumor-host interactions within the tumor microenvironment in vitro, we developed a 3D heterotypic cellular breast cancer (BC) model. We generated spheroid models using MCF7, MDA-MB-231, and SK-BR-3 cell lines alongside cancer-associated (BrC4f) and normal (BN120f) fibroblasts in ultra-low attachment plates. Stromal spheroids (3Df) were formed using a liquid overlay technique (graphical abstract). The YT cell line and peripheral blood NK (PB-NK) cells were used as immune components in our 3D model. In this study, we showed that stromal cells promoted tumor cell aggregation into spheroids, regardless of the initial proliferation rates, with NK cells accumulating in fibroblast-rich regions. The presence of CAFs within the model induced alterations in the expression levels of MICA/B and PD-L1 by tumor cells within the 3D-2 model. The feasibility of utilizing a 3D cell BC model in combination with cytokines and PB-NKs was evaluated. We observed that IL-15 and IL-2 enhanced NK cell activity within spheroids, whereas TGFβ had varying effects on proliferation depending on the cell type. Stimulation with IL-2 and IL-15 or TGFβ1 altered PB-NK markers and stimulated their differentiation into ILC1-like cells in 3D models. These findings underscore the regulatory function of CAFs in shaping the response of the tumor microenvironment to immunotherapeutic interventions. Full article
Show Figures

Graphical abstract

19 pages, 3062 KB  
Article
Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells
by Susana Mendonça Oliveira, Patrícia Dias Carvalho, André Serra-Roma, Patrícia Oliveira, Andreia Ribeiro, Joana Carvalho, Flávia Martins, Ana Luísa Machado, Maria José Oliveira and Sérgia Velho
Cancers 2024, 16(14), 2595; https://doi.org/10.3390/cancers16142595 - 20 Jul 2024
Cited by 1 | Viewed by 3216
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and [...] Read more.
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors. Full article
(This article belongs to the Special Issue RAS Signaling Pathway in Cancer Therapy)
Show Figures

Graphical abstract

18 pages, 10703 KB  
Article
Production, Exacerbating Effect, and EV-Mediated Transcription of Hepatic CCN2 in NASH: Implications for Diagnosis and Therapy of NASH Fibrosis
by Xinlei Li, Ruju Chen, Sherri Kemper and David R. Brigstock
Int. J. Mol. Sci. 2023, 24(16), 12823; https://doi.org/10.3390/ijms241612823 - 15 Aug 2023
Cited by 4 | Viewed by 2588
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic [...] Read more.
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic pathways are under-explored. Cell communication network factor 2 (CCN2) is a well-characterized pro-fibrotic molecule, but its production in and contribution to NASH fibrosis requires further study. Hepatic CCN2 expression was significantly induced in NASH patients with F3–F4 fibrosis and was positively correlated with hepatic Col1A1, Col1A2, Col3A1, or αSMA expression. When wild-type (WT) or transgenic (TG) Swiss mice expressing enhanced green fluorescent protein (EGFP) under the control of the CCN2 promoter were fed up to 7 weeks with control or choline-deficient, amino-acid-defined diet with high (60%) fat (CDAA-HF), the resulting NASH-like hepatic pathology included a profound increase in CCN2 or EGFP immunoreactivity in activated hepatic stellate cells (HSC) and in fibroblasts and smooth muscle cells of the vasculature, with little or no induction of CCN2 in other liver cell types. In the context of CDAA-HF diet-induced NASH, Balb/c TG mice expressing human CCN2 under the control of the albumin promoter exhibited exacerbated deposition of interstitial hepatic collagen and activated HSC compared to WT mice. In vitro, palmitic acid-treated hepatocytes produced extracellular vesicles (EVs) that induced CCN2, Col1A1, and αSMA in HSC. Hepatic CCN2 may aid the assessment of NASH fibrosis severity and, together with pro-fibrogenic EVs, is a therapeutic target for reducing NASH fibrosis. Full article
Show Figures

Figure 1

25 pages, 14711 KB  
Article
Local Concentrations of TGF-β1 and IGF-1 Appear Determinant in Regulating Bone Regeneration in Human Postextraction Tooth Sockets
by Maria B. Asparuhova, Dominic Riedwyl, Ryo Aizawa, Clemens Raabe, Emilio Couso-Queiruga and Vivianne Chappuis
Int. J. Mol. Sci. 2023, 24(9), 8239; https://doi.org/10.3390/ijms24098239 - 4 May 2023
Cited by 16 | Viewed by 3326
Abstract
Healing after tooth extraction involves a series of reparative processes affecting both alveolar bone and soft tissues. The aim of the present study was to investigate whether activation of molecular signals during the healing process confers a regenerative advantage to the extraction socket [...] Read more.
Healing after tooth extraction involves a series of reparative processes affecting both alveolar bone and soft tissues. The aim of the present study was to investigate whether activation of molecular signals during the healing process confers a regenerative advantage to the extraction socket soft tissue (ESsT) at 8 weeks of healing. Compared to subepithelial connective tissue graft (CTG), qRT-PCR analyses revealed a dramatic enrichment of the ESsT in osteogenic differentiation markers. However, ESsT and CTG shared characteristics of nonspecialized soft connective tissue by expressing comparable levels of genes encoding abundant extracellular matrix (ECM) proteins. Genes encoding the transforming growth factor-β1 (TGF-β1) and its receptors were strongly enriched in the CTG, whereas the transcript for the insulin-like growth factor-1 (IGF-1) showed significantly high and comparable expression in both tissues. Mechanical stimulation, by the means of cyclic strain or matrix stiffness applied to primary ESsT cells (ESsT-C) and CTG fibroblasts (CTG-F) extracted from the tissue samples, revealed that stress-induced TGF-β1 not exceeding 2.3 ng/mL, as measured by ELISA, in combination with IGF-1 up to 2.5 ng/mL was able to induce the osteogenic potential of ESsT-Cs. However, stiff matrices (50 kPa), upregulating the TGF-β1 expression up to 6.6 ng/mL, caused downregulation of osteogenic gene expression in the ESsT-Cs. In CTG-Fs, endogenous or stress-induced TGF-β1 ≥ 4.6 ng/mL was likely responsible for the complete lack of osteogenesis. Treatment of ESsT-Cs with TGF-β1 and IGF-1 proved that, at specific concentrations, the two growth factors exhibited either an inductive-synergistic or a suppressive activity, thus determining the osteogenic and mineralization potential of ESsT-Cs. Taken together, our data strongly warrant the clinical exploration of ESsT as a graft in augmentative procedures during dental implant placement surgeries. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine)
Show Figures

Figure 1

22 pages, 44333 KB  
Article
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
by Somrita Padma, Ritwik Patra, Parth Sarthi Sen Gupta, Saroj Kumar Panda, Malay Kumar Rana and Suprabhat Mukherjee
Vaccines 2023, 11(3), 525; https://doi.org/10.3390/vaccines11030525 - 23 Feb 2023
Cited by 36 | Viewed by 5731
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the [...] Read more.
Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein–protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC. Full article
(This article belongs to the Special Issue The 10th Anniversary of Vaccines—Cancer Vaccines and Immunotherapy)
Show Figures

Figure 1

21 pages, 4643 KB  
Article
“Pulsed Hypoxia” Gradually Reprograms Breast Cancer Fibroblasts into Pro-Tumorigenic Cells via Mesenchymal–Epithelial Transition
by Anna Nushtaeva, Mikhail Ermakov, Maria Abdurakhmanova, Olga Troitskaya, Tatyana Belovezhets, Mikhail Varlamov, Tatyana Gayner, Vladimir Richter and Olga Koval
Int. J. Mol. Sci. 2023, 24(3), 2494; https://doi.org/10.3390/ijms24032494 - 27 Jan 2023
Cited by 16 | Viewed by 3584
Abstract
Hypoxia arises in most growing solid tumors and can lead to pleotropic effects that potentially increase tumor aggressiveness and resistance to therapy through regulation of the expression of genes associated with the epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET). The main goal of [...] Read more.
Hypoxia arises in most growing solid tumors and can lead to pleotropic effects that potentially increase tumor aggressiveness and resistance to therapy through regulation of the expression of genes associated with the epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET). The main goal of the current work was to obtain and investigate the intermediate phenotype of tumor cells undergoing the hypoxia-dependent transition from fibroblast to epithelial morphology. Primary breast cancer fibroblasts BrC4f, being cancer-associated fibroblasts, were subjected to one or two rounds of “pulsed hypoxia” (PH). PH induced transformation of fibroblast-shaped cells to semi-epithelial cells. Western blot analysis, fluorescent microscopy and flow cytometry of transformed cells demonstrated the decrease in the mesenchymal markers vimentin and N-cad and an increase in the epithelial marker E-cad. These cells kept mesenchymal markers αSMA and S100A4 and high ALDH activity. Real-time PCR data of the cells after one (BrC4f_Hyp1) and two (BrC4f_Hyp2) rounds of PH showed consistent up-regulation of TWIST1 gene as an early response and ZEB1/2 and SLUG transcriptional activity as a subsequent response. Reversion of BrC4f_Hyp2 cells to normoxia conditions converted them to epithelial-like cells (BrC4e) with decreased expression of EMT genes and up-regulation of MET-related OVOL2 and c-MYC genes. Transplantation of BrC4f and BrC4f_Hyp2 cells into SCID mice showed the acceleration of tumor growth up to 61.6% for BrC4f_Hyp2 cells. To summarize, rounds of PH imitate the MET process of tumorigenesis in which cancer-associated fibroblasts pass through intermediate stages and become more aggressive epithelial-like tumor cells. Full article
(This article belongs to the Special Issue Breast Cancer Mechanistic Insights and Targeted Therapies)
Show Figures

Figure 1

27 pages, 7861 KB  
Article
Selenium Nanoparticles Can Influence the Immune Response Due to Interactions with Antibodies and Modulation of the Physiological State of Granulocytes
by Venera V. Khabatova, Dmitriy A. Serov, Irina V. Tikhonova, Maxim E. Astashev, Egor I. Nagaev, Ruslan M. Sarimov, Tatiana A. Matveyeva, Alexander V. Simakin and Sergey V. Gudkov
Pharmaceutics 2022, 14(12), 2772; https://doi.org/10.3390/pharmaceutics14122772 - 11 Dec 2022
Cited by 12 | Viewed by 3109
Abstract
Currently, selenium nanoparticles (SeNPs) are considered potential immunomodulatory agents and as targets for activity modulation are granulocytes, which have the most abundant population of immune blood cells. The present study aims to evaluate the cytotoxic effect and its effect on the functional responses [...] Read more.
Currently, selenium nanoparticles (SeNPs) are considered potential immunomodulatory agents and as targets for activity modulation are granulocytes, which have the most abundant population of immune blood cells. The present study aims to evaluate the cytotoxic effect and its effect on the functional responses of granulocytes. In addition to the intrinsic activity of SeNPs, we studied the activity of the combination of SeNPs and IgG antibodies. Using laser ablation and fragmentation, we obtained nanoparticles with an average size of 100 nm and a rather narrow size evolution. The resulting nanoparticles do not show acute toxicity to primary cultures of fibroblasts and hepatocytes, epithelial-like cell line L-929 and granulocyte-like culture of HL-60 at a concentration of 109 NPs/mL. SeNPs at a concentration of 1010 NPs/mL reduced the viability of HL-60 cells by no more than 10% and did not affect the viability of the primary culture of mouse granulocytes, and did not have a genotoxic effect on progenitor cells. The addition of SeNPs can affect the production of reactive oxygen species (ROS) by mouse bone marrow granulocytes, modulate the proportion of granulocytes with calcium spikes and enhance fMLF-induced granulocytes degranulation. SeNPs can modulate the effect of IgG on the physiological responses of granulocytes. We studied the expression level of genes associated with inflammation and cell stress. SeNPs increase the expression of catalase, NF-κB, Xrcc5 and some others; antibodies enhance the effect of SeNPs, but IgG without SeNPs decreases the expression level of these genes. This fact can be explained by the interaction between SeNPs and IgG. It has been established that antibodies interact with SeNPs. We showed that antibodies bind to the surface of selenium nanoparticles and are present in aqueous solutions in a bound form from DLS methods, ultraviolet–visible spectroscopy, vibrational–rotational spectrometry, fluorescence spectrometry, and refractometry. At the same time, in a significant part of the antibodies, a partial change in the tertiary and secondary structure is observed. The data obtained will allow a better understanding of the principles of the interaction of immune cells with antibodies and SeNPs and, in the future, may serve to create a new generation of immunomodulators. Full article
(This article belongs to the Special Issue New Properties of Supramolecular Complexes and Drug Nanoparticles)
Show Figures

Figure 1

15 pages, 2575 KB  
Article
Potent Activation of Human but Not Mouse TRPA1 by JT010
by Masaki Matsubara, Yukiko Muraki, Noriyuki Hatano, Hiroka Suzuki and Katsuhiko Muraki
Int. J. Mol. Sci. 2022, 23(22), 14297; https://doi.org/10.3390/ijms232214297 - 18 Nov 2022
Cited by 5 | Viewed by 2991
Abstract
Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1), which is involved in inflammatory pain sensation, is activated by endogenous factors, such as intracellular Zn2+ and hydrogen peroxide, and by irritant chemical compounds. The synthetic compound JT010 potently and selectively activates human TRPA1 [...] Read more.
Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1), which is involved in inflammatory pain sensation, is activated by endogenous factors, such as intracellular Zn2+ and hydrogen peroxide, and by irritant chemical compounds. The synthetic compound JT010 potently and selectively activates human TRPA1 (hTRPA1) among the TRPs. Therefore, JT010 is a useful tool for analyzing TRPA1 functions in biological systems. Here, we show that JT010 is a potent activator of hTRPA1, but not mouse TRPA1 (mTRPA1) in human embryonic kidney (HEK) cells expressing hTRPA1 and mTRPA1. Application of 0.3–100 nM of JT010 to HEK cells with hTRPA1 induced large Ca2+ responses. However, in HEK cells with mTRPA1, the response was small. In contrast, both TRPA1s were effectively activated by allyl isothiocyanate (AITC) at 10–100 μM. Similar selective activation of hTRPA1 by JT010 was observed in electrophysiological experiments. Additionally, JT010 activated TRPA1 in human fibroblast-like synoviocytes with inflammation, but not TRPA1 in mouse dorsal root ganglion cells. As cysteine at 621 (C621) of hTRPA1, a critical cysteine for interaction with JT010, is conserved in mTRPA1, we applied JT010 to HEK cells with mutations in mTRPA1, where the different residue of mTRPA1 with tyrosine at 60 (Y60), with histidine at 1023 (H1023), and with asparagine at 1027 (N1027) were substituted with cysteine in hTRPA1. However, these mutants showed low sensitivity to JT010. In contrast, the mutation of hTRPA1 at position 669 from phenylalanine to methionine (F669M), comprising methionine at 670 in mTRPA1 (M670), significantly reduced the response to JT010. Moreover, the double mutant at S669 and M670 of mTRPA1 to S669E and M670F, respectively, induced slight but substantial sensitivity to 30 and 100 nM JT010. Taken together, our findings demonstrate that JT010 potently and selectively activates hTRPA1 but not mTRPA1. Full article
(This article belongs to the Special Issue Recent Developments in Ion Channel and Ion-Related Signaling)
Show Figures

Graphical abstract

16 pages, 2809 KB  
Article
Sphk1 and Sphk2 Differentially Regulate Erythropoietin Synthesis in Mouse Renal Interstitial Fibroblast-like Cells
by Redona Hafizi, Faik Imeri, Bisera Stepanovska Tanturovska, Roxana Manaila, Stephanie Schwalm, Sandra Trautmann, Roland H. Wenger, Josef Pfeilschifter and Andrea Huwiler
Int. J. Mol. Sci. 2022, 23(11), 5882; https://doi.org/10.3390/ijms23115882 - 24 May 2022
Cited by 8 | Viewed by 3881
Abstract
Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, [...] Read more.
Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1−/−, or Sphk2−/− mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2−/− renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2−/− cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease. Full article
(This article belongs to the Special Issue Role of Sphingolipid Metabolism in Human Diseases)
Show Figures

Figure 1

30 pages, 4529 KB  
Article
Using ELP Repeats as a Scaffold for De Novo Construction of Gadolinium-Binding Domains within Multifunctional Recombinant Proteins for Targeted Delivery of Gadolinium to Tumour Cells
by Natalia V. Pozdniakova, Oxana V. Ryabaya, Alevtina S. Semkina, Vsevolod A. Skribitsky and Alexei B. Shevelev
Int. J. Mol. Sci. 2022, 23(6), 3297; https://doi.org/10.3390/ijms23063297 - 18 Mar 2022
Cited by 6 | Viewed by 3217
Abstract
Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin. [...] Read more.
Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin. They were joined with elastin-like polypeptide (ELP) repeats from human elastin to form the four-centre Gd3+-binding domain (4MBS-domain) that further was combined with F3 peptide (a ligand of nucleolin, a tumour marker) to form the F3-W4 block. The F3-W4 block was taken alone (E2-13W4 protein), as two repeats (E1-W8) and as three repeats (E1-W12). Each protein was supplemented with three copies of the RGD motif (a ligand of integrin αvβ3) and green fluorescent protein (GFP). In contrast to Magnevist (a Gd-containing contrast agent), the proteins exhibited three to four times higher accumulation in U87MG glioma and A375 melanoma cell lines than in normal fibroblasts. The proteins remained for >24 h in tumours induced by Ca755 adenocarcinoma in C57BL/6 mice. They exhibited stability towards blood proteases and only accumulated in the liver and kidney. The technological advantages of using the engineered proteins as a basis for developing efficient and non-toxic agents for early diagnosis of tumours by MRI as well as part of BRT were demonstrated. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 1379 KB  
Article
Attenuative Effects of Platelet-Rich Plasma on 30 kDa Fibronectin Fragment-Induced MMP-13 Expression Associated with TLR2 Signaling in Osteoarthritic Chondrocytes and Synovial Fibroblasts
by Hsien-Tsung Lu, Jeng-Wei Lu, Chian-Her Lee, Yi-Jen Peng, Herng-Sheng Lee, You-Hsiang Chu, Yi-Jung Ho, Feng-Cheng Liu, Pei-Hung Shen and Chih-Chien Wang
J. Clin. Med. 2021, 10(19), 4496; https://doi.org/10.3390/jcm10194496 - 29 Sep 2021
Cited by 9 | Viewed by 2774
Abstract
Proteolytic fragments of fibronectin can have catabolic effects on cartilage, menisci, and synovium. Previous studies have reported that Toll-like receptor (TLR) signaling pathways might be associated with joint inflammation and joint destruction. Platelet-rich plasma (PRP) is increasingly being used to treat a range [...] Read more.
Proteolytic fragments of fibronectin can have catabolic effects on cartilage, menisci, and synovium. Previous studies have reported that Toll-like receptor (TLR) signaling pathways might be associated with joint inflammation and joint destruction. Platelet-rich plasma (PRP) is increasingly being used to treat a range of joint conditions; however, it has yet to be determined whether PRP influences fibronectin fragment (FN-f) procatabolic activity and TLRs. In this study, human primary culture cells were treated with 30 kDa FN-f with/without PRP co-incubation, and then analyzed using real-time PCR to determine gene expression levels in articular chondrocytes, meniscal fibrochondrocytes, and synovial fibroblasts. Protein levels were evaluated by Western immunoblotting. This study observed an increase in the protein expression of matrix metalloproteinases (MMPs), Toll-like receptor 2 (TLR2), nitric oxide synthase 2 (NOS2), prostaglandin-endoperoxide synthase (PTGS2), and cyclooxygenase 2 (COX2) in articular chondrocytes, meniscal fibrochondrocytes, and synovial fibroblasts following insult with 30 kDa FN-f. Upregulation of these genes was significantly attenuated by PRP treatment. TLR2 and matrix metalloproteinase 13 (MMP-13) were also significantly attenuated by cotreatment with 30 kDa FN-f + PRP + TLR2 inhibitor. PRP treatment was shown to attenuate the 30 kDa FN-f-induced MMP-13 expression associated with the decreased expression of TLR2 in osteoarthritic chondrocytes and synovial fibroblasts. PRP treatment was also shown to attenuate procatabolic activity associated with MMP-13 expression via the TLR2 signaling pathway. Full article
Show Figures

Figure 1

23 pages, 6104 KB  
Article
Effect of NIR Laser Therapy by MLS-MiS Source on Fibroblast Activation by Inflammatory Cytokines in Relation to Wound Healing
by Shirley Genah, Francesca Cialdai, Valerio Ciccone, Elettra Sereni, Lucia Morbidelli and Monica Monici
Biomedicines 2021, 9(3), 307; https://doi.org/10.3390/biomedicines9030307 - 16 Mar 2021
Cited by 21 | Viewed by 5119
Abstract
The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. [...] Read more.
The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. To study the cellular and molecular events associated with the anti-inflammatory activity of PBMT by a dual-wavelength NIR laser source, human dermal fibroblasts were exposed to a mix of inflammatory cytokines (IL-1β and TNF-α) followed by laser treatment once a day for three days. Inducible inflammatory key enzymatic pathways, as iNOS and COX-2/mPGES-1/PGE2, were upregulated by the cytokine mix while PBMT reverted their levels and activities. The same behavior was observed with the proangiogenic factor vascular endothelial growth factor (VEGF), involved in neovascularization of granulation tissue. From a molecular point of view, PBMT retained NF-kB cytoplasmatic localization. According to a change in cell morphology, differences in expression and distribution of fundamental cytoskeletal proteins were observed following treatments. Tubulin, F-actin, and α-SMA changed their organization upon cytokine stimulation, while PBMT reestablished the basal localization. Cytoskeletal rearrangements occurring after inflammatory stimuli were correlated with reorganization of membrane α5β1 and fibronectin network as well as with their upregulation, while PBMT induced significant downregulation. Similar changes were observed for collagen I and the gelatinolytic enzyme MMP-1. In conclusion, the present study demonstrates that the proposed NIR laser therapy is effective in controlling fibroblast activation induced by IL-1β and TNF-α, likely responsible for a deleterious effect of persistent inflammation. Full article
(This article belongs to the Special Issue Cellular Mechanisms in Wound Healing)
Show Figures

Figure 1

12 pages, 2439 KB  
Article
Gene Expression in Pancreatic Cancer-Like Cells and Induced Pancreatic Stem Cells Generated by Transient Overexpression of Reprogramming Factors
by Chika Miyagi-Shiohira, Issei Saitoh, Masami Watanabe and Hirofumi Noguchi
J. Clin. Med. 2021, 10(3), 454; https://doi.org/10.3390/jcm10030454 - 25 Jan 2021
Cited by 3 | Viewed by 2922
Abstract
We previously reported that transient overexpression of reprogramming factors can be used to generate induced pluripotent stem (iPS) cells, induced tissue-specific stem (iTS) cells, and fibroblast-like (iF) cells from pancreatic tissue. iF cells have tumorigenic ability and behave similarly to pancreatic cancer cells. [...] Read more.
We previously reported that transient overexpression of reprogramming factors can be used to generate induced pluripotent stem (iPS) cells, induced tissue-specific stem (iTS) cells, and fibroblast-like (iF) cells from pancreatic tissue. iF cells have tumorigenic ability and behave similarly to pancreatic cancer cells. In this study, we analyzed gene expression in iF cells and iTS-P cells (iTS cells from pancreatic tissue) via microarray analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression levels of the Mybl2 and Lyn genes, which are reported to be oncogenes, were significantly higher in iF cells than in iTS-P cells. The expression level of Nestin, which is expressed in not only pancreatic progenitor cells but also pancreatic ductal adenocarcinomas, was also higher in iF cells than in iTS-P cells. Itgb6 and Fgf13, which are involved in the pathogenesis of diseases such as cancer, exhibited higher expression levels in iF cells than in iTS-P cells. Unexpectedly, the expression levels of genes related to epithelial-mesenchymal transition (EMT), except Bmp4, were lower in iF cells than in iTS-P cells. These data suggest that the Mybl2, Lyn, Nestin, Itgb6, and Fgf13 genes could be important biomarkers to distinguish iTS-P cells from iF cells. Full article
(This article belongs to the Special Issue Selected Papers from the JSOPB 2020—Cell and Organ Biology)
Show Figures

Figure 1

18 pages, 4896 KB  
Article
Fluorinated Galactoses Inhibit Galactose-1-Phosphate Uridyltransferase and Metabolically Induce Galactosemia-like Phenotypes in HEK-293 Cells
by Verena Janes, Simona Grabany, Julien Delbrouck, Stephane P. Vincent, Johannes Gottschalk, Lothar Elling and Franz-Georg Hanisch
Cells 2020, 9(3), 607; https://doi.org/10.3390/cells9030607 - 3 Mar 2020
Cited by 9 | Viewed by 5482
Abstract
Genetic defects of human galactose-1-phosphate uridyltransferase (hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor galactose, [...] Read more.
Genetic defects of human galactose-1-phosphate uridyltransferase (hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor galactose, we looked for ways to induce metabolically a galactosemia-like phenotype by hGALT inhibition in HEK293 cells. In kinetic studies, we provide evidence for 2-fluorinated galactose-1-phosphate (F-Gal-1-P) to competitively inhibit recombinant hGALT with a KI of 0.9 mM. Contrasting with hepatic cells, no alterations of N-glycoprofiles in MIG (metabolic induction of galactosemia)-HEK293 cells were revealed for an inducible secretory netrin-1 probe by MALDI-MS. Differential fluorescence-activated cell sorting demonstrated reduced surface expression of N-glycosylated CD109, EGFR, DPP4, and rhMUC1. Membrane raft proteomes exhibited dramatic alterations pointing to an affection of the unfolded protein response, and of targeted protein traffick. Most prominent, a negative regulation of oxidative stress was revealed presumably as a response to a NADPH pool depletion during reduction of Gal/F-Gal. Cellular perturbations induced by fluorinated galactoses in normal epithelial cells resemble proteomic changes revealed for galactosemic fibroblasts. In conclusion, the metabolic induction of galactosemia-like phenotypes in healthy epithelial/neuronal cells could support studies on the molecular pathomechanisms in classic galactosemia, in particular under conditions of low galactose stress and residual GALT activity. Full article
(This article belongs to the Collection Glycosylation and Cell Biology)
Show Figures

Figure 1

14 pages, 4945 KB  
Article
RON Receptor Tyrosine Kinase Regulates Epithelial Mesenchymal Transition and the Expression of Pro-Fibrotic Markers via Src/Smad Signaling in HK-2 and NRK49F Cells
by Jung Sun Park, Hoon-In Choi, Dong-Hyun Kim, Chang Seong Kim, Eun Hui Bae, Seong Kwon Ma and Soo Wan Kim
Int. J. Mol. Sci. 2019, 20(21), 5489; https://doi.org/10.3390/ijms20215489 - 4 Nov 2019
Cited by 17 | Viewed by 4973
Abstract
Receptor tyrosine kinases (RTKs) play important roles in the pathogenic processes of kidney fibrosis. However, the pathophysiological roles of recepteur d’origine nantais (RON), one of the receptor tyrosine kinases, have not yet been defined. We investigated whether the activation or sequence-specific small interfering [...] Read more.
Receptor tyrosine kinases (RTKs) play important roles in the pathogenic processes of kidney fibrosis. However, the pathophysiological roles of recepteur d’origine nantais (RON), one of the receptor tyrosine kinases, have not yet been defined. We investigated whether the activation or sequence-specific small interfering RNA (siRNA) suppression of RON could regulate epithelial mesenchymal transition (EMT) and the expression of pro-fibrotic markers, and its underlying molecular mechanisms. Stable cell lines and transient transfection for RON and the transfected cells of siRNA for RON were developed to investigate the molecular mechanisms in human kidney proximal tubular epithelial (HK-2) and interstitial fibroblasts (NRK49F) cells. RON overexpression induced EMT and increased expression of fibrosis-related proteins such as N-cadherin, vimentin, transforming growth factor-β (TGFβ), αSMA, and fibronectin in HK-2 and NRK49F cells. RON overexpression increased various RTKs and the phosphorylation of Src (Y416) and Smad, while inhibition of RON by siRNA attenuated the expression of EMT- and fibrosis-related proteins and decreased RTKs such as insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor 1 (FGFR1), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR), as well as the phosphorylation of Src and Smad pathways. siRNA silencing of Src also attenuated the expression of IGFR, FGFR1, VEGFR, and PDGFR. Inhibition of RON can exert an anti-fibrotic effect by the inhibition of EMT and other RTKs through control of Src and Smad pathways in HK-2 and NRK49F cells. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2.0)
Show Figures

Figure 1

Back to TopTop