Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (703)

Search Parameters:
Keywords = insect fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5663 KB  
Article
MAPK Pathways Coordinate Stress Adaptation by Mobilizing Specialized Gene Modules in Entomopathogenic Fungus Beauveria bassiana
by Shuaishuai Huang, Hailing Fan, Chenhua Zhu, Meixian Li, Leilei Liu, Mengdi Bai, Yonghong Zhou and Yongjun Zhang
J. Fungi 2025, 11(12), 839; https://doi.org/10.3390/jof11120839 - 27 Nov 2025
Viewed by 99
Abstract
Mitogen-activated protein kinase (MAPK) cascades are critical for fungal development, stress adaptation. and virulence. However, their dynamic and stress-specific regulatory networks in entomopathogenic fungi remain largely unresolved. This study systematically investigates the roles of all three key MAPKs—BbHog1, BbSlt2, and BbMpk1—in insect pathogenic [...] Read more.
Mitogen-activated protein kinase (MAPK) cascades are critical for fungal development, stress adaptation. and virulence. However, their dynamic and stress-specific regulatory networks in entomopathogenic fungi remain largely unresolved. This study systematically investigates the roles of all three key MAPKs—BbHog1, BbSlt2, and BbMpk1—in insect pathogenic fungus Beauveria bassiana. A combination of detailed phenotypic profiling of deletion mutants (ΔBbHog1, ΔBbSlt2, and ΔBbMpk1) and time-course transcriptomics (RNA-seq at 0, 0.5, and 12 h) under osmotic, cell-wall, oxidative, and thermal stress conditions was employed, followed by weighted gene co-expression network analysis (WGCNA). This approach delineated twelve stress-responsive gene modules regulated by those MAPKs that were highly associated with fungal stress adaptation, including membrane repair, redox balance, cell-wall remodeling, and core metabolism. Functional analyses showed that Hog1 orchestrates osmoadaptation through coordinated control of osmolyte metabolism, glycolytic flux, and cell-wall remodeling; Slt2 protects against thermal damage by sustaining membrane integrity, ergosterol homeostasis, and redox balance; and Mpk1 directs oxidative stress responses by tuning mitochondrial activity, metabolic suppression, and detoxification pathways. In summary, this work outlines a concise, systems-level framework of MAPK-mediated stress regulation in B. bassiana, providing mechanistic insight into fungal environmental resilience and identifying molecular targets for the engineering of robust biocontrol strains. Full article
(This article belongs to the Collection Entomopathogenic and Nematophagous Fungi)
Show Figures

Graphical abstract

22 pages, 1477 KB  
Review
Pesticides in the Environment: Benefits, Harms, and Detection Methods
by Francis Xavier D. Verdadero, Alfred Z. Agarap, Czarina Nicole E. Macatingrao, Isagani A. Ordonez, Lady Edlenill J. Tavu, David Pires and Mark Angelo O. Balendres
Sci 2025, 7(4), 171; https://doi.org/10.3390/sci7040171 - 21 Nov 2025
Viewed by 1103
Abstract
Pesticides play a critical role in food production by enhancing crop yields and protecting against pests and pathogens, such as insects, bacteria, fungi, and weeds. However, their extensive use raises significant environmental concerns. The paper reviews and describes the reported adverse effects of [...] Read more.
Pesticides play a critical role in food production by enhancing crop yields and protecting against pests and pathogens, such as insects, bacteria, fungi, and weeds. However, their extensive use raises significant environmental concerns. The paper reviews and describes the reported adverse effects of pesticides on terrestrial and marine life to raise awareness of the ecological impact of pesticide use across life niches. The adverse effects on soil microorganisms, arthropods, reptiles, and amphibians highlight the extensive ecological disruption caused by these chemicals. Understanding the mechanisms of pesticide toxicity and their impact on various organisms is crucial for developing effective bioremediation techniques and on-field management practices. By implementing these strategies and enhancing environmental biomonitoring, countries can mitigate the harmful effects of pesticides, ultimately protecting biodiversity and ensuring the health of their ecosystems. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

16 pages, 1345 KB  
Article
Arbuscular Mycorrhizal Fungi Enhance the Insecticidal Activity of Annona muricata L. Leaves
by Angela Michelle González-López, Evangelina Esmeralda Quiñones-Aguilar, Jhony Navat Enríquez-Vara, José Alejandro Martínez-Ibarra and Gabriel Rincón-Enríquez
Plants 2025, 14(22), 3501; https://doi.org/10.3390/plants14223501 - 17 Nov 2025
Viewed by 341
Abstract
Annona muricata (soursop) produces secondary metabolites with antimicrobial and insecticidal properties. Arbuscular mycorrhizal fungi (AMF) are known to enhance the production of secondary metabolites in medicinal plants. In this study, we aimed to evaluate the insecticidal activity of ethanolic leaf extracts from AMF-colonized [...] Read more.
Annona muricata (soursop) produces secondary metabolites with antimicrobial and insecticidal properties. Arbuscular mycorrhizal fungi (AMF) are known to enhance the production of secondary metabolites in medicinal plants. In this study, we aimed to evaluate the insecticidal activity of ethanolic leaf extracts from AMF-colonized soursop trees against the fall armyworm (Spodoptera frugiperda) and the triatomine bug Triatoma pallidipennis, a vector of Chagas disease. Ethanolic leaf extracts were obtained from trees inoculated with two AMF consortia (Cerro del Metate and Agua Dulce), with the species Rhizophagus intraradices and Funneliformis mosseae, and from non-mycorrhizal plants (SM). Extracts were tested in bioassays specific to each insect, including chemical and negative controls, and survival was analyzed using Kaplan–Meier curves. Extracts from plants colonized by F. mosseae exhibited insecticidal activity against S. frugiperda, causing 72% larval mortality, comparable to that of the commercial insecticide. In contrast, extracts from plants inoculated with the Agua Dulce consortium caused 65% mortality in T. pallidipennis adults. These extracts showed significantly higher annonacin content (µg·g−1 DW). Overall, the results demonstrate that AMF colonization can enhance the synthesis of metabolites such as annonacins and contribute to increased insecticidal activity in A. muricata. Our findings suggest AMF-assisted cultivation has the potential to enhance botanical insecticides. Full article
(This article belongs to the Special Issue Strategies for Sustainable Innovative Crop Pest Management)
Show Figures

Figure 1

19 pages, 364 KB  
Review
Analysis of Panels of Chemical Biomarkers in the Honeybee in Hemolymph and Fat Body in Response to Physiological and Environmental Factors
by Maciej Sylwester Bryś
Metabolites 2025, 15(11), 743; https://doi.org/10.3390/metabo15110743 - 16 Nov 2025
Viewed by 572
Abstract
This review synthesizes current knowledge on chemical biomarker panels in the honeybee in a tissue-specific and factor-oriented framework. We show that these panels undergo predictable shifts under endogenous factors (age, caste) and environmental stressors, including mites, bacteria, fungi, viruses, pesticides, antibiotics, adulterated wax, [...] Read more.
This review synthesizes current knowledge on chemical biomarker panels in the honeybee in a tissue-specific and factor-oriented framework. We show that these panels undergo predictable shifts under endogenous factors (age, caste) and environmental stressors, including mites, bacteria, fungi, viruses, pesticides, antibiotics, adulterated wax, nutritional deficits, and monodiets. These changes are particularly evident in the hemolymph and fat body and are assessed via markers of energy metabolism, enzymatic activities, oxidative stress, and lipid homeostasis. Because insects lack established clinical reference intervals, emphasis is placed on general trends and tissue interrelationships. Moreover, in the honeybee, patterns can at times be inverted relative to vertebrates for example, for enzymatic activities marker, where increased activity may indicate a beneficial effect on the organism. Research in bee ecophysiology is gaining prominence and aligns with contemporary understandings of global challenges. Full article
(This article belongs to the Section Food Metabolomics)
19 pages, 7116 KB  
Article
Endophytic Beauveria spp. Enhance Tomato Growth and Resistance to Botrytis cinerea via Transcriptomic Regulation
by Yuming Chang, Xiao Lin, Jing Sui, Qiyun Li, Yu Zhao, Li Sui and Zhengkun Zhang
J. Fungi 2025, 11(11), 799; https://doi.org/10.3390/jof11110799 - 10 Nov 2025
Viewed by 474
Abstract
Entomopathogenic fungi of the genus Beauveria are recognized for their dual role as insect pathogens and plant endophytes, however the majority of research efforts to date have centered on B. bassiana. To address this bias, we evaluated the endophytic traits of five [...] Read more.
Entomopathogenic fungi of the genus Beauveria are recognized for their dual role as insect pathogens and plant endophytes, however the majority of research efforts to date have centered on B. bassiana. To address this bias, we evaluated the endophytic traits of five Beauveria species (B. bassiana, B. brongniartii, B. aranearum, B. amorpha, and B. velata) in tomato (Solanum lycopersicum). Tomato seedlings were inoculated by root drenching with 1 × 108 conidia/mL suspensions, and colonization, plant growth, and resistance to Botrytis cinerea were assessed. All five species colonized tomato tissues, with colonization rates from 33.3% (B. velata) to 56.7% (B. brongniartii). Growth promotion was species dependent: B. bassiana, B. brongniartii, and B. aranearum significantly increased plant height, while B. brongniartii enhanced aboveground biomass. In pathogen assays, all Beauveria-treated plants showed reduced gray mold incidence and severity, with B. brongniartii conferring complete protection. Transcriptome analysis identified 160 differentially expressed genes commonly regulated, including 17 upregulated genes enriched in defense responses, hormone signaling, and photosynthesis. These findings demonstrate that non-B. bassiana species can establish endophytic associations, promote growth, and induce resistance in tomato, expanding the potential of Beauveria spp. as biocontrol agents in sustainable agriculture. Full article
(This article belongs to the Special Issue Advances in Research on Entomopathogenic Fungi)
Show Figures

Figure 1

18 pages, 866 KB  
Review
Gatekeepers and Gatecrashers of the Symplasm: Cross-Kingdom Effector Manipulation of Plasmodesmata in Plants
by Zhihua Li, Yonghong Wu, Xiaokun Liu and Muhammad Adnan
Plants 2025, 14(21), 3285; https://doi.org/10.3390/plants14213285 - 27 Oct 2025
Viewed by 617
Abstract
Plasmodesmata (PD) are dynamic nanochannels interconnecting plant cells and coordinating development, nutrient distribution, and systemic defense. Their permeability is tightly regulated by callose turnover, PD-localized proteins, lipid microdomains, and endoplasmic reticulum (ER)–plasma membrane (PM) tethers, which together form regulatory nodes that gate symplastic [...] Read more.
Plasmodesmata (PD) are dynamic nanochannels interconnecting plant cells and coordinating development, nutrient distribution, and systemic defense. Their permeability is tightly regulated by callose turnover, PD-localized proteins, lipid microdomains, and endoplasmic reticulum (ER)–plasma membrane (PM) tethers, which together form regulatory nodes that gate symplastic exchange. Increasing evidence demonstrates that effectors from diverse kingdoms—fungi, oomycetes, bacteria, viruses, viroids, phytoplasmas, nematodes, insects, parasitic plants, and symbiotic microbes—converge on these same nodes to modulate PD gating. Pathogens typically suppress callose deposition or destabilize PD regulators to keep channels open, whereas mutualists fine-tune PD conductivity to balance resource exchange with host immunity. This review synthesizes current knowledge of effector strategies that remodel PD architecture or exploit PD for intercellular movement, highlighting novel cross-kingdom commonalities–callose manipulation, reprogramming of PD proteins, lipid rewiring, and co-option of ER-PM tethers. We outline unresolved questions on effector–PD target specificity and dynamics, and identify prospects in imaging, proteomics, and synthetic control of PD. Understanding how effectors reprogram PD connectivity can enable engineering of crops that block pathogenic trafficking while safeguarding beneficial symbioses. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

31 pages, 15354 KB  
Article
Forecasting the Hygrothermal Condition of Partitions in a Thermally Modernized Historical Wooden Building—A Case Study
by Bożena Orlik-Kożdoń, Agnieszka Szymanowska-Gwiżdż and Elżbieta Rdzawska-Augustin
Energies 2025, 18(21), 5621; https://doi.org/10.3390/en18215621 - 26 Oct 2025
Viewed by 480
Abstract
The paper presents select in situ and numerical investigations related to improving the energy efficiency of historic buildings. Using the case study of a historic timber building as an example, the procedure of the in situ investigation of its existing condition is presented. [...] Read more.
The paper presents select in situ and numerical investigations related to improving the energy efficiency of historic buildings. Using the case study of a historic timber building as an example, the procedure of the in situ investigation of its existing condition is presented. This procedure included measuring the moisture of the timber elements, determining the presence of fungi, mold, and wood-destroying insects, infrared camera inspection, and measuring the microclimate of the rooms. According to the conclusions of the building survey report, conservation guidelines were proposed. On the basis of those proposed guidelines, thermal upgrades were suggested, including insulation on the inside of the envelope components. Detailed numerical calculations were provided for the proposed thermal insulation systems. Those included a hygrothermal performance evaluation in the context of the change in the moisture content of timber elements in the insulated envelope components. The risk of mold development on the surface of selected junctions was also estimated. The key outcome of this study is a proprietary procedure for improving the thermal protection quality of envelope components of historic timber buildings. Full article
Show Figures

Figure 1

18 pages, 2202 KB  
Article
The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.)
by Jakub Danielewicz, Joanna Horoszkiewicz, Ewa Jajor, Marek Korbas, Joanna Zamojska, Daria Dworzańska, Paweł Węgorek, Monika Grzanka, Łukasz Sobiech, Robert Idziak, Jan Bocianowski, Kinga Stuper-Szablewska and Maciej Buśko
Agriculture 2025, 15(21), 2214; https://doi.org/10.3390/agriculture15212214 - 24 Oct 2025
Cited by 1 | Viewed by 409
Abstract
The increasing demand for sustainable agricultural practices has led researchers to explore alternative methods for controlling plant diseases and pests. Among these alternatives, essential oils (EOs) derived from various plant species have gained significant attention due to their broad-spectrum antimicrobial properties, which can [...] Read more.
The increasing demand for sustainable agricultural practices has led researchers to explore alternative methods for controlling plant diseases and pests. Among these alternatives, essential oils (EOs) derived from various plant species have gained significant attention due to their broad-spectrum antimicrobial properties, which can be utilized in plant protection. Essential oils are volatile compounds that possess strong aromatic characteristics and are found in many medicinal and aromatic plants. They are known for their antifungal, antibacterial, and insecticidal activities, making them viable candidates for eco-friendly pest and disease management strategies. In this research, six essential oils—pine, patchouli, geranium, spruce, coriander, and eucalyptus oil—have been tested in vitro for controlling mycelium growth of Sclerotinia sclerotiorum, Botrytis cinerea, Alternaria brassicicola, and Cylindrosporium concentricum. The study also covers experiments in controlling pollen beetle and cabbage seed weevil (laboratory trials). In greenhouse conditions, the phytotoxicity of EOs to oilseed rape (Brassica napus L.) and the effect of these substances on the control of cornflower (Centaurea cyanus) were also tested. The results obtained indicate a large diversity of different essential oils in terms of their action on pathogens, pests, weeds, and winter rapeseed. Differences in their effectiveness were also found, depending on the applied dose. Full article
Show Figures

Figure 1

26 pages, 2023 KB  
Review
Role of m6A mRNA Methylation in Plant Defense
by Rakesh Srivastava and Niraj Lodhi
Epigenomes 2025, 9(4), 42; https://doi.org/10.3390/epigenomes9040042 - 15 Oct 2025
Viewed by 961
Abstract
N6-methyladenosine (m6A) is the most abundant and dynamic RNA modification in eukaryotic messenger and non-coding RNAs, playing a pivotal role in the post-transcriptional regulation of gene expression. The coordinated actions of m6A writers, erasers, and readers influence transcript stability, [...] Read more.
N6-methyladenosine (m6A) is the most abundant and dynamic RNA modification in eukaryotic messenger and non-coding RNAs, playing a pivotal role in the post-transcriptional regulation of gene expression. The coordinated actions of m6A writers, erasers, and readers influence transcript stability, immune activation, and pathogen suppression. Growing evidence indicates that m6A fine-tunes the expression of defense-related genes, modulates RNA processing events, and is frequently hijacked by pathogens and pests to promote virulence. Notably, the dual role of m6A in enhancing plant defense and facilitating pathogen adaptation highlights its significance in the host–pathogen arms race. This review emphasizes recent advances in our understanding of m6A-mediated epitranscriptomic regulation in plants, with a focus on its role in responses to biotic stresses, including fungi, bacteria, virus infections, insects, and nematode attacks. This regulatory layer offers novel opportunities for crop protection through targeted manipulation of the epitranscriptomic mechanism. Full article
(This article belongs to the Collection Epigenetic Control in Plants)
Show Figures

Figure 1

18 pages, 346 KB  
Review
Research Progress on Diseases and Pests of Chrysanthemum (2015–2025)
by Yuan Chen, Lihui Han, Tengqing Ye and Chengjian Xie
Int. J. Mol. Sci. 2025, 26(19), 9767; https://doi.org/10.3390/ijms26199767 - 7 Oct 2025
Viewed by 1132
Abstract
Chrysanthemum morifolium Ramat. is a major ornamental crop that suffers from diverse fungal, bacterial, viral, and insect pests, causing significant yield and quality losses. Between 2015 and 2025, rapid progress in molecular biology, genomics, and ecological regulation has advanced both fundamental research and [...] Read more.
Chrysanthemum morifolium Ramat. is a major ornamental crop that suffers from diverse fungal, bacterial, viral, and insect pests, causing significant yield and quality losses. Between 2015 and 2025, rapid progress in molecular biology, genomics, and ecological regulation has advanced both fundamental research and applied control strategies. Multi-locus sequencing, multiplex PCR, and next-generation sequencing refined the identification of fungal and bacterial pathogens, while functional studies of WRKY, MYB, and NAC transcription factors revealed key resistance modules. Hormone-mediated signaling pathways, particularly those of salicylic acid, jasmonic acid, and abscisic acid, were shown to play central roles in host defense. Despite these advances, durable genetic resistance against bacterial pathogens and broad-spectrum defense against viruses remains limited. Novel technologies, including virus-free propagation, RNA interference, and spray-induced gene silencing, have shown promising outcomes. For insect pests, studies clarified the damage and virus-vectoring roles of aphids and thrips, and resistance traits linked to trichomes, terpenoids, and lignin have been identified. Biocontrol agents such as Trichoderma spp., Bacillus spp., predatory mites, and entomopathogenic fungi have also demonstrated efficacy. Future efforts should integrate molecular breeding, genome editing, RNA-based tools, and microbiome management to achieve sustainable chrysanthemum protection. Full article
(This article belongs to the Section Molecular Biology)
24 pages, 3529 KB  
Review
Impacts of Nano- and Microplastic Contamination on Soil Organisms and Soil–Plant Systems
by Davi R. Munhoz and Nicolas Beriot
Microplastics 2025, 4(4), 68; https://doi.org/10.3390/microplastics4040068 - 1 Oct 2025
Viewed by 1621
Abstract
Microplastic (MPL) and nanoplastic (NPL) contamination in soils is widespread, impacting soil invertebrates, microbial communities, and soil–plant systems. Here, we compiled the information from 100 research articles from 2018 onwards to enhance and synthesize the status quo of MPLs’ and NPLs’ impacts on [...] Read more.
Microplastic (MPL) and nanoplastic (NPL) contamination in soils is widespread, impacting soil invertebrates, microbial communities, and soil–plant systems. Here, we compiled the information from 100 research articles from 2018 onwards to enhance and synthesize the status quo of MPLs’ and NPLs’ impacts on such groups. The effects of these pollutants depend on multiple factors, including polymer composition, size, shape, concentration, and aging processes. Research on soil invertebrates has focused on earthworms and some studies on nematodes and collembolans, but studies are still limited to other groups, such as mites, millipedes, and insect larvae. Beyond soil invertebrates, plastics are also altering microbial communities at the soil–plastic interface, fostering the development of specialized microbial assemblages and shifting microbial functions in ways that remain poorly understood. Research has largely centered on bacterial interactions with MPLs, leaving understudied fungi, protists, and other soil microorganisms. Furthermore, MPLs and NPLs also interact with terrestrial plants, and their harmful effects, such as adsorption, uptake, translocation, and pathogen vectors, raise public awareness. Given the complexity of these interactions, well-replicated experiments and community- and ecosystem-level studies employing objective-driven technologies can provide insights into how MPLs and NPLs influence microbial and faunal diversity, functional traits, and soil ecosystem stability. Full article
Show Figures

Figure 1

22 pages, 988 KB  
Article
Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens Essential Oils: Chemotypes and Bioactivity as Antifungal, Antifeeding and Enzyme Inhibitors
by Rui Ferreira, Mariana Martins, Vanessa Santos, Duarte Sardinha, Wilson R. Tavares, Samuel Sabina, Guacimara Espinel, Maria Carmo Barreto, Luísa Oliveira, Raimundo Cabrera and Paula Castilho
Plants 2025, 14(19), 3001; https://doi.org/10.3390/plants14193001 - 28 Sep 2025
Viewed by 550
Abstract
Essential oils (EOs) from the leaves of Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens, representing three chemotypes—thymol-rich, carvacrol-rich, and a mixed thymol–carvacrol type—were chemically characterized and comparatively assessed for their antifungal, insecticidal, and enzyme-inhibitory activities. This integrated approach provides a [...] Read more.
Essential oils (EOs) from the leaves of Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens, representing three chemotypes—thymol-rich, carvacrol-rich, and a mixed thymol–carvacrol type—were chemically characterized and comparatively assessed for their antifungal, insecticidal, and enzyme-inhibitory activities. This integrated approach provides a comparative assessment of all three chemotypes across multiple biological models, including phytopathogenic fungi, insect bioassays, and key enzyme targets. All EOs displayed antifungal activity for the tested phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, and Fusarium oxysporum) at concentrations above 0.5 mg/mL, with the thymol-rich chemotype showing the highest activity. The minimum inhibition concentration for Oidium farinosum conidial growth was determined and found to be similar for thymol and carvacrol chemotypes and lower for the terpene mixture. Insect control activity was evaluated by an antifeeding assay, where carvacrol and especially thymol chemotypes can be classified as feeding deterrents. EOs and standards revealed a weak toxicity against Ceratitis capitata, with less than 20% mortality at a concentration of 50 mg/mL, and both chemotypes were found to be ineffective in preventing egg deposition. The acetylcholinesterase (AChE) inhibition assay revealed that carvacrol had the greatest inhibitory effect on AChE, followed by EOs, and, finally, thymol. Regarding the α- and β-glucosidase (α- and β-GLU) inhibitory assays, thymol had the strongest inhibitory effect on α-GLU, while plant β-GLU was not inhibited by the standards or OEs. Full article
Show Figures

Figure 1

10 pages, 1539 KB  
Communication
Evaluation of the Pathogenicity of Metarhizium taii and Trichoderma afroharzianum on Immature Stages of Bemisia tabaci in Tomato Plants
by Ricardo A. Varela-Pardo, Gustavo Curaqueo, Alejandra Fuentes-Quiroz, Paola Díaz-Navarrete, Claudia López-Lastra, Cecilia Mónaco and Eduardo Wright
Crops 2025, 5(5), 66; https://doi.org/10.3390/crops5050066 - 26 Sep 2025
Viewed by 514
Abstract
The whitefly (Bemisia tabaci) (Hemiptera: Aleyrodidae) is a small phytophagous invertebrate of herbaceous plants, shrubs, trees, wild plants, and crops of economic importance. It generates substantial economic losses due to direct damage caused by sap sucking and virus transmission. This work [...] Read more.
The whitefly (Bemisia tabaci) (Hemiptera: Aleyrodidae) is a small phytophagous invertebrate of herbaceous plants, shrubs, trees, wild plants, and crops of economic importance. It generates substantial economic losses due to direct damage caused by sap sucking and virus transmission. This work presents referential images of the morphology of B. tabaci and one of its main biological controllers in southern South America, thus serving as a reference for other researchers. In addition, results are presented of studies carried out to evaluate the pathogenicity of two fungal isolates (previously selected in vitro against Sclerotinia sclerotiorum and Botrytis cinerea and plant growth promoters) identified as Metarhizium taii CEP-722 and Trichoderma afroharzianum CEP-754 in immature stages of B. tabaci in tomato plants (Solanum lycopersicum). The trials were conducted under controlled conditions in controlled chambers, ensuring optimal growth conditions for B. tabaci, after morphological prospection, collection, identification, and mass rearing of adults in entomological cages. The results indicate that M. taii CEP-722 caused approximately 30% mortality in the immature stages of B. tabaci, while T. afroharzianum CEP-754 did not increase mortality under the experimental conditions. This study provides new knowledge on the potential of M. taii as a biological control agent against B. tabaci, offering a promising alternative in integrated pest management strategies. The results with T. afroharzianum suggest that further methodologies or combinations should be explored to improve its efficacy. Full article
Show Figures

Figure 1

22 pages, 7678 KB  
Article
Unveiling a Disease Complex Threatening Fig (Ficus carica L.) Cultivation in Southern Italy
by Wassim Habib, Mariangela Carlucci, Vincenzo Cavalieri, Cecilia Carbotti and Franco Nigro
Plants 2025, 14(18), 2865; https://doi.org/10.3390/plants14182865 - 15 Sep 2025
Viewed by 922
Abstract
Fig (Ficus carica) orchards in the Salento peninsula (southeastern Apulia region, Italy) are increasingly affected by decline syndromes whose etiology remains poorly resolved. In this paper, we provide a first characterization of a complex disease outbreak, integrating field surveys, fungal isolation, [...] Read more.
Fig (Ficus carica) orchards in the Salento peninsula (southeastern Apulia region, Italy) are increasingly affected by decline syndromes whose etiology remains poorly resolved. In this paper, we provide a first characterization of a complex disease outbreak, integrating field surveys, fungal isolation, molecular phylogenetics, and pathogenicity assays. Symptomatic trees displayed chlorosis, defoliation, cankers, vascular discoloration, and wilting, frequently associated with bark beetle galleries. Mycological analyses revealed a diverse assemblage of fungi, dominated by Botryosphaeriaceae (including Neofusicoccum algeriense, and Lasiodiplodia theobromae), the Fusarium solani species complex (notably Neocosmospora perseae), and Ceratocystis ficicola. While C. ficicola was isolated with lower frequency, its recovery from adult beetles—including Cryphalus dilutus—supports a role in insect-mediated dissemination in addition to soilborne infection. Pathogenicity tests demonstrated that N. algeriense and N. perseae, together with C. ficicola, caused severe vascular lesions and wilting, confirming their contribution to fig decline. By contrast, other Fusarioid strains showed no pathogenicity, consistent with their role as latent or stress-associated pathogens. This study provides the first evidence that N. algeriense and N. perseae act as pathogenic agents on fig, highlights their interaction with C. ficicola within a multifactorial decline syndrome, and identifies dual epidemiological pathways involving both soil/root infection and insect-facilitated dissemination via beetles such as C. dilutus. These findings redefine fig decline in the Salento peninsula (southern Italy) as a multifactorial disease rather than a single-pathogen outbreak, with significant implications for diagnosis, epidemiology, and integrated management strategies. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

35 pages, 4198 KB  
Article
Tenebrio molitor Meal-Induced Changes in Rat Gut Microbiota: Microbiological and Metagenomic Findings
by Remigiusz Gałęcki, Adriana Nowak and Justyna Szulc
Int. J. Mol. Sci. 2025, 26(17), 8663; https://doi.org/10.3390/ijms26178663 - 5 Sep 2025
Viewed by 1449
Abstract
As demand for sustainable protein sources grows, edible insects like Tenebrio molitor (yellow mealworm) are gaining attention as functional feed ingredients. This study investigated how dietary inclusion of T. molitor meal affects gut microbiota composition and diversity in laboratory rats. Wistar rats were [...] Read more.
As demand for sustainable protein sources grows, edible insects like Tenebrio molitor (yellow mealworm) are gaining attention as functional feed ingredients. This study investigated how dietary inclusion of T. molitor meal affects gut microbiota composition and diversity in laboratory rats. Wistar rats were divided into three diet groups: standard feed, 35% chicken meal, and 35% T. molitor meal. Fecal samples were collected at weeks 4, 6, and 8. Microbial populations were assessed using culture-based methods, and community structure was analyzed at week 9 via Illumina MiSeq 16S rRNA sequencing. Bioinformatic analyses evaluated microbial diversity and predicted functions. Rats fed T. molitor meal showed significantly reduced counts of total aerobic/anaerobic bacteria, fungi, and coagulase-positive staphylococci. Metagenomics revealed a Firmicutes-dominated microbiota, with enrichment of protein- and cholesterol-metabolizing taxa (e.g., Eubacterium coprostanoligenes, Oscillospiraceae, Ruminococcaceae), and a decline in fiber- and mucin-degrading bacteria like Akkermansia and Muribaculaceae. Functional predictions indicated upregulated amino acid metabolism and chitin degradation. Despite compositional shifts, microbial diversity remained stable, with no signs of dysbiosis. These findings suggest that T. molitor meal supports a safe, functional adaptation of gut microbiota to high-protein, chitin-rich diets, supporting its potential use in monogastric animal nutrition. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop