Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,005)

Search Parameters:
Keywords = inorganic elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1548 KB  
Review
Structure, Synthesis and Properties of Antimony Oxychlorides: A Brief Review
by Aigul Shongalova, Ainagul Kemelbekova, Arman Umirzakov, Indira Tashmukhanbetova and Elena Dmitriyeva
Processes 2025, 13(11), 3560; https://doi.org/10.3390/pr13113560 - 5 Nov 2025
Viewed by 178
Abstract
Antimony oxychloride compounds represent a distinct class of inorganic materials that combine structural features characteristic of both oxides and halides. Their compositional flexibility and anisotropic properties make them promising candidates for use in photocatalytic systems, optoelectronic devices, flame-retardant coatings, and energy storage technologies. [...] Read more.
Antimony oxychloride compounds represent a distinct class of inorganic materials that combine structural features characteristic of both oxides and halides. Their compositional flexibility and anisotropic properties make them promising candidates for use in photocatalytic systems, optoelectronic devices, flame-retardant coatings, and energy storage technologies. This review provides an overview of the structural characteristics and synthesis strategies associated with key members of the SbxOyClz family, including SbOCl, Sb4O5Cl2, and Sb8O11Cl2. Emphasis is placed on how synthesis parameters—such as temperature, pH, and precursor composition—govern phase formation, morphology, and resulting properties. Recent advances in composite engineering, controlled doping, and surface modification are discussed as effective routes to overcome limitations such as low conductivity and chemical instability. The broader significance of antimony as a strategic element is also addressed in the context of global resource availability and its role in sustainable technologies. Overall, these materials provide a versatile platform for the design of multifunctional systems tailored to meet future demands in materials science and applied engineering. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Chemical Processes and Systems")
Show Figures

Figure 1

19 pages, 2213 KB  
Article
Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation
by Menny M. Benjamin, Christopher J. Carbon, Heather L. Spalding, Aaron Watson, George S. Hanna and Laura M. Kasman
Aquac. J. 2025, 5(4), 23; https://doi.org/10.3390/aquacj5040023 - 4 Nov 2025
Viewed by 177
Abstract
The lack of an established seaweed aquaculture industry in the Atlantic Southeast reflects the persistent challenges in identifying macroalgal species that can consistently produce year-round under regional environmental conditions. As a result, in this study, locally abundant Charlestonian Ulva spp. were selected as [...] Read more.
The lack of an established seaweed aquaculture industry in the Atlantic Southeast reflects the persistent challenges in identifying macroalgal species that can consistently produce year-round under regional environmental conditions. As a result, in this study, locally abundant Charlestonian Ulva spp. were selected as sustainable algal candidates for a pilot investigation, due to their resilience to abiotic (e.g., seasonal changes in temperature and nutrients) and biotic (e.g., predation and epiphytes) factors, thus allowing for practical land-based aquaculture. Ulva spp. were analyzed for their seasonal biomass and potential bioremediation applications using the existing land-based aquaculture infrastructure of the SCDNR in Charleston, South Carolina. The biomass of tank-cultivated Ulva spp. was monitored on a biweekly basis for 16 months and was found to be highest (31.8 kg) in the spring, increasing by 22% in just two weeks as water temperatures rose. A synthetic nutrient fertilizer was incorporated into aquaculture at the latter stages of this study to observe the effects on algal biomass while simulating an anthropogenic event. Interestingly, inorganic supplementation did not induce growth but was absorbed by the algal tissue, significantly lowering the δ15N to <7‰. Additionally, Vibrio spp. bacteria proliferated following the inorganic nutrient spike, while coliform populations decreased. Biochemical composition analyses comparing tank-cultivated and wild in situ Ulva spp. revealed variations in essential trace element (e.g., potassium: tank—19,530; wild—5520 mg/kg) concentrations, yet shared similar trace metal (e.g., arsenic: tank—4.47; wild—4.52 mg/kg) and pesticide (e.g., DEET: tank—0.048; wild—0.040 mg/kg) concentrations. This is the first reported macroalgal aquaculture research in South Carolina and serves as a pilot study for future research or commercialization in the Lowcountry and the greater southeastern coastal communities of the United States. Full article
Show Figures

Figure 1

32 pages, 4140 KB  
Review
Nanotheranostics in Periodontitis: Bridging Diagnosis and Therapy Through Smart Integrated Nanosystems
by Poornima Ramburrun, Theresa P. K. Varughese and Yahya E. Choonara
J. Nanotheranostics 2025, 6(4), 31; https://doi.org/10.3390/jnt6040031 - 3 Nov 2025
Viewed by 267
Abstract
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the tooth-supporting structures. Conventional therapeutic approaches, including mechanical debridement and systemic antibiotics, often fall short in achieving complete bacterial eradication or tissue regeneration, particularly in deep periodontal pockets. Nanotheranostics—an integrated [...] Read more.
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the tooth-supporting structures. Conventional therapeutic approaches, including mechanical debridement and systemic antibiotics, often fall short in achieving complete bacterial eradication or tissue regeneration, particularly in deep periodontal pockets. Nanotheranostics—an integrated platform combining diagnostics and therapeutics within a single nanosystem—holds promise in advancing periodontal care through targeted delivery, real-time disease monitoring, and site-specific therapy. This narrative review examines the potential of various nanomaterials for building nanotheranostic systems to overcome current clinical limitations, including non-specific drug delivery, insufficient treatment monitoring, and delayed intervention, and their functionalization and responsiveness to the periodontal microenvironment are discussed. Their application in targeted antimicrobial, anti-inflammatory, and regenerative therapy is discussed in terms of real-time monitoring of disease biomarkers and pathogenic organisms. Although nanoparticle-based therapeutics have been extensively studied in periodontitis, the integration of diagnostic elements remains underdeveloped. This review identifies key translational gaps, evaluates emerging dual-function platforms, and discusses challenges related to biocompatibility, scalability, and regulatory approval. In particular, inorganic nanomaterials exhibit potential for theranostic functions such as antimicrobial activity, biofilm disruption, immunomodulation, tissue regeneration, and biosensing of microbial and inflammatory biomarkers. Finally, we propose future directions to advance nanotheranostic research toward clinical translation. By consolidating the current evidence base, this review advocates for the development of smart, responsive nanotheranostic platforms as a foundation for personalized, minimally invasive, and precision-guided periodontal care. Full article
Show Figures

Figure 1

37 pages, 5698 KB  
Article
Design and Optimization of Self-Powered Photodetector Using Lead-Free Halide Perovskite Ba3SbI3: Insights from DFT and SCAPS-1D
by Salah Abdo, Ambali Alade Odebowale, Amer Abdulghani, Khalil As’ham, Yacine Djalab, Nicholas Kanizaj and Andrey E. Miroshnichenko
Nanomaterials 2025, 15(21), 1656; https://doi.org/10.3390/nano15211656 - 30 Oct 2025
Viewed by 551
Abstract
All-inorganic halide perovskites have attracted significant interest in photodetector applications due to their remarkable photoresponse properties. However, the toxicity and instability of lead-based perovskites hinder their commercialization. In this work, we propose cubic Ba3SbI3 as a promising, environmentally friendly, lead-free [...] Read more.
All-inorganic halide perovskites have attracted significant interest in photodetector applications due to their remarkable photoresponse properties. However, the toxicity and instability of lead-based perovskites hinder their commercialization. In this work, we propose cubic Ba3SbI3 as a promising, environmentally friendly, lead-free material for next-generation photodetector applications. Ba3SbI3 shows good light absorption, low effective masses, and favorable elemental abundance and cost, making it a promising candidate compound for device applications. Its structural, mechanical, electronic, and optical properties were systematically investigated using density functional theory (DFT) with the Perdew–Burke–Ernzerhof (PBE) and hybrid HSE06 functionals. The material was found to be dynamically and mechanically stable, with a direct bandgap of 0.78 eV (PBE) and 1.602 eV (HSE06). Photodetector performance was then simulated in an Al/FTO/In2S3/Ba3SbI3/Sb2S3/Ni configuration using SCAPS-1D. To optimize device efficiency, the width, dopant level, and bulk concentration for each layer of the gadgets were systematically modified, while the effects of interface defects, operating temperature, and series and shunt resistances were also evaluated. The optimized device achieved an open-circuit voltage (Voc) of 1.047 V, short-circuit current density (Jsc) of 31.65 mA/cm2, responsivity of 0.605 A W−1, and detectivity of 1.05 × 1017 Jones. In contrast, in the absence of the Sb2S3 layer, the performance was reduced to a Voc of 0.83 V, Jsc of 26.8 mA/cm2, responsivity of 0.51 A W−1, and detectivity of 1.5 × 1015 Jones. These results highlight Ba3SbI3 as a promising platform for high-performance, cost-effective, and environmentally benign photodetectors. Full article
Show Figures

Figure 1

50 pages, 1648 KB  
Review
Progress in the Application of Nanomaterials in Tumor Treatment
by Xingyu He, Lilin Wang, Tongtong Zhang and Tianqi Lu
Biomedicines 2025, 13(11), 2666; https://doi.org/10.3390/biomedicines13112666 - 30 Oct 2025
Viewed by 673
Abstract
Cancer continues to pose a major global health burden, with conventional therapeutic modalities such as surgical resection, chemotherapy, radiotherapy, and immunotherapy often hindered by limited tumor specificity, substantial systemic toxicity, and the emergence of multidrug resistance. The rapid advancement of nanotechnology has introduced [...] Read more.
Cancer continues to pose a major global health burden, with conventional therapeutic modalities such as surgical resection, chemotherapy, radiotherapy, and immunotherapy often hindered by limited tumor specificity, substantial systemic toxicity, and the emergence of multidrug resistance. The rapid advancement of nanotechnology has introduced functionalized nanomaterials as innovative tools in the realm of precision oncology. These nanoplatforms possess desirable physicochemical properties, including tunable particle size, favorable biocompatibility, and programmable surface chemistry, which collectively enable enhanced tumor targeting and reduced off-target effects. This review systematically examines recent developments in the application of nanomaterials for cancer therapy, with a focus on several representative nanocarrier systems. These include lipid-based formulations, synthetic polymeric nanoparticles, inorganic nanostructures composed of metallic or non-metallic elements, and carbon-based nanomaterials. In addition, the article outlines key strategies for functionalization, such as ligand-mediated targeting, stimulus-responsive drug release mechanisms, and biomimetic surface engineering to improve in vivo stability and immune evasion. These multifunctional nanocarriers have demonstrated significant potential across a range of therapeutic applications, including targeted drug delivery, photothermal therapy, photodynamic therapy, and cancer immunotherapy. When integrated into combinatorial treatment regimens, they have exhibited synergistic therapeutic effects, contributing to improved efficacy by overcoming tumor heterogeneity and resistance mechanisms. A growing body of preclinical evidence supports their ability to suppress tumor progression, minimize systemic toxicity, and enhance antitumor immune responses. This review further explores the design principles of multifunctional nanoplatforms and their comprehensive application in combination therapies, highlighting their preclinical efficacy. In addition, it critically examines major challenges impeding the clinical translation of nanomedicine. By identifying these obstacles, the review provides a valuable roadmap to guide future research and development. Overall, this work serves as an important reference for researchers, clinicians, and regulatory bodies aiming to advance the safe, effective, and personalized application of nanotechnology in cancer treatment. Full article
(This article belongs to the Special Issue Application of Biomedical Materials in Cancer Therapy)
Show Figures

Figure 1

11 pages, 3047 KB  
Article
Extractive Electrospray Ionization Mass Spectrometry for Rapid Analysis of Organic and Inorganic Selenium in Honey
by Xinrui Zhang, Yuqi Qiu, Huiyu Xing, Feixiang Yang, Peng Zeng, Hao Fan, Huanwen Chen and Xiaowei Fang
Molecules 2025, 30(21), 4206; https://doi.org/10.3390/molecules30214206 - 28 Oct 2025
Viewed by 276
Abstract
Selenium, a crucial trace element for human health, plays a vital role in maintaining well-being. Its insufficiency can cause various diseases, highlighting the need for adequate selenium intake in daily diets. Honey, containing diverse selenium compounds, serves as a beneficial selenium supplement. By [...] Read more.
Selenium, a crucial trace element for human health, plays a vital role in maintaining well-being. Its insufficiency can cause various diseases, highlighting the need for adequate selenium intake in daily diets. Honey, containing diverse selenium compounds, serves as a beneficial selenium supplement. By leveraging the distinctive physicochemical properties of honey, we employed reactive extractive electrospray ionization mass spectrometry (EESI-MS) to rapidly analyze the presence of both organic selenium (selenomethionine) and inorganic selenium (sodium selenite) in diluted honey samples. We successfully identified selenomethionine (SeMet) and sodium selenite. Calibration curves constructed for SeMet and sodium selenite demonstrated excellent linear relationships within the concentration range of 0.5 to 50 µg/L. The limits of detection (LOD) for SeMet and sodium selenite were determined to be 2.94 µg/kg and 5.18 µg/kg, respectively, while the limits of quantification (LOQ) were 9.52 µg/kg and 17.4 µg/kg, respectively. Furthermore, spiked recoveries ranged from 90.6% to 105%. The average analysis time is 2 min. This study presents a precise, rapid, and convenient method for selenium determination in diluted honey. Given the limited sample size in this preliminary study, future research with larger cohorts is required to validate our findings. Full article
(This article belongs to the Special Issue Recent Advances in Extraction Techniques for Elemental Analysis)
Show Figures

Figure 1

31 pages, 15662 KB  
Review
Prussian Blue Analogues and Their Derivatives for the Oxygen Evolution Reaction: A Review on Active Site Engineering Strategies
by Zhen Cao, Haozhe Shi, Tingting Zhou, Wenhui Yan, Jiahong Song, Pengqi Feng, Kaili Wang and Zaiyong Jiang
Inorganics 2025, 13(11), 354; https://doi.org/10.3390/inorganics13110354 - 28 Oct 2025
Viewed by 722
Abstract
The oxygen evolution reaction (OER) is a kinetic bottleneck in electrochemical water splitting, creating an urgent need for the development of efficient electrocatalysts. Prussian blue analogues (PBAs), a significant class of inorganic coordination polymers, have emerged as excellent precursors and pre-catalysts for preparing [...] Read more.
The oxygen evolution reaction (OER) is a kinetic bottleneck in electrochemical water splitting, creating an urgent need for the development of efficient electrocatalysts. Prussian blue analogues (PBAs), a significant class of inorganic coordination polymers, have emerged as excellent precursors and pre-catalysts for preparing various OER nanocatalysts, owing to their numerous advantages such as tunable composition, controllable morphology, and structural derivability. This review systematically summarizes recent advances in PBA-based OER electrocatalysts, beginning with two core strategies: enhancing active site accessibility and utilization, and improving the intrinsic activity of each active site. We provide an in-depth discussion of the design principles for enhancing active site accessibility and utilization through constructing porous architectures, creating hierarchical porosity, and improving electrical conductivity. The review also details key approaches for improving intrinsic activity, including regulating electronic structure via elemental doping and optimizing active sites via defect engineering, while examining the underlying mechanisms for performance enhancement. Finally, current challenges and future research directions are outlined, offering a perspective on the potential applications of PBA-based catalysts in sustainable energy conversion systems. Full article
Show Figures

Figure 1

26 pages, 18963 KB  
Article
Mineralogical and Geochemical Evolution During Limestone Weathering and Pedogenesis in Shimen, Hunan Province, South China
by Qi Chen, Jianlan Luo, Fengchu Liao, Xuesheng Xu, Aili Li, Liran Chen, Tuo Zhao, Tingmao Long, Suxin Li and Huan Li
Minerals 2025, 15(11), 1109; https://doi.org/10.3390/min15111109 - 25 Oct 2025
Viewed by 401
Abstract
Understanding mineralogical transformations and elemental mobility during limestone weathering is critical for deciphering carbon cycling and critical zone evolution in karst terrains. This study investigates an in situ limestone weathering profile (12.6 m depth) in Shimen, Hunan Province, using integrated mineralogical (XRD, EPMA-EDS), [...] Read more.
Understanding mineralogical transformations and elemental mobility during limestone weathering is critical for deciphering carbon cycling and critical zone evolution in karst terrains. This study investigates an in situ limestone weathering profile (12.6 m depth) in Shimen, Hunan Province, using integrated mineralogical (XRD, EPMA-EDS), elemental (XRF, ICP-MS), and Sr isotopic (MC-ICP-MS) analyses. Results reveal a two-stage pedogenic model: (1) Rapid dissolution of primary calcite (>95 wt% in bedrock to 1.1–48.5 wt% in soil) creates an abrupt bedrock–soil interface via volumetric collapse (>90%), accumulating acid-insoluble residues (quartz-dominated); (2) Subsequent weathering drives illitization of K-feldspar, trace element enrichment (e.g., Ni, Tl, Th τ up to 180) via illite adsorption, and radiogenic 87Sr/86Sr evolution (0.7076 in bedrock to 0.7292 in soil). Depth-dependent increases in chemical index of alteration (CIA: 6.79–79.96) and mass transfer coefficients confirm progressive weathering intensity. The profile acts as a net carbon source (58.5% depletion in soil inorganic carbon), highlighting significant CO2 release during pedogenesis. These findings provide mechanistic insights into subtropical critical zone evolution and element cycling in carbonate-dominated systems. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

9 pages, 1158 KB  
Essay
The Inert Pair Effect: An Analysis Using the Chemdex Database
by Nicholas C. Norman and Mark J. Winter
Chemistry 2025, 7(5), 170; https://doi.org/10.3390/chemistry7050170 - 21 Oct 2025
Viewed by 421
Abstract
The presence of a so-called ‘inert pair effect’ in the chemistry of the 6p elements has been recognised for almost a century. Following a brief historical overview and a summary of the explanations that have been advanced to account for this effect, a [...] Read more.
The presence of a so-called ‘inert pair effect’ in the chemistry of the 6p elements has been recognised for almost a century. Following a brief historical overview and a summary of the explanations that have been advanced to account for this effect, a more quantitative study of its prevalence and importance in the chemistry of these elements is presented based on an analysis of data in the recently published Chemdex database. These data clearly reveal a preponderance of lower valent compounds for the elements thallium, lead and bismuth and demonstrate that the various compound types exhibiting lower or higher valances are in accord with the published explanations. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

18 pages, 2486 KB  
Review
Geochemical Characteristics and Health Risks of Coal Dust: An Integrated Review from Component-Dependent Toxicity to Emerging Oxidative Toxicity Indicators
by Xiujuan Feng and Jing Yang
Minerals 2025, 15(10), 1075; https://doi.org/10.3390/min15101075 - 15 Oct 2025
Viewed by 473
Abstract
Coal mining and consumption, a persistent source of global energy, pose significant occupational health risks. Through a bibliometric analysis of 562 publications (2001–2025), this review delineates the evolution from conventional metrics (mass concentration, free silica content) toward advanced characterization of mineralogical/geochemical heterogeneity and [...] Read more.
Coal mining and consumption, a persistent source of global energy, pose significant occupational health risks. Through a bibliometric analysis of 562 publications (2001–2025), this review delineates the evolution from conventional metrics (mass concentration, free silica content) toward advanced characterization of mineralogical/geochemical heterogeneity and component dependent toxicity mechanisms. Evidence confirms that multiple toxic elements are enriched in the respirable fraction, with bioaccessibility critically governed by particle size, host phase, and chemical speciation. In vitro studies using simulated lungs and gastrointestinal fluids demonstrate that acidic environments significantly accelerate toxic metal dissolution, triggering oxidative stress. While the bioaccessibility of inorganic constituents has been extensively studied, that of complex organic pollutants, particularly polycyclic aromatic hydrocarbons, remains a critical knowledge gap. Oxidative stress is now recognized as a pivotal mechanism linking coal dust exposure to inflammation and genotoxic damage. Emerging abiotic toxicity indicators, such as environmentally persistent free radicals and oxidative potential, offer promising avenues for understanding and risk prediction; however, their analytical methodologies require further standardization and refinement. This review provides a scientific foundation for developing a next-generation risk assessment framework that integrates multi-dimensional coal dust characteristics, bioaccessibility, and oxidative potential, thereby guiding future research to better protect the health of coal miners. Full article
Show Figures

Figure 1

64 pages, 10522 KB  
Review
Spectroscopic and Microscopic Characterization of Inorganic and Polymer Thermoelectric Materials: A Review
by Temesgen Atnafu Yemata, Tessera Alemneh Wubieneh, Yun Zheng, Wee Shong Chin, Messele Kassaw Tadsual and Tadisso Gesessee Beyene
Spectrosc. J. 2025, 3(4), 24; https://doi.org/10.3390/spectroscj3040024 - 14 Oct 2025
Viewed by 694
Abstract
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic [...] Read more.
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic and microscopic techniques used to characterize inorganic and polymer TE materials, specifically poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). For inorganic TE, ultraviolet–visible (UV–Vis) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) are widely applied for electronic structure characterization. For phase analysis of inorganic TE materials, Raman spectroscopy (RS), electron energy loss spectroscopy (EELS), and nuclear magnetic resonance (NMR) spectroscopy are utilized. For analyzing the surface morphology and crystalline structure, chemical scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) are commonly used. For polymer TE materials, ultraviolet−visible–near-infrared (UV−Vis−NIR) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) are generally employed for determining electronic structure. For functional group analysis of polymer TE, attenuated total reflectance–Fourier-transform infrared (ATR−FTIR) spectroscopy and RS are broadly utilized. XPS is used for elemental composition analysis of polymer TE. For the surface morphology of polymer TE, atomic force microscopic (AFM) and SEM are applied. Grazing incidence wide-angle X-ray scattering (GIWAXS) and XRD are employed for analyzing the crystalline structures of polymer TE materials. These techniques elucidate electronic, structural, morphological, and chemical properties, aiding in optimizing TE properties like conductivity, thermal stability, and mechanical strength. This review also suggests future research directions, including in situ methods and machine learning-assisted multi-dimensional spectroscopy to enhance TE performance for applications in electronic devices, energy storage, and solar cells. Full article
(This article belongs to the Special Issue Advances in Spectroscopy Research)
Show Figures

Graphical abstract

20 pages, 5430 KB  
Article
Characterization of Biochar Produced from Greenhouse Vegetable Waste and Its Application in Agricultural Soil Amendment
by Sergio Medina, Ullrich Stahl, Washington Ruiz, Angela N. García and Antonio Marcilla
AgriEngineering 2025, 7(10), 348; https://doi.org/10.3390/agriengineering7100348 - 13 Oct 2025
Viewed by 502
Abstract
The main objective of the current work is to evaluate the effect of adding biochar obtained by pyrolysis of a mixture of greenhouse waste to agricultural soil, measuring its effectiveness as an amendment. A mixture of broccoli, zucchini, and tomato plant residues was [...] Read more.
The main objective of the current work is to evaluate the effect of adding biochar obtained by pyrolysis of a mixture of greenhouse waste to agricultural soil, measuring its effectiveness as an amendment. A mixture of broccoli, zucchini, and tomato plant residues was pyrolyzed in a lab-scale reactor at 450 °C, obtaining a biochar yield of 35.6%. No carrier gas was used in the process. A thorough characterization of the biochar obtained was performed, including elemental and proximal analysis, density, pH, electrical conductivity, cation exchange capacity, surface area, and metal content. Since the raw material had a high percentage of ash (approximately 20%), the resulting biochar contained around 50% inorganic matter, with potassium and calcium being the major metals detected (10–11%). This biochar had a 29% fixed carbon content, a high heating value of 11.5 MJ kg−1, a cation exchange capacity of 477 mmol kg−1, and an electrical conductivity of 16 mS cm−1.The biochar was mixed with greenhouse soil and fertilizer to form a substrate to grow bean seeds, the crop selected for the study. Different experiments were carried out, varying the biochar, fertilizer, and soil percentages. By adding 0.5% biochar to a substrate containing 1% fertilizer, the bean production was increased by 24.5%. It is worth noting that by adding only 0.5% biochar to soil, the bean production reached higher values than when adding 1% fertilizer. Biochar produced from the studied biomass improved the productivity of agricultural soils. The avoidance of selective collection by farmers as well as the non-use of carrier gas in the pyrolysis process made the implementation of the pyrolysis system in situ easier. Consequently, this research has great potential for practical application in modest agricultural areas. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

45 pages, 2530 KB  
Review
Unique Features and Collateral Immune Effects of mRNA-LNP COVID-19 Vaccines: Plausible Mechanisms of Adverse Events and Complications
by János Szebeni
Pharmaceutics 2025, 17(10), 1327; https://doi.org/10.3390/pharmaceutics17101327 - 13 Oct 2025
Viewed by 2099
Abstract
A reassessment of the risk-benefit balance of the two lipid nanoparticle (LNP)-based vaccines, Pfizer’s Comirnaty and Moderna’s Spikevax, is currently underway. While the FDA has approved updated products, their administration is recommended only for individuals aged 65 years or older and for those [...] Read more.
A reassessment of the risk-benefit balance of the two lipid nanoparticle (LNP)-based vaccines, Pfizer’s Comirnaty and Moderna’s Spikevax, is currently underway. While the FDA has approved updated products, their administration is recommended only for individuals aged 65 years or older and for those aged 6 months or older who have at least one underlying medical condition associated with an increased risk of severe COVID-19. Among other factors, this change in guidelines reflect an expanded spectrum and increased incidence of adverse events (AEs) and complications relative to other vaccines. Although severe AEs are relatively rare (occurring in <0.5%) in vaccinated individuals, the sheer scale of global vaccination has resulted in millions of vaccine injuries, rendering post-vaccination syndrome (PVS) both clinically significant and scientifically intriguing. Nevertheless, the cellular and molecular mechanisms of these AEs are poorly understood. To better understand the phenomenon and to identify research needs, this review aims to highlight some theoretically plausible connections between the manifestations of PVS and some unique structural properties of mRNA-LNPs. The latter include (i) ribosomal synthesis of the antigenic spike protein (SP) without natural control over mRNA translation, diversifying antigen processing and presentation; (ii) stabilization of the mRNA by multiple chemical modification, abnormally increasing translation efficiency and frameshift mutation risk; (iii) encoding for SP, a protein with multiple toxic effects; (iv) promotion of innate immune activation and mRNA transfection in off-target tissues by the LNP, leading to systemic inflammation with autoimmune phenomena; (v) short post-reconstitution stability of vaccine nanoparticles contributing to whole-body distribution and mRNA transfection; (vi) immune reactivity and immunogenicity of PEG on the LNP surface increasing the risk of complement activation with LNP disintegration and anaphylaxis; (vii) GC enrichment and double proline modifications stabilize SP mRNA and prefusion SP, respectively; and (viii) contaminations with plasmid DNA and other organic and inorganic elements entailing toxicity with cancer risk. The collateral immune anomalies considered are innate immune activation, T-cell- and antibody-mediated cytotoxicities, dissemination of pseudo virus-like hybrid exosomes, somatic hypermutation, insertion mutagenesis, frameshift mutation, and reverse transcription. Lessons from mRNA-LNP vaccine-associated AEs may guide strategies for the prediction, prevention, and treatment of AEs, while informing the design of safer next-generation mRNA vaccines and therapeutics. Full article
(This article belongs to the Special Issue Development of Nucleic Acid Delivery System)
Show Figures

Graphical abstract

18 pages, 1138 KB  
Review
Determination of Inorganic Elements in Paper Food Packaging Using Conventional Techniques and in Various Matrices Using Microwave Plasma Atomic Emission Spectrometry (MP-AES): A Review
by Maxime Chivaley, Samia Bassim, Vicmary Vargas, Didier Lartigue, Brice Bouyssiere and Florence Pannier
Analytica 2025, 6(4), 41; https://doi.org/10.3390/analytica6040041 - 9 Oct 2025
Viewed by 707
Abstract
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be [...] Read more.
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be a polluting industry and a consumer of a large amount of energy but remains an essential heavy industry globally. Paper production, based largely on the kraft process, is mainly intended for the food packaging sector and, thus, is associated with contamination risks. The lack of standardized regulations and the different analytical techniques used make information on the subject complex, particularly for inorganic elements where little information is available in the literature. Most research in this field is based on sample preparation using mineralization via acid digestion to obtain a liquid and homogeneous matrix, mainly with a HNO3/H2O2 mixture. The most commonly used techniques are Atomic Absorption Spectrometry (AAS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), each with its advantages and disadvantages, which complicates the use of these tech-niques for routine analyses on an industrial site. In the same field of inorganic compound analysis, Microwave Plasma Atomic Emission Spectrometry (MP-AES) has become a real alternative to techniques such as AAS or ICP-AES. This technique has been used in several studies in the food and environmental fields. This publication aims to examine, for the first time, the state of the art regarding the analysis of inorganic elements in food packaging and different matrices using MP-AES. The entire manufacturing process is studied to identify possible sources of inorganic contaminants. Various analytical techniques used in the field are also presented, as well as research conducted with MP-AES to highlight the potential benefits of this technique in the field. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

19 pages, 3619 KB  
Article
Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method
by Zvezditza Nenova, Stephan Kozhukharov, Nedyu Nedev and Toshko Nenov
Sensors 2025, 25(19), 6075; https://doi.org/10.3390/s25196075 - 2 Oct 2025
Viewed by 456
Abstract
Humidity sensing elements based on sodium-doped titanium dioxide (Na-doped TiO2) were prepared using a sol–gel method in the presence of cerium ions and sintered at 400 °C and 800 °C. Titanium (IV) n-butoxide and a saturated solution of diammonium hexanitratocerate in [...] Read more.
Humidity sensing elements based on sodium-doped titanium dioxide (Na-doped TiO2) were prepared using a sol–gel method in the presence of cerium ions and sintered at 400 °C and 800 °C. Titanium (IV) n-butoxide and a saturated solution of diammonium hexanitratocerate in isobutanol served as starting materials. Sodium hydroxide and sodium tert-butoxide were used as inorganic and organometallic sodium sources, respectively. The influence of sodium additives on the properties of the humidity sensing elements was systematically investigated. The surface morphologies of the obtained layers were examined by scanning electron microscopy (SEM). Elemental mapping was conducted by energy-dispersive X-ray (EDX) spectroscopy, and structural characterization was performed using X-ray diffractometry (XRD). Electrical properties were studied for samples sintered at different temperatures over a relative humidity range of 15% to 95% at 20 Hz and 25 °C. Experimental results indicate that sodium doping enhances humidity sensitivity compared to undoped reference samples. Incorporation of sodium additives increases the resistance variation range of the sensing elements, reaching over five orders of magnitude for samples sintered at 400 °C and four orders of magnitude for those sintered at 800 °C. Full article
(This article belongs to the Special Issue Feature Papers in Smart Sensing and Intelligent Sensors 2025)
Show Figures

Figure 1

Back to TopTop