Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (619)

Search Parameters:
Keywords = interior space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3357 KB  
Article
Multi-Physics LCA-Based Design Optimization of an Interior Permanent Magnet Motor for EVs
by Farshid Mahmouditabar, Ehsan Farmahini Farahani, Volker Pickert and Mehmet C. Kulan
Energies 2025, 18(23), 6167; https://doi.org/10.3390/en18236167 - 25 Nov 2025
Viewed by 112
Abstract
This paper presents a multiphysics, Life Cycle Assessment (LCA)-based design optimization framework for an interior permanent-magnet traction motor tailored to electric-vehicle duty. The workflow couples driving cycle realism, electromagnetic–thermal analysis, and life cycle assessment within a unified, computationally efficient process. Representative operating points [...] Read more.
This paper presents a multiphysics, Life Cycle Assessment (LCA)-based design optimization framework for an interior permanent-magnet traction motor tailored to electric-vehicle duty. The workflow couples driving cycle realism, electromagnetic–thermal analysis, and life cycle assessment within a unified, computationally efficient process. Representative operating points are extracted from WMTC and ECE cycles using clustering, after which a multi-level Taguchi refinement searches the design space from coarse to fine. A weighted composite objective balances machine cost and life cycle cumulative emissions under hard constraints on torque capability and hotspot temperature. The optimized design satisfies performance and thermal limits while simultaneously reducing both cost and life cycle burden, as confirmed through phase-wise assessment of raw material, use-phase, and end-of-life contributions. Iterative improvements are accompanied by rising signal-to-noise ratios and reduced parameter-level spread, indicating greater robustness to operating variability. Overall, the study demonstrates that an LCA-driven, multiphysics-constrained optimization can deliver sustainable, high-performance IPM designs that are aligned with realistic vehicle operating conditions and readily adaptable to alternative motor and drive architectures. Full article
Show Figures

Figure 1

15 pages, 12671 KB  
Article
Rock Cutting and Crack Propagation of Jointed Rock Mass Within Rough Fractures Based on Point-Splitting Process
by Guoye Jing, Hao Huang, Peitao Wang and Meifeng Cai
Appl. Sci. 2025, 15(22), 12312; https://doi.org/10.3390/app152212312 - 20 Nov 2025
Viewed by 198
Abstract
The rock is the direct object of disc cutter rock-breaking engineering. It contains natural joint surface. To investigate the influence of joint-surface roughness on the rock-breaking process. The hob model is created using AutoCAD software. The single- and twin-hob rock-breaking processes in intact [...] Read more.
The rock is the direct object of disc cutter rock-breaking engineering. It contains natural joint surface. To investigate the influence of joint-surface roughness on the rock-breaking process. The hob model is created using AutoCAD software. The single- and twin-hob rock-breaking processes in intact rocks are simulated with PFC (Particle Flow Code) software. Furthermore, a rough joint network model is established based on MATLAB platform. The influence of joint-surface roughness on failure mode, crack propagation, and rock-breaking load is examined. The results reveal that cutter spacing in intact rock markedly governs the trends of rock-breaking load and crack count. The damage zone extends from the disc cutter–rock contact surface into the specimen interior. The rock-breaking process is mainly dominated by shear cracks. Fracturing of the rock mass occurs along the structural plane, and the force chain and crack propagation mainly distribute through tensile cracks. The initial structural plane of failure gradually penetrates the rock mass surface, resulting in the failure zone development. While considering joint roughness, the RDFN (Rough Discrete Fractures Network) model exhibits higher disc cutter contact force than the DFN (Discrete Fracture Network) model. Throughout the rock-breaking period, both RDFN and DFN models intersect in the number of cracks, but the difference between the two models remains significant. The contact force of the cutter in the RDFN and DFN models differs from that in whole rock. These findings offer a useful reference for elucidating the hob-breaking mechanism in jointed rock masses. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 10117 KB  
Article
Screen Façade Pattern Design Driven by Generative Adversarial Networks and Machine Learning Classification for the Evaluation of a Daylight Environment
by Hyunjae Nam and Dong Yoon Park
Buildings 2025, 15(22), 4056; https://doi.org/10.3390/buildings15224056 - 11 Nov 2025
Viewed by 598
Abstract
This research seeks to identify optimised screen façade patterns and ratios for the effective management of daylight ingress and glare effects. It employs generative adversarial networks (GANs) to generate pattern variations and further evaluates the resultant variations through daylight simulations for application in [...] Read more.
This research seeks to identify optimised screen façade patterns and ratios for the effective management of daylight ingress and glare effects. It employs generative adversarial networks (GANs) to generate pattern variations and further evaluates the resultant variations through daylight simulations for application in screen façades. The generated pattern data were classified by hierarchical clustering to distinguish distinct feature groups, and they were subsequently utilised as façade configurations. The pattern data were assessed through daylight performance metrics: spatial daylight autonomy (sDA), annual sunlight exposure (ASE), and daylight glare probability (DGP). The results of the annual-based simulations indicate that façade patterns with frame ratios in the range of 50–65% are useful in reducing the areas exposed to intensive glare on the façade side while maintaining the minimum required lighting conditions. The overall influence of screen façades on interior daylighting in a large space (e.g., 10 m × 10 m) was found to be limited. Their performance is notable in reducing glare discomfort areas within approximately 2.5 m of south-facing façades. This study supports an application strategy in which screen façades are used to manage the extent of areas exposed to daylight ingress within an interior space. Full article
(This article belongs to the Special Issue Artificial Intelligence in Architecture and Interior Design)
Show Figures

Figure 1

29 pages, 5276 KB  
Article
Smartphone-Based Virtual Reality in Residential Architecture: Enhancing Spatial Understanding Through Immersive BIM + VR Visualization
by Rafał Stabryła and Magdalena Grudzińska
Sustainability 2025, 17(22), 9959; https://doi.org/10.3390/su17229959 - 7 Nov 2025
Viewed by 624
Abstract
The integration of smartphone-powered Virtual Reality (VR) into architectural practice is transforming how unbuilt spaces are perceived. The presented study is based on ten single-family house projects in which immersive visualization was introduced through mobile VR headsets connected to Building Information Modeling (BIM). [...] Read more.
The integration of smartphone-powered Virtual Reality (VR) into architectural practice is transforming how unbuilt spaces are perceived. The presented study is based on ten single-family house projects in which immersive visualization was introduced through mobile VR headsets connected to Building Information Modeling (BIM). It should be treated as a pilot study, preceding further comprehensive research on the subject. A total of 23 participants (investors and future users of the buildings at the same time) were actively involved in the design process supported by VR technology. Field of view adjustment was implemented within the BIM + VR model to align the virtual perception with the natural human visual range, improving the realism of the experience. Preliminary findings indicated that VR walkthroughs enhanced the future users’ understanding of spatial arrangements and supported informed decision-making. Over 80% of participants reported that it helped them better assess room sizes, placement of windows and doors, and furniture layout. This improved communication between investors and designers, and reduced the number of revisions required at further design stages. The use of VR to merge architecture with interior design enabled a human-scale perspective, cost optimization, and the exploitation of BIM + VR visualization potential for sustainable residential design. Full article
Show Figures

Figure 1

31 pages, 635 KB  
Article
Joint Feeder Routing and Conductor Sizing in Rural Unbalanced Three-Phase Distribution Networks: An Exact Optimization Approach
by Brandon Cortés-Caicedo, Oscar Danilo Montoya, Luis Fernando Grisales-Noreña, Santiago Bustamante-Mesa and Carlos Andrés Torres-Pinzón
Sci 2025, 7(4), 165; https://doi.org/10.3390/sci7040165 - 7 Nov 2025
Viewed by 308
Abstract
This paper addresses the simultaneous feeder routing and conductor sizing problem in unbalanced three-phase distribution systems, formulated as a nonconvex mixed-integer nonlinear program (MINLP) that minimizes the equivalent annualized expansion cost—combining investment and loss costs—under voltage, ampacity, and radiality constraints. The model captures [...] Read more.
This paper addresses the simultaneous feeder routing and conductor sizing problem in unbalanced three-phase distribution systems, formulated as a nonconvex mixed-integer nonlinear program (MINLP) that minimizes the equivalent annualized expansion cost—combining investment and loss costs—under voltage, ampacity, and radiality constraints. The model captures nonconvex voltage–current–power couplings, Δ/Y load asymmetries, and discrete conductor selections, creating a large combinatorial design space that challenges heuristic methods. An exact MINLP formulation in complex variables is implemented in Julia/JuMP and solved with the Basic Open-source Nonlinear Mixed Integer programming (BONMIN) solver, which integrates branch-and-bound for discrete variables and interior-point methods for nonlinear subproblems. The main contributions are: (i) a rigorous, reproducible formulation that jointly optimizes routing and conductor sizing; (ii) a transparent, replicable implementation; and (iii) a benchmark against minimum spanning tree (MST)-based and metaheuristic approaches, clarifying the trade-off between computational time and global optimality. Tests on 10- and 30-node rural feeders show that, although metaheuristics converge faster, they often yield suboptimal solutions. The proposed MINLP achieves globally optimal, technically feasible results, reducing annualized cost by 14.6% versus MST and 2.1% versus metaheuristics in the 10-node system, and by 17.2% and 2.5%, respectively, in the 30-node system. These results highlight the advantages of exact optimization for rural network planning, providing reproducible and verifiable decisions in investment-intensive scenarios. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

25 pages, 415 KB  
Article
Compactness of the Complex Green Operator on C1 Pseudoconvex Boundaries in Stein Manifolds
by Abdullah Alahmari, Emad Solouma, Marin Marin, A. F. Aljohani and Sayed Saber
Mathematics 2025, 13(21), 3567; https://doi.org/10.3390/math13213567 - 6 Nov 2025
Viewed by 242
Abstract
We study compactness for the complex Green operator Gq associated with the Kohn Laplacian b on boundaries of pseudoconvex domains in Stein manifolds. Let ΩX be a bounded pseudoconvex domain in a Stein manifold X of complex dimension n [...] Read more.
We study compactness for the complex Green operator Gq associated with the Kohn Laplacian b on boundaries of pseudoconvex domains in Stein manifolds. Let ΩX be a bounded pseudoconvex domain in a Stein manifold X of complex dimension n with C1 boundary. For 1qn2, we first prove a compactness theorem under weak potential-theoretic hypotheses: if bΩ satisfies weak (Pq) and weak (Pn1q), then Gq and Gn1q are compact on Lp,q2(bΩ). This extends known C results in Cn to the minimal regularity C1 and to the Stein setting. On locally convexifiable C1 boundaries, we obtain a full characterization: compactness of Gq is equivalent to simultaneous compactness of Gq and Gn1q, to compactness of the ¯-Neumann operators Nq and Nn1q in the interior, to weak (Pq) and (Pn1q), and to the absence of (germs of) complex varieties of dimensions q and n1q on bΩ. A key ingredient is an annulus compactness transfer on Ω+=Ω2Ω1¯, which yields compactness of NqΩ+ from weak (P) near each boundary component and allows us to build compact ¯b-solution operators via jump formulas. Consequences include the following: compact canonical solution operators for ¯b, compact resolvent for b on the orthogonal complement of its harmonic space (hence discrete spectrum and finite-dimensional harmonic forms), equivalence between compactness and standard compactness estimates, closed range and L2 Hodge decompositions, trace-class heat flow, stability under C1 boundary perturbations, vanishing essential norms, Sobolev mapping (and gains under subellipticity), and compactness of Bergman-type commutators when q=1. Full article
(This article belongs to the Special Issue Recent Developments in Theoretical and Applied Mathematics)
22 pages, 9260 KB  
Article
Bio-Membrane-Based Nanofiber Scaffolds: Targeted and Controlled Carriers for Drug Delivery—An Experimental In Vivo Study
by Manuel Toledano, Marta Vallecillo-Rivas, María-Angeles Serrera-Figallo, Aida Gutierrez-Corrales, Christopher D. Lynch, Daniel Torres-Lagares and Cristina Vallecillo
Biomimetics 2025, 10(11), 726; https://doi.org/10.3390/biomimetics10110726 - 1 Nov 2025
Viewed by 444
Abstract
Cell population and vascular vessel distribution analysis in membrane-based scaffolds for tissue engineering is crucial. Biomimetic nanostructured membranes of methyl methacrylate/hydroxyethyl methacrylate and methyl acrylate/hydroxyethyl acrylate (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt SiO2-nanoparticles (Si-M) were doped with zinc (Zn-M) or doxycycline (Dox-M). Critical bone [...] Read more.
Cell population and vascular vessel distribution analysis in membrane-based scaffolds for tissue engineering is crucial. Biomimetic nanostructured membranes of methyl methacrylate/hydroxyethyl methacrylate and methyl acrylate/hydroxyethyl acrylate (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt SiO2-nanoparticles (Si-M) were doped with zinc (Zn-M) or doxycycline (Dox-M). Critical bone defects were effectuated on six New Zealand-bred rabbit skulls and then they were covered with the membrane-based scaffolds. After six weeks, bone cell population in terms of osteoblasts, osteoclasts, osteocytes, fibroblasts, and M1 and M2 macrophages and vasculature was determined. The areas of interest were the space above (over) and below (under) the membrane, apart from the interior (inner) compartment. All membranes showed that vasculature and most cell types were more abundant under the membrane than in the inner or above regions. Quantitatively, osteoblast density increased by approximately 35% in Zn-M and 25% in Si-M compared with Dox-M. Osteoclast counts decreased by about 78% in Dox-M, indicating strong inhibition of bone resorption. Vascular structures were nearly twofold more frequent under the membranes, particularly in Si-M, while fibroblast presence remained moderate and evenly distributed. The M1/M2 macrophage ratio was higher in Zn-M, reflecting a transient pro-inflammatory state, whereas Dox-M favored an anti-inflammatory, pro-regenerative profile. These results indicate that the biomimetic electrospun membranes functioned as architectural templates that provided favorable microenvironments for cell colonization, angiogenesis, and early bone regeneration in a preclinical in vivo model. Zn-M membranes appear suitable for early osteogenic stimulation, while Dox-M membranes may be advantageous in clinical contexts requiring modulation of inflammation and osteoclastic activity. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

40 pages, 11595 KB  
Article
An Automated Workflow for Generating 3D Solids from Indoor Point Clouds in a Cadastral Context
by Zihan Chen, Frédéric Hubert, Christian Larouche, Jacynthe Pouliot and Philippe Girard
ISPRS Int. J. Geo-Inf. 2025, 14(11), 429; https://doi.org/10.3390/ijgi14110429 - 31 Oct 2025
Viewed by 668
Abstract
Accurate volumetric modeling of indoor spaces is essential for emerging 3D cadastral systems, yet existing workflows often rely on manual intervention or produce surface-only models, limiting precision and scalability. This study proposes and validates an integrated, largely automated workflow (named VERTICAL) that converts [...] Read more.
Accurate volumetric modeling of indoor spaces is essential for emerging 3D cadastral systems, yet existing workflows often rely on manual intervention or produce surface-only models, limiting precision and scalability. This study proposes and validates an integrated, largely automated workflow (named VERTICAL) that converts classified indoor point clouds into topologically consistent 3D solids served as materials for land surveyor’s cadastral analysis. The approach sequentially combines RANSAC-based plane detection, polygonal mesh reconstruction, mesh optimization stage that merges coplanar faces, repairs non-manifold edges, and regularizes boundaries and planar faces prior to CAD-based solid generation, ensuring closed and geometrically valid solids. These modules are linked through a modular prototype (called P2M) with a web-based interface and parameterized batch processing. The workflow was tested on two condominium datasets representing a range of spatial complexities, from simple orthogonal rooms to irregular interiors with multiple ceiling levels, sloped roofs, and internal columns. Qualitative evaluation ensured visual plausibility, while quantitative assessment against survey-grade reference models measured geometric fidelity. Across eight representative rooms, models meeting qualitative criteria achieved accuracies exceeding 97% for key metrics including surface area, volume, and ceiling geometry, with a height RMSE around 0.01 m. Compared with existing automated modeling solutions, the proposed workflow has the ability of dealing with complex geometries and has comparable accuracy results. These results demonstrate the workflow’s capability to produce topologically consistent solids with high geometric accuracy, supporting both boundary delineation and volume calculation. The modular, interoperable design enables integration with CAD environments, offering a practical pathway toward an automated and reliable core of 3D modeling for cadastre applications. Full article
Show Figures

Figure 1

18 pages, 2441 KB  
Article
Persistent Urban Park Cooling Effects in Krakow: A Satellite-Based Analysis of Land Surface Temperature Patterns (1990–2018)
by Ewa Głowienka and Marcin Kucza
Remote Sens. 2025, 17(21), 3608; https://doi.org/10.3390/rs17213608 - 31 Oct 2025
Viewed by 618
Abstract
Urban green spaces provide measurable cooling that can mitigate urban heat islands, yet few studies have quantified these effects over multiple decades. This study analyzed Landsat imagery from four epochs (1990, 2000, 2013, 2018) to derive land surface temperature (LST) and vegetation indices—NDVI [...] Read more.
Urban green spaces provide measurable cooling that can mitigate urban heat islands, yet few studies have quantified these effects over multiple decades. This study analyzed Landsat imagery from four epochs (1990, 2000, 2013, 2018) to derive land surface temperature (LST) and vegetation indices—NDVI for greenness and NDMI for moisture content—for four large urban parks in Krakow. Late spring/summer LST in parks was compared with that of urban areas within 0–150 m and 150–300 m of park boundaries. Statistical significance was evaluated using bootstrapped confidence intervals, long-term trends were assessed via the Mann–Kendall test, and correlation analysis was used to examine relationships between LST and each vegetation index. Results show a persistent park cooling effect, with park interiors ~2–3 °C cooler than adjacent urban areas in all years. Despite an overall city-wide LST rise of ~5–6 °C from 1990 to 2018, the park cool island intensity (temperature difference between park and city) remained stable (no significant long-term trend, p > 0.7). Bootstrapped 95% confidence intervals confirmed that each park’s cooling effect was statistically significant in each year analyzed. NDMI (vegetation moisture content) correlated more strongly with LST (r ~ −0.90) than NDVI (r ~ −0.7 to −0.9), highlighting the importance of vegetation moisture in park cooling. These findings demonstrate that well-watered urban parks can sustain substantial cooling benefits over decades of urban development. The persistent ~2–3 °C daytime cooling observed underscores the value of water-sensitive green space planning as a long-term urban heat mitigation strategy. Full article
Show Figures

Figure 1

24 pages, 1517 KB  
Article
The “Invisible” Heritage of Women in NeSpoon’s Lace Murals: A Symbolic and Educational Three-Case Study
by Elżbieta Perzycka-Borowska, Lidia Marek, Kalina Kukielko and Anna Watola
Arts 2025, 14(6), 129; https://doi.org/10.3390/arts14060129 - 27 Oct 2025
Viewed by 543
Abstract
Street art increasingly reshapes aesthetic hierarchies by introducing previously marginalised media into the public sphere. A compelling example is the artistic practice of the Polish artist NeSpoon (Elżbieta Dymna), whose work merges the visual language of traditional lace with the communicative strategies of [...] Read more.
Street art increasingly reshapes aesthetic hierarchies by introducing previously marginalised media into the public sphere. A compelling example is the artistic practice of the Polish artist NeSpoon (Elżbieta Dymna), whose work merges the visual language of traditional lace with the communicative strategies of contemporary urban art. Active since the late 2000s, NeSpoon combines stencils, ceramic lace imprints, and large-scale murals to translate the intimacy of handcraft into the visibility of public space. Her works function as both aesthetic interventions and acts of civic pedagogy. This study employs a qualitative visual research design combining multi-site digital inquiry, iconological and semiotic analysis, and mini focus group (N = 22). Three purposefully selected cases: Łódź, Belorado, and Fundão, were examined to capture the site-specific and cultural variability of lace murals across Europe. The analysis demonstrates that lace functions as an agent of cultural negotiation and a medium of heritage literacy, understood here as embodied and place-based learning. In Łódź, it monumentalises textile memory and women’s labour embedded in the city’s industrial palimpsest. In Belorado, micro-scale responsiveness operates, strengthening the local semiosphere. In Fundão, lace enters an intermedial dialogue with azulejos, negotiating the boundary between craft and art while expanding local visual grammars. The study introduces the conceptualisation of the monumentalisation of intimacy in public art and frames heritage literacy as an embodied, dialogic, and community-oriented educational practice. Its implications extend to feminist art history, place-based pedagogy, urban cultural policy, and the preventive conservation of murals. The research elucidates how domestic craft once confined to the private interior operates in public space as a medium of memory, care, and inclusive aesthetics. Full article
(This article belongs to the Section Visual Arts)
Show Figures

Figure 1

31 pages, 736 KB  
Article
Towards Sustainable Cities—Selected Issues for Pro-Environmental Mass Timber Tall Buildings
by Hanna Michalak and Karolina Michalak
Sustainability 2025, 17(21), 9461; https://doi.org/10.3390/su17219461 - 24 Oct 2025
Viewed by 570
Abstract
The paper undertakes considerations and research into the implementation of mass timber tall buildings in shaping sustainable built environments. The investigated issues arise from contemporary challenges in shaping sustainable built environments, including the implementation of selected aspects of Sustainable Development Goals 11 and [...] Read more.
The paper undertakes considerations and research into the implementation of mass timber tall buildings in shaping sustainable built environments. The investigated issues arise from contemporary challenges in shaping sustainable built environments, including the implementation of selected aspects of Sustainable Development Goals 11 and 13 relating to the need to meet the needs of an increasing urban population while limiting urban sprawl; the use of nature-based development solutions regarding materials and access to green spaces to ensure a high quality of life for residents, as well as the need to reduce the negative environmental impact of development. The aim of this article is to present building construction that is at the forefront of implementing pro-environmental solutions and contributing to sustainable urban development. Using a research method based on a case study with an analysis of the available literature, the study covered 109 tall mass timber buildings erected worldwide since 2009. General analyses of the urban context of the buildings in question were carried out in terms of accessibility to leisure and recreation areas and to urban greenery, public transport, as well as functional and material solutions for the structure and interior and facade design. Full article
(This article belongs to the Special Issue Quality of Life in the Context of Sustainable Development)
Show Figures

Graphical abstract

12 pages, 673 KB  
Article
Regularization of Nonlinear Volterra Integral Equations of the First Kind with Smooth Data
by Taalaibek Karakeev and Nagima Mustafayeva
AppliedMath 2025, 5(4), 146; https://doi.org/10.3390/appliedmath5040146 - 24 Oct 2025
Viewed by 312
Abstract
The paper investigates the regularization of solutions to nonlinear Volterra integral equations of the first kind, under the assumption that a solution exists and belongs to the space of continuous functions. The kernel of the equation is a differentiable function and vanishes on [...] Read more.
The paper investigates the regularization of solutions to nonlinear Volterra integral equations of the first kind, under the assumption that a solution exists and belongs to the space of continuous functions. The kernel of the equation is a differentiable function and vanishes on the diagonal at an interior point of the integration interval. By applying an appropriate differential operator (with respect to x), the Volterra integral equation of the first kind is reduced to a Volterra integral equation of the third kind, equivalent with respect to solvability. The subdomain method is employed by partitioning the integration interval into two subintervals. Within the imposed constraints, a compatibility condition for the solutions is satisfied at the junction point of the partial subintervals. A Lavrentiev-type regularizing operator is constructed that preserves the Volterra structure of the equation. The uniform convergence of the regularized solution to the exact solution is proved, and conditions ensuring the uniqueness of the solution in Hölder space are established. Full article
Show Figures

Figure 1

31 pages, 6524 KB  
Article
Deepening Layers of Urban Space: A Scenario-Based Approach with Artificial Intelligence for the Effective and Sustainable Use of Underground Parking Structures
by Başak Aytatlı, Selcan Bayram and Semiha İsmailoğlu
Sustainability 2025, 17(21), 9397; https://doi.org/10.3390/su17219397 - 22 Oct 2025
Viewed by 766
Abstract
This study proposes a scenario-based conceptual model for transforming underground parking structures into sustainable interior green spaces, directly addressing two core research dimensions: energy efficiency and user experience. The originality of the research lies in repositioning subterranean spaces—often overlooked in urban planning—as climate-responsive, [...] Read more.
This study proposes a scenario-based conceptual model for transforming underground parking structures into sustainable interior green spaces, directly addressing two core research dimensions: energy efficiency and user experience. The originality of the research lies in repositioning subterranean spaces—often overlooked in urban planning—as climate-responsive, multi-functional public environments. Using a site-specific case in downtown Rize, Türkiye, three design scenarios—passive green walls, active modular systems, and experimental micro-farming—were comparatively analyzed. These scenarios were assessed through AI-assisted simulations and climate-based performance evaluations in terms of environmental benefits, thermal regulation, carbon reduction, and experiential quality. Underground space leads to green design interventions, which in turn generate environmental, energy, and social benefits. The results demonstrate that passive systems provide cost-effective improvements, active modular systems achieve balanced performance, and experimental micro-farming yields the highest ecological and social benefits. The study uniquely contributes to urban sustainable design by integrating climate-adaptive strategies, biophilic design principles, and AI-supported visualization into the transformation of underground structures. This research not only advances academic discourse but also provides policy-relevant insights for local governments, developers, and communities in the context of urban renewal. Full article
(This article belongs to the Special Issue Sustainable Built Environment: From Theory to Practice)
Show Figures

Figure 1

17 pages, 340 KB  
Article
O-Regular Mappings on C(C): A Structured Operator–Theoretic Framework
by Ji Eun Kim
Mathematics 2025, 13(20), 3328; https://doi.org/10.3390/math13203328 - 18 Oct 2025
Viewed by 311
Abstract
Motivation. Analytic function theory on commutative complex extensions calls for an operator–theoretic calculus that simultaneously sees the algebra-induced coupling among components and supports boundary-to-interior mechanisms. Gap. While Dirac-type frameworks are classical in several complex variables and Clifford analysis, a coherent calculus aligning structural [...] Read more.
Motivation. Analytic function theory on commutative complex extensions calls for an operator–theoretic calculus that simultaneously sees the algebra-induced coupling among components and supports boundary-to-interior mechanisms. Gap. While Dirac-type frameworks are classical in several complex variables and Clifford analysis, a coherent calculus aligning structural CR systems, a canonical first derivative, and a Cauchy-type boundary identity on the commutative model C(C)C4 has not been systematically developed. Purpose and Aims. This paper develops such a calculus for O-regular mappings on C(C) and establishes three pillars of the theory. Main Results. (i) A fully coupled Cauchy–Riemann system characterizing O-regularity; (ii) identification of a canonical first derivative g(z)=x0g(z); and (iii) a Stokes-driven boundary annihilation law Ωτg=0 for a canonical 7-form τ. On (pseudo)convex domains, ¯-methods yield solvability under natural compatibility and regularity assumptions. Stability (under algebra-preserving maps), Liouville-type, and removability results are also obtained, and function spaces suited to this algebra are outlined. Significance. The results show that a large portion of the classical holomorphic toolkit survives, in algebra-aware form, on C(C). Full article
Show Figures

Figure 1

18 pages, 7772 KB  
Article
Designing Resilient Subcenters in Urban Space: A Comparison of Architects’ Creative Design Approaches and Artificial Intelligence-Based Design
by Tomasz Kapecki, Beata Gibała-Kapecka and Agnieszka Ozga
Sustainability 2025, 17(20), 9201; https://doi.org/10.3390/su17209201 - 17 Oct 2025
Viewed by 820
Abstract
This paper presents a comparative study on the transdisciplinary design of resilient urban subcenters, examining the interplay between human-led and artificial intelligence (AI)-generated design approaches. By employing holistic design methods, we prepare and present revitalization projects for two areas of urban space. Our [...] Read more.
This paper presents a comparative study on the transdisciplinary design of resilient urban subcenters, examining the interplay between human-led and artificial intelligence (AI)-generated design approaches. By employing holistic design methods, we prepare and present revitalization projects for two areas of urban space. Our goal was to create a resilient urban subcenter that contributes to the development of a resident. The first revitalized site reflects the multicultural past of the city. The second project addresses the need to revitalize a subcenter reserved for residents. In the non-AI approach, holistic design is implemented across various universities, fields, and academic disciplines—the humanities, social sciences, engineering, and the arts. Transdisciplinary teams of sociologists, engineers, interior designers, architects, urban geographers, and acousticians transcend workshop limitations as well as cognitive boundaries, promoting the creation of new, unconventional knowledge. The AI-integrated approach employs artificial intelligence in a dual capacity: both as a generator of alternative design visions and as an analytical tool for assessing technological readiness. The findings contribute to the evolving discourse on sustainable urban development and the transformative potential of technology in transdisciplinary design practices. Full article
Show Figures

Figure 1

Back to TopTop