Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = infertile soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3937 KB  
Article
Responses of Soil Microbial Community and Nutrient Cycling Functional Genes in Young Cyclobalanopsis gilva Forests to Infertile Mountainous Areas
by Wei Yang, Shengyi Huang, Yafei Ding, Yukun Lin, Yonghong Xu, Jianzhong Fan, Zhichun Zhou, Zhaogui Yan and Bin Wang
Forests 2025, 16(11), 1656; https://doi.org/10.3390/f16111656 - 30 Oct 2025
Viewed by 233
Abstract
This study explores the effects of afforestation in infertile mountainous areas on soil microbial communities and functional nutrient cycling genes in young Cyclobalanopsis gilva forests, aiming to provide a scientific basis for promoting C. gilva growth. Employing metagenomic sequencing coupled with integrative analyses [...] Read more.
This study explores the effects of afforestation in infertile mountainous areas on soil microbial communities and functional nutrient cycling genes in young Cyclobalanopsis gilva forests, aiming to provide a scientific basis for promoting C. gilva growth. Employing metagenomic sequencing coupled with integrative analyses of microbial community structure and functional genes, this study took 7-year-old C. gilva forest stands in infertile mountainous areas of Shouchang Forest Farm, Zhejiang Province as the research object, using adjacent 7-year-old C. gilva forest in woodland areas as a control, to analyze the differences in soil microbial community structure and nutrient cycling functional genes in the rhizosphere (SCG) and non-rhizosphere (SNR) of infertile mountainous areas, as well as from the rhizosphere (FCG) and non-rhizosphere (FNR) of control woodland areas, and further explore their relationships with the growth of C. gilva. The results indicated that the contents of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and microbial biomass nitrogen (MBN) in SNR were significantly lower than those in FNR by 59.50%, 39.57%, 29.32%, and 53.13%, respectively. Bradyrhizobium and Trebonia were the dominant genera in both site conditions; however, the relative abundance of these genera was lower in infertile mountainous areas compared to the control. Notably, the Shannon and Simpson indices of SCG were significantly lower by 0.49 and 0.01 than those of SNR (p < 0.05), respectively. Additionally, the relative abundances of carbon fixation and nitrogen fixation of SCG were significantly higher than those of SNR. And the relative abundances of functional genes involved in carbon cycling (glyA, fdhA), nitrogen cycling (nasA, narfC, narC, and nirB), and phosphorus cycling (phoB) in infertile mountainous areas were significantly higher than those in the control. The nutrient cycling processes and the expression of functional genes in SCG are coordinately regulated by soil nutrients (SOC and TN) and microbial biomass [MBC (microbial biomass carbon) and MBN]. This work provides a mechanistic foundation for optimizing afforestation strategies and ecological restoration in nutrient-limited mountainous ecosystems, highlighting the critical role of microbial functional plasticity in overcoming edaphic constraints. Full article
(This article belongs to the Special Issue Biogeochemical Cycles in Forests: 2nd Edition)
Show Figures

Figure 1

24 pages, 5971 KB  
Article
Differential Effects of Four Materials on Soil Properties and Phaseolus coccineus L. Growth in Contaminated Farmlands in Alpine Lead–Zinc Mining Areas, Southwest China
by Xiuhua He, Qian Yang, Weixi Meng, Xiaojia He, Yongmei He, Siteng He, Qingsong Chen, Fangdong Zhan, Jianhua He and Hui Bai
Agronomy 2025, 15(11), 2467; https://doi.org/10.3390/agronomy15112467 - 23 Oct 2025
Viewed by 439
Abstract
Soils in alpine mining areas suffer from severe heavy metal contamination and infertility, yet little is known about the effects of different materials on soil improvement in such regions. In this study, a field experiment was conducted in farmlands contaminated by the Lanping [...] Read more.
Soils in alpine mining areas suffer from severe heavy metal contamination and infertility, yet little is known about the effects of different materials on soil improvement in such regions. In this study, a field experiment was conducted in farmlands contaminated by the Lanping lead–zinc mine in Yunnan, China, to compare the effects of four materials (biochar, organic fertilizer, lime, and sepiolite) on soil properties, heavy metal (lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) fractions and their availability, and the growth of Phaseolus coccineus L. Results showed that biochar and organic fertilizer significantly enhanced soil nutrient content and enzyme activities. Lime, biochar, and sepiolite effectively reduced heavy metal bioavailability by promoting their transition to residual fractions. Notably, biochar outperformed other materials by substantially increasing grain yield (by 82%), improving nutritional quality (sugars, protein, and starch contents raised by 20–88%), and reducing heavy metal accumulation in grains (by 36–50%). A comprehensive evaluation based on subordinate function values confirmed biochar as the most effective amendment. Structural equation modeling further revealed that biochar promoted plant growth and grain quality primarily by enhancing soil available nutrients and immobilizing heavy metals. These findings demonstrate the strong potential of biochar for remediating heavy metal-contaminated farmlands in alpine lead–zinc mining regions. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 3000 KB  
Article
Influence of Cushion Plant Androsace tapete on Nitrogen Uptake Strategies of Associated Alpine Plants
by Shuo Xing, Yong-Tao He, Pei-Li Shi and Xing-Liang Xu
Plants 2025, 14(20), 3232; https://doi.org/10.3390/plants14203232 - 21 Oct 2025
Viewed by 511
Abstract
In alpine ecosystems, plant growth is often constrained by multiple environmental factors, especially the infertile soils with lower temperature that decelerate the rate of nutrient turnover, thus leading to a diminished availability of nutrients in the soil, notably nitrogen (N), and its different [...] Read more.
In alpine ecosystems, plant growth is often constrained by multiple environmental factors, especially the infertile soils with lower temperature that decelerate the rate of nutrient turnover, thus leading to a diminished availability of nutrients in the soil, notably nitrogen (N), and its different forms, which is a pivotal factor for limiting plant growth and species coexistence in these alpine areas. Androsace tapete (A. tapete) is an endemic species and the most widely distributed cushion plant on the Qinghai–Tibet Plateau (QTP). Its positive interactions can facilitate other associated plants to deal with severe environmental conditions in the alpine grassland ecosystem. The change in soil nutrient availability is one of the main positive interactions, but little is known about how A. tapete changes soil nutrient availability and affects the N uptake pattern of associated plants. This study investigated the N utilization patterns of three associated plant species —Carex atrofusca (C. atrofusca), Cyananthus incanus (C. incanus), and Potentilla saundersiana (P. saundersiana)— growing inside the cushion area A. tapete (CA) and the ambient grassland without cushion plants (CK), using a 15N labeling method to clarify the effect of A. tapete on the N uptake strategies with NH4+, NO3, and organic N of its associated species. The results showed the following: (1) compared to CK, the soil total C, total N, and available NH4+ contents under the A. tapete showed a significant 47.82%, 40.96%, and 47.33% increase, respectively; (2) A. tapete showed a stronger preference for NH4+ (>80%), whereas the associated species in CK exhibited a more balanced uptake, deriving 39.29–55.59% of N from NO3, 25.72–44.00% from NH4+, and 16.15–18.69% from glycine. (3) The three associated plants possessing A. tapete significantly reduced their uptake of glycine by 9.76%, 12.55%, and 7.15%, respectively, while the absorption of NH4+ by C. atrofusca and C. incanus increased by 18.46% and 36.11%; meanwhile, NO3 uptake decreased by 8.70% in C. atrofusca and 23.55% in C. incanus. These findings indicated that the A. tapete can change the N uptake pattern of the associated plants growing inside the cushion body, such as enhancing the absorption of inorganic N and decreasing the organic N. This adaptive strategy of the associated plants with cushion plant enables them to counteract the N-limited conditions prevalent in alpine environments, and, as a consequence, facilitates their growth and promotes local plant community diversity in the alpine environment. Full article
Show Figures

Figure 1

22 pages, 2425 KB  
Review
Petroleum Hydrocarbon Pollution and Sustainable Uses of Indigene Absorbents for Spill Removal from the Environment—A Review
by Daniel Arghiropol, Tiberiu Rusu, Marioara Moldovan, Gertrud-Alexandra Paltinean, Laura Silaghi-Dumitrescu, Codruta Sarosi and Ioan Petean
Sustainability 2025, 17(17), 8018; https://doi.org/10.3390/su17178018 - 5 Sep 2025
Viewed by 1770
Abstract
Petroleum hydrocarbon pollution is a serious environmental and human health problem. In recent decades, the impact of this substance has been profound and persistent, affecting the balance of aquatic and terrestrial ecosystems and leading to significant physical and psychosocial effects among the population. [...] Read more.
Petroleum hydrocarbon pollution is a serious environmental and human health problem. In recent decades, the impact of this substance has been profound and persistent, affecting the balance of aquatic and terrestrial ecosystems and leading to significant physical and psychosocial effects among the population. Natural sources (crude oil, natural gas, forest fires, and volcanic eruptions) and anthropogenic (road traffic, smoking, pesticide use, oil drilling, underground water leaks, improper oil spills, industrial and mining waste water washing, etc.), the molar weight of the hydrocarbon, and the physicochemical properties are important factors in determining the degree of pollution. The effects of pollution on the environment consist of altering the fundamental structures for sustaining life (infertile lands, climate change, and loss of biodiversity). In terms of human health, diseases of the following systems occur: respiratory (asthma, bronchitis), cardiovascular (stroke, heart attack), pulmonary (infections, cancer), and premature death. To reduce contamination, sustainable intervention must be carried out in the early stages of the pollution-control process. These include physical techniques (isolation, soil vapor extraction, solvent extraction, soil washing), chemical techniques (dispersants–surfactants, chemical oxidation, solidification/stabilization, thermal desorption), biological techniques (bioremediation, phytoremediation), and indigenous absorbents (peat, straw, wood sawdust, natural zeolites, clays, hemp fibers, granular slag, Adabline II OS). Due to the significant environmental consequences, decisions regarding the treatment of contaminated sites should be made by environmental experts, who must consider factors such as treatment costs, environmental protection regulations, resource recovery, and social implications. Public awareness is also crucial, as citizens need to understand the severity of the issue. They must address the sources of pollution to develop sustainable solutions for ecosystem decontamination. By protecting the environment, we are also safeguarding human nature. Full article
Show Figures

Figure 1

12 pages, 3515 KB  
Article
Development and Application of a Composite Water-Retaining Agent for Ecological Restoration in Arid Mining Areas
by Liugen Zhang, Zhanwen Cao, Zhaojun Yang, Yi Zhang and Jia Guo
Polymers 2025, 17(17), 2268; https://doi.org/10.3390/polym17172268 - 22 Aug 2025
Viewed by 728
Abstract
Ecological restoration in arid coal-mining regions faces extreme challenges due to soil infertility, salinization, and water scarcity. This study addresses these limitations in the Santanghu Shitoumei No. 1 open-pit mine (Xinjiang), where gypsum gray-brown desert soil, minimal rainfall (199 mm/yr), high evaporation (1716 [...] Read more.
Ecological restoration in arid coal-mining regions faces extreme challenges due to soil infertility, salinization, and water scarcity. This study addresses these limitations in the Santanghu Shitoumei No. 1 open-pit mine (Xinjiang), where gypsum gray-brown desert soil, minimal rainfall (199 mm/yr), high evaporation (1716 mm/yr), and persistent gale-force winds exacerbate revegetation efforts. To overcome the high cost, short lifespan, and poor practicality of commercial water-retaining agents, we developed a novel humic acid (HA) and sodium carboxymethyl cellulose (CMC) composite water-absorbing resin (HA-CMC). Optimal synthesis parameters—identified as acrylic acid (AA)–carboxymethyl cellulose (CMC)–humic acid (HA)–Acrylamide (AM)–N,N’-methylene diacrylamide (MBA)–Ammonium persulphate (APS) = 100%:15%:4.5%:25%:0.6%:0.8%—yielded effective crosslinking, confirmed via FTIR and SEM. Performance benchmarking against existing agents demonstrated superior attributes. Field application in the mine’s demonstration area significantly enhanced surface vegetation and soil fertility, confirming the resin’s potential for large-scale soil remediation and ecological restoration in arid mining environments. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

43 pages, 1183 KB  
Review
Harnessing Legume Productivity in Tropical Farming Systems by Addressing Challenges Posed by Legume Diseases
by Catherine Hazel Aguilar, David Pires, Cris Cortaga, Reynaldo Peja, Maria Angela Cruz, Joanne Langres, Mark Christian Felipe Redillas, Leny Galvez and Mark Angelo Balendres
Nitrogen 2025, 6(3), 65; https://doi.org/10.3390/nitrogen6030065 - 5 Aug 2025
Viewed by 5116
Abstract
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical [...] Read more.
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical environments pose unique challenges, including high temperatures, erratic rainfall, soil infertility, and a high incidence of pests and diseases. Indeed, legumes are vulnerable to infections caused by bacteria, fungi, oomycetes, viruses, and nematodes. This review highlights the importance of legumes in tropical farming and discusses major diseases affecting productivity and their impact on the economy, environment, and lives of smallholder legume farmers. We emphasize the use of legume genetic resources and breeding, and biotechnology innovations to foster resistance and address the challenges posed by pathogens in legumes. However, an integrated approach that includes other cultivation techniques (e.g., crop rotation, rational fertilization, deep plowing) remains important for the prevention and control of diseases in legume crops. Finally, we highlight the contributions of plant genetic resources to smallholder resilience and food security. Full article
Show Figures

Figure 1

20 pages, 4860 KB  
Article
Effects of Micro-Topography on Soil Nutrients and Plant Diversity of Artificial Shrub Forest in the Mu Us Sandy Land
by Kai Zhao, Long Hai, Fucang Qin, Lei Liu, Guangyu Hong, Zihao Li, Long Li, Yongjie Yue, Xiaoyu Dong, Rong He and Dongming Shi
Plants 2025, 14(14), 2163; https://doi.org/10.3390/plants14142163 - 14 Jul 2025
Cited by 1 | Viewed by 677
Abstract
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and [...] Read more.
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and vegetation degradation, demanding precise vegetation configuration for ecological rehabilitation. This study analyzed soil nutrients, plant diversity, and their correlations under various micro-topographic conditions across different types of artificial shrub plantations in the Mu Us Sandy Land. Employing one-way and two-way ANOVA, we compared the significant differences in soil nutrients and plant diversity indices among different micro-topographic conditions and shrub species. Additionally, redundancy analysis (RDA) was conducted to explore the direct and indirect relationships between micro-topography, shrub species, soil nutrients, and plant diversity. The results show the following: 1. The interdune depressions have the highest plant diversity and optimal soil nutrients, with relatively suitable pH values; the windward slopes and slope tops, due to severe wind erosion, have poor soil nutrients, high pH values, and the lowest plant diversity. Both micro-topography and vegetation can significantly affect soil nutrients and plant diversity (p < 0.05), and vegetation has a greater impact on soil nutrients. 2. The correlation between surface soil nutrients and plant diversity is the strongest, and the correlation weakens with increasing soil depth; under different micro-topographic conditions, the influence of soil nutrients on plant diversity varies. 3. In sandy land ecological restoration, a “vegetation type + terrain matching” strategy should be implemented, combining the characteristics of micro-topography and the ecological functions of shrubs for precise configuration, such as planting Corethrodendron fruticosum on windward slopes and slope tops to rapidly replenish nutrients, promoting Salix psammophila and mixed plantation in interdune depressions and leeward slopes to accumulate organic matter, and prioritizing Amorpha fruticosa in areas requiring soil pH adjustment. This study provides a scientific basis and management insights for the ecological restoration and vegetation configuration of the Mu Us Sandy Land. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

15 pages, 658 KB  
Article
The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions
by Wasan Seemakram, Sabaiporn Nacoon, Jindarat Ekprasert, Piyada Theerakulpisut, Jirawat Sanitchon and Sophon Boonlue
Plants 2025, 14(12), 1839; https://doi.org/10.3390/plants14121839 - 15 Jun 2025
Viewed by 1080
Abstract
Excessive application of a chemical fertilizer during rice cultivation leads to soil infertility and increases production costs. An alternative way to reduce over-fertilization is to partially or fully replace the fertilizer with microbes that promote the growth and production of plants. This study [...] Read more.
Excessive application of a chemical fertilizer during rice cultivation leads to soil infertility and increases production costs. An alternative way to reduce over-fertilization is to partially or fully replace the fertilizer with microbes that promote the growth and production of plants. This study aimed to investigate the Maled Phai rice cultivar (Oryza sativa L.) in a field experiment with two fungi strains. Rhizophagus variabilis KS-02 and Trichoderma zelobreve PBMP16 were selected as inocula and compared with non-R. variabilis KS-02 and non-T. zelobreve PBMP16, acting as controls, one without synthetic fertilizer and one with synthetic NPK fertilizer. The field experiment was conducted in a Randomized Complete Block design with four replications. Growth and yield parameters were determined in the plant tissues and roots, and bioactive compounds were determined in the rice seeds. The results show the presence of T. zelobreve PBMP16 and R. variabilis KS-02 colonization in the plant roots at the harvest stage. A single inoculum of both R. variabilis KS-02 and T. zelobreve PBMP16 significantly increased most of the plant growth performance and yield parameters, as well as the concentrations of bioactive compounds. Remarkably, such effects were more apparent than those observed with the use of a chemical fertilizer. Thus, a single inoculum of R. variabilis KS-02 or T. zelobreve PBMP16 and the co-inoculation of both have the potential to increase the grain yield and bioactive compounds of Maled Phai under field conditions. Full article
Show Figures

Figure 1

15 pages, 842 KB  
Communication
Association Between Soil Patterns and Mortality with Distinct Types of Cancers and CVD Across the USA
by Bingjie Qu, Qiaochu Xu, Linxi Yuan and Ying Chen
Life 2025, 15(6), 832; https://doi.org/10.3390/life15060832 - 22 May 2025
Viewed by 797
Abstract
Mineral elements are essential for human health. Our previous study identified distinct clusters of health-related mineral elements in surface soil among different regions and demonstrated an association between these clusters and health profiles in the USA. The present study further explores the relationship [...] Read more.
Mineral elements are essential for human health. Our previous study identified distinct clusters of health-related mineral elements in surface soil among different regions and demonstrated an association between these clusters and health profiles in the USA. The present study further explores the relationship between these mineral clusters and mortality from detailed specific types of cancers and cardiovascular diseases by using county-level data from 3080 counties across the USA. Utilizing multivariate regression models with adjustment for socio-demographic and geographical factors, our analysis of county-level data revealed that residents in the regions of ‘infertile’ cluster have higher mortality rates for most types of cancers (18/29) and cardiovascular conditions (4/10) compared with people who live elsewhere. Notably, this relationship is pronounced for several specific leading causes of death such as tracheal, bronchus, lung cancer (regression coefficient (99.5% CIs), 6.29 (4.46, 8.13)), prostate cancer (1.06 (0.53, 1.6)), cerebrovascular disease (3.15 (1.74, 4.55)), and hypertensive heart disease (1.23 (0.23, 2.23)). Our findings highlight the critical role of soil minerals in human health and underscore the need for integrating geochemical data in public health strategies and environmental management policies. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

18 pages, 8426 KB  
Article
A C-Terminally Encoded Peptide, MeCEP6, Promotes Nitrate Uptake in Cassava Roots
by Fabao Lu, Xiuning Wang, Bo Liu, Hongxin Lin, Li Ai, Weitao Mai, Xiaochen Liu, Huaifang Zhang, Jinling Zhao, Luqman Khan, Wenquan Wang, Changying Zeng and Xin Chen
Plants 2025, 14(8), 1264; https://doi.org/10.3390/plants14081264 - 21 Apr 2025
Viewed by 744
Abstract
Cassava, an essential food crop, is valued for its tolerance to infertile soils. This study explores the role of C-terminally encoded peptides (CEPs) in cassava, mainly focusing on MeCEP6 and its function in nitrate uptake and plant growth. A comprehensive search on the [...] Read more.
Cassava, an essential food crop, is valued for its tolerance to infertile soils. This study explores the role of C-terminally encoded peptides (CEPs) in cassava, mainly focusing on MeCEP6 and its function in nitrate uptake and plant growth. A comprehensive search on the UniProt website identified 12 CEP genes in cassava, predominantly located on chromosomes 12 and 13. Notably, MeCEP6 demonstrated high expression levels in root tips and exhibited a significant response to low nitrate stress. Exogenous MeCEP6 and its overexpression enhanced NRT2 transporter expression while suppressing auxin-related genes, promoting nitrate uptake and inhibiting seedling growth under nitrogen limitation. This growth inhibition likely represents an adaptive mechanism, enhancing cassava’s survival under nitrogen limitation by optimizing nitrogen allocation and use efficiency, albeit at the cost of reduced growth potential in nitrogen-replete conditions. Moreover, it was identified that MeWRKY65 and MeWRKY70 could interact with the promoter of MeCEP6 to modulate the expression of MeCEP6. The dual-luciferase assays further prove that MeWRKY65 and MeWRKY70 can activate the transcription of MeCEP6 under low nitrate stress conditions. The study’s results help explain the underlying mechanism of MeCEP6 that benefits nitrogen use efficiency and nitrogen deficiency tolerance in cassava. These findings provide a molecular basis for improving cassava yield in nitrogen-deficient soils and highlight MeCEP6 as a potential target for crop improvement. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

23 pages, 1271 KB  
Article
Symbiotic N2 Fixation, Leaf Photosynthesis, and Abiotic Stress Tolerance of Native Rhizobia Isolated from Soybean Nodules at Da, Upper West Region, Ghana
by Mmatladi Tesia Mataboge, Mustapha Mohammed and Felix Dapare Dakora
Microorganisms 2025, 13(4), 876; https://doi.org/10.3390/microorganisms13040876 - 11 Apr 2025
Viewed by 869
Abstract
The soybean is an important source of protein and is gaining popularity in Ghana due to a rising demand for its use in the poultry industry. However, the grain yield of soybeans is relatively low in the Upper West Region due to infertile [...] Read more.
The soybean is an important source of protein and is gaining popularity in Ghana due to a rising demand for its use in the poultry industry. However, the grain yield of soybeans is relatively low in the Upper West Region due to infertile soil and climate change. This study evaluated root nodulation and symbiotic effectiveness in 31 rhizobial isolates obtained from the nodules of soybeans planted at Da in the Upper West Region, Ghana, as well as measured photosynthetic activity of the soybean plants grown under glasshouse conditions. This study further assessed the tolerance of the rhizobial isolates to different levels of temperature, drought, salinity, and pH in the laboratory and also measured the ability of the isolates to produce indole-3-acetic acid. An infrared gas analyser and the 15N and 13C natural abundance techniques were used to assess the photosynthetic activity, N2 fixation, and water-use efficiency, respectively. The results showed that the test isolates that induced greater photosynthetic rates from higher stomatal conductance also stimulated increased water loss via leaf transpiration in soybean plants. Isolates TUTGMGH9 and TUTGMGH19 elicited much higher shoot δ13C in the soybean host plant and induced higher shoot biomass, C accumulation, percent relative symbiotic effectiveness, and N2 fixation relative to Bradyrhizobium strain WB74 and 5 mM of nitrate, which were used as positive controls. Although isolate TUTGMGH9 did not grow at 40 °C, it showed growth at 5% of PEG-6000, NaCl, and a low pH while also producing moderate IAA. However, for better utilisation of these rhizobial isolates as bioinoculants, their growth performance needs to be assessed under field conditions to ascertain their competitiveness and symbiotic efficacy. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

17 pages, 1370 KB  
Article
Response of Typical Shrubs Growth and Soil Nutrients to Graphene Addition in Impoverished Land of the Ulan Buh Desert
by Ren Mu, Jun Qiao, Chuijiu Kong, Xuting Hao, Guangfu Xu, Jingfu Han and Xinle Li
Plants 2024, 13(22), 3214; https://doi.org/10.3390/plants13223214 - 15 Nov 2024
Viewed by 906
Abstract
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research [...] Read more.
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research subjects. Five graphene addition levels were set: 0 mg/L (C0), 25 mg/L (C1), 50 mg/L (C2), 100 mg/L (C3), and 200 mg/L (C4).A pot experiment was conducted in June 2023 to investigate the effects of graphene addition on shrub growth and soil nutrients. The results showed that the optimal graphene addition levels for A. mongolica, X. sorbifolium, and N. tangutorum were C2, C2, and C3, respectively. Compared with the control, the total biomass of the different shrubs increased by 185.31%, 50.86%, and 161.10%, respectively. However, when the graphene addition exceeded the optimal level, shrub biomass showed a decreasing trend with increasing graphene concentration. Total shrub biomass was positively correlated with soil available nitrogen and potassium, while redundancy analysis indicated that soil organic matter was the primary factor influencing shrub growth. This suggests that graphene promotes shrub growth by affecting soil organic matter and available nutrients. Therefore, graphene addition can enhance soil fertility in barren lands in arid regions and significantly promote shrub growth. However, due to soil leaching effects, this growth-promoting effect may decrease over time. Full article
Show Figures

Figure 1

18 pages, 6883 KB  
Article
Treating Tropical Soils with Composted Sewage Sludge Reduces the Mineral Fertilizer Requirements in Sugarcane Production
by Rafael dos Santos Silva, Marcelo Carvalho Minhoto Teixeira Filho, Arshad Jalal, Rodrigo Silva Alves, Nathércia Castro Elias, Raimunda Eliane Nascimento do Nascimento, Cassio Hamilton Abreu-Junior, Arun Dilipkumar Jani, Gian Franco Capra and Thiago Assis Rodrigues Nogueira
Land 2024, 13(11), 1820; https://doi.org/10.3390/land13111820 - 2 Nov 2024
Cited by 1 | Viewed by 2323
Abstract
Conventional mineral fertilization (CMF) is a common practice in infertile sugarcane-cultivated tropical soils, increasing production costs and environmental concerns. Combining CMF with composted sewage sludge (CSS) could be a sustainable strategy. We aim to evaluate changes in soil chemical properties, macro- and micronutrient [...] Read more.
Conventional mineral fertilization (CMF) is a common practice in infertile sugarcane-cultivated tropical soils, increasing production costs and environmental concerns. Combining CMF with composted sewage sludge (CSS) could be a sustainable strategy. We aim to evaluate changes in soil chemical properties, macro- and micronutrient concentrations in the soil surface (Ap1; 0–25 cm) and subsurface (Ap2; 25–50 cm) horizons, after CSS application with or without CMF in sugarcane cultivation (first and second ratoon cane). Eleven treatments, featured by CSS increase rates and mixed with CMF at different concentrations, were tested in the first ratoon; during the second, the CSS residual effect was evaluated. Applying CSS in sugarcane-cultivated soils, improved the following: (i) soil organic matter, pH, the sum of bases, cation-exchange capacity, and base saturation; (ii) overall nutrient concentrations (P, K, Ca, Mg, B, Cu, and Zn). The treatments showing the best performances were those with 5.0 Mg ha−1 of CSS. Composted sewage sludge has the potential for use as an organic natural fertilizer reducing the need for CMF. When applied in infertile tropical soils, additional positive effects can be achieved, such as decreasing production costs and providing socio-economic benefits. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

23 pages, 1106 KB  
Review
Exploring the Exposome Spectrum: Unveiling Endogenous and Exogenous Factors in Non-Communicable Chronic Diseases
by Laura Di Renzo, Paola Gualtieri, Giulia Frank, Rossella Cianci, Mario Caldarelli, Giulia Leggeri, Glauco Raffaelli, Erica Pizzocaro, Michela Cirillo and Antonino De Lorenzo
Diseases 2024, 12(8), 176; https://doi.org/10.3390/diseases12080176 - 2 Aug 2024
Cited by 13 | Viewed by 5266
Abstract
The exposome encompasses all endogenous and exogenous exposure individuals encounter throughout their lives, including biological, chemical, physical, psychological, relational, and socioeconomic factors. It examines the duration and intensity of these types of exposure and their complex interactions over time. This interdisciplinary approach involves [...] Read more.
The exposome encompasses all endogenous and exogenous exposure individuals encounter throughout their lives, including biological, chemical, physical, psychological, relational, and socioeconomic factors. It examines the duration and intensity of these types of exposure and their complex interactions over time. This interdisciplinary approach involves various scientific disciplines, particularly toxicology, to understand the long-term effects of toxic exposure on health. Factors like air pollution, racial background, and socioeconomic status significantly contribute to diseases such as metabolic, cardiovascular, neurodegenerative diseases, infertility, and cancer. Advanced analytical methods measure contaminants in biofluids, food, air, water, and soil, but often overlook the cumulative risk of multiple chemicals. An exposome analysis necessitates sophisticated tools and methodologies to understand health interactions and integrate findings into precision medicine for better disease diagnosis and treatment. Chronic exposure to environmental and biological stimuli can lead to persistent low-grade inflammation, which is a key factor in chronic non-communicable diseases (NCDs), such as obesity, cardiometabolic disorders, cancer, respiratory diseases, autoimmune conditions, and depression. These NCDs are influenced by smoking, unhealthy diets, physical inactivity, and alcohol abuse, all shaped by genetic, environmental, and social factors. Dietary patterns, especially ultra-processed foods, can exacerbate inflammation and alter gut microbiota. This study investigates the exposome’s role in the prevention, development, and progression of NCDs, focusing on endogenous and exogenous factors. Full article
(This article belongs to the Special Issue Microbiota in Human Disease)
Show Figures

Figure 1

21 pages, 5230 KB  
Article
Soil Microbial Community Structure and Carbon Stocks Following Fertilization with Organic Fertilizers and Biological Inputs
by Diana Sivojienė, Aistė Masevičienė, Lina Žičkienė, Almantas Ražukas and Audrius Kačergius
Biology 2024, 13(7), 534; https://doi.org/10.3390/biology13070534 - 17 Jul 2024
Cited by 4 | Viewed by 1989
Abstract
The application of organic fertilizers and biological inputs to soil inevitably affects its quality, agrochemical indicators, and microbiota. Sustainable agriculture is based on continuously learning about how to properly manage available soil, water, and biological resources. The aim of the study was to [...] Read more.
The application of organic fertilizers and biological inputs to soil inevitably affects its quality, agrochemical indicators, and microbiota. Sustainable agriculture is based on continuously learning about how to properly manage available soil, water, and biological resources. The aim of the study was to determine changes in microorganism communities and carbon stocks in infertile soils for fertilization using different organic fertilizers and their combinations with bio-inputs. Genetic analysis of microorganism populations was performed using the NGS approach. Our study showed that the application of organic fertilizers affects the soil microbiota and the taxonomic structure of its communities. Specific groups of bacteria, such as Bacillota, were promoted by organic fertilization, meanwhile the abundance of Pseudomonadota and Ascomycota decreased in most treatments after the application of poultry manure. Metagenomic analysis confirmed that the use of bio-inputs increased the relative abundance of Trichoderma spp. fungi; meanwhile, a significant change was not found in the representatives of Azotobacter compared to the treatments where the bio-inputs were not used. The positive influence of fertilization appeared on all the studied agrochemical indicators. Higher concentrations of Corg and Nmin accumulated in the soil when we used granulated poultry manure, and pHKCl when we used cattle manure. Full article
Show Figures

Figure 1

Back to TopTop