Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = intercellular mitochondria trafficking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1299 KB  
Review
Mechanisms of Mitochondrial Transfer Through TNTs: From Organelle Dynamics to Cellular Crosstalk
by Margherita Zamberlan and Martina Semenzato
Int. J. Mol. Sci. 2025, 26(21), 10581; https://doi.org/10.3390/ijms262110581 - 30 Oct 2025
Viewed by 479
Abstract
Tunneling nanotubes (TNTs) are dynamic, actin-based intercellular structures that facilitate the transfer of organelles, including mitochondria, between cells. Unlike other protrusive structures such as filopodia and cytonemes, TNTs exhibit structural heterogeneity and functional versatility, enabling both short- and long-range cargo transport. This review [...] Read more.
Tunneling nanotubes (TNTs) are dynamic, actin-based intercellular structures that facilitate the transfer of organelles, including mitochondria, between cells. Unlike other protrusive structures such as filopodia and cytonemes, TNTs exhibit structural heterogeneity and functional versatility, enabling both short- and long-range cargo transport. This review explores the mechanisms underlying mitochondrial transfer via TNTs, with a particular focus on cytoskeletal dynamics and the role of key regulatory proteins such as Miro1, GFAP, MICAL2PV, CD38, Connexin 43, M-Sec, thymosin β4, and Talin 2. Miro1 emerges as a central mediator of mitochondrial trafficking, linking organelle motility to cellular stress responses and tissue repair. We delve into the translational implications of TNTs-mediated mitochondrial exchange in regenerative medicine and oncology, highlighting its potential to restore bioenergetics, mitigate oxidative stress, and reprogram cellular states. Despite growing interest, critical gaps remain in understanding the molecular determinants of TNT formation, the quality and fate of transferred mitochondria, and the optimal sources for mitochondrial isolation. Addressing these questions will be essential for harnessing TNTs and mitochondrial transplantation as therapeutic tools. Full article
(This article belongs to the Special Issue The Impact of Mitochondria on Human Disease and Health)
Show Figures

Graphical abstract

23 pages, 2914 KB  
Review
Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer
by Daniela Valenti, Rosa Anna Vacca, Loredana Moro and Anna Atlante
Int. J. Mol. Sci. 2021, 22(15), 8312; https://doi.org/10.3390/ijms22158312 - 2 Aug 2021
Cited by 83 | Viewed by 9418
Abstract
Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, [...] Read more.
Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders. Far more recently, mitochondria attracted renewed attention from the scientific community for their ability of intercellular translocation that can involve whole mitochondria, mitochondrial genome or other mitochondrial components. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy. In this review, we will provide an overview of the state of the art of the up-to-date knowledge on intercellular trafficking of mitochondria by discussing its biological relevance, mode and mechanisms underlying the process and its involvement in different pathophysiological contexts, highlighting its therapeutic potential for diseases with mitochondrial dysfunction primarily involved in their pathogenesis. Full article
Show Figures

Figure 1

Back to TopTop