Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = invasive listeriosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1986 KB  
Article
Research on the Genetic Polymorphism and Function of inlA with Premature Stop Codons in Listeria monocytogenes
by Xin Liu, Binru Gao, Zhuosi Li, Yingying Liang, Tianqi Shi, Qingli Dong, Min Chen, Huanyu Wu and Hongzhi Zhang
Foods 2025, 14(17), 2955; https://doi.org/10.3390/foods14172955 - 25 Aug 2025
Cited by 1 | Viewed by 827
Abstract
Listeria monocytogenes is a Gram-positive bacterial species that causes listeriosis, a major foodborne disease worldwide. The virulence factor inlA facilitates the invasion of L. monocytogenes into intestinal epithelial cells expressing E-cadherin receptors. Naturally occurring premature stop codon (PMSC) mutations in inlA have been [...] Read more.
Listeria monocytogenes is a Gram-positive bacterial species that causes listeriosis, a major foodborne disease worldwide. The virulence factor inlA facilitates the invasion of L. monocytogenes into intestinal epithelial cells expressing E-cadherin receptors. Naturally occurring premature stop codon (PMSC) mutations in inlA have been shown to result in the production of truncated proteins associated with attenuated virulence. Moreover, different L. monocytogenes strains contain distinct inlA variants. In this study, we first characterized inlA in 546 L. monocytogenes strains isolated from various foods in Shanghai. The results showed that 36.1% (95% Confidence Interval: 32.0~40.2%) of the food isolates harbored inlA with PMSC, which was found to be associated with clonal complex (CC) types, with the highest proportions observed in CC9 and CC121. To investigate the function of inlA, we first used the dominant CC87 isolated from patients as the test strain and constructed an inlA-deleted strain via homologous recombination. Resistance tests and virulence tests showed that while inlA did not affect the resistance of L. monocytogenes, it significantly influenced cell adhesion and invasiveness. To further explore the function of inlA, we performed virulence tests on five CC-type strains carrying inlA with PMSC and their corresponding strains with intact inlA. We found that the virulence of L. monocytogenes strains carrying inlA or inlA with PMSC was associated with their CC type. Our preliminary results showed that premature termination of inlA did not significantly affect the adhesion and invasion abilities of low-virulence CC-type L. monocytogenes strains in Caco-2 cells, but substantially promoted those of high-virulence strains such as CC8 and CC7. In summary, this study preliminarily evaluated the effects of inlA integrity and PMSC mutation variation on the virulence of L. monocytogenes, providing a foundation for further research on inlA-related pathogenic mechanisms. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

34 pages, 1244 KB  
Article
A Quantitative Risk Assessment Model for Listeria monocytogenes in Ready-to-Eat Cantaloupe
by Laurent Guillier, Ursula Gonzales-Barron, Régis Pouillot, Juliana De Oliveira Mota, Ana Allende, Jovana Kovacevic, Claudia Guldimann, Aamir Fazil, Hamzah Al-Qadiri, Qingli Dong, Akio Hasegawa, Vasco Cadavez and Moez Sanaa
Foods 2025, 14(13), 2212; https://doi.org/10.3390/foods14132212 - 23 Jun 2025
Cited by 1 | Viewed by 1725
Abstract
This study introduces a farm-to-fork quantitative risk assessment (QRA) model for invasive listeriosis from ready-to-eat diced cantaloupe. The modular model comprises seven stages—preharvest (soil and irrigation contamination), harvest (cross-contamination and survival), pre-processing (brushing), processing (flume tank washing, dicing and equipment cross-contamination), lot testing, [...] Read more.
This study introduces a farm-to-fork quantitative risk assessment (QRA) model for invasive listeriosis from ready-to-eat diced cantaloupe. The modular model comprises seven stages—preharvest (soil and irrigation contamination), harvest (cross-contamination and survival), pre-processing (brushing), processing (flume tank washing, dicing and equipment cross-contamination), lot testing, cold-chain transport and retail growth, and consumer storage/handling. Each stage employs stochastic functions to simulate microbial prevalence and concentration changes (growth, inactivation, removal, partitioning, cross-contamination) using published data. In a reference scenario—good agricultural practices (soil barriers, no preharvest irrigation), hygienic processing and proper cold storage—the model predicts low lot- and pack-level contamination, with few packs >10 CFU/g and most servings below detection; the mean risk per serving is very low. “What-if” analyses highlight critical control points: the absence of soil barriers with preharvest irrigation can increase the risk by 10,000-fold; flume tank water contamination has a greater impact than harvest-stage cross-contamination; and poor consumer storage can raise the risk by up to 500-fold. This flexible QRA framework enables regulators and industry to evaluate and optimize interventions—from improved agricultural measures to targeted sampling plans and consumer guidance—to mitigate listeriosis risk from RTE diced cantaloupe. Full article
(This article belongs to the Special Issue Quantitative Risk Assessment of Listeria monocytogenes in Foods)
Show Figures

Figure 1

34 pages, 1036 KB  
Review
Conventional and Innovative Methods for Reducing the Incidence of Listeria monocytogenes in Milk and Dairy Products
by Adriana Dabija, Cristina Ștefania Afloarei, Dadiana Dabija and Ancuța Chetrariu
Appl. Sci. 2025, 15(12), 6580; https://doi.org/10.3390/app15126580 - 11 Jun 2025
Cited by 1 | Viewed by 3433
Abstract
Listeriosis, the disease caused by the bacterium L. monocytogenes, can take invasive forms, with severe complications such as septicemia or meningitis, mainly affecting vulnerable people, such as pregnant women, the elderly, and immunocompromised people. The main transmission is through the consumption of [...] Read more.
Listeriosis, the disease caused by the bacterium L. monocytogenes, can take invasive forms, with severe complications such as septicemia or meningitis, mainly affecting vulnerable people, such as pregnant women, the elderly, and immunocompromised people. The main transmission is through the consumption of contaminated food, and unpasteurized dairy products are common sources of infection. Due to the high mortality and the difficulty in eliminating the bacterium from the production environment, rigorous hygiene and control measures are essential to prevent the spread of Listeria in the food chain, and research on biofilm formation and bacterial resistance is vital to improve food safety. Dairy products, raw milk, and soft cheeses are among the most vulnerable to contamination with L. monocytogenes, especially due to pH values and low-temperature storage conditions. This paper presents a synthesis of the specialized literature on methods to reduce the incidence of L. monocytogenes in milk and dairy products. Conventional strategies, such as pasteurization and the use of chemical disinfectants, are effective but can affect food quality. Specialists have turned their attention to innovative and safer approaches, such as biocontrol and the use of nonthermal methods, such as pulsed electric fields, irradiation, and nanotechnology. Barrier technology, which combines several methods, has demonstrated superior efficiency in combating the bacterium without compromising product quality. Additionally, lactic acid bacteria (LAB) and bacteriocins are examples of biopreservation techniques that provide a future option while preserving food safety. Natural preservatives, especially those derived from plants and fruits, are promising alternatives to synthetic compounds. Future solutions should focus on developing commercial formulations that optimize these properties and meet consumer demands for healthy, environmentally friendly, and clean-label products. Full article
Show Figures

Figure 1

19 pages, 3094 KB  
Article
Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains
by Hui Yan, Biyao Xu, Binru Gao, Yunyan Xu, Xuejuan Xia, Yue Ma, Xiaojie Qin, Qingli Dong, Takashi Hirata and Zhuosi Li
Microorganisms 2025, 13(1), 191; https://doi.org/10.3390/microorganisms13010191 - 17 Jan 2025
Cited by 4 | Viewed by 1549
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of L. monocytogenes isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There [...] Read more.
Listeria monocytogenes is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of L. monocytogenes isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There were significant differences among isolates in terms of their mortality rate in Galleria mellonella, cytotoxicity to JEG-3 cells, hemolytic activity, and expression of important virulence genes. Compared with other STs, both the ST121 (food source) and ST1930 (clinic source) strains exhibited higher G. mellonella mortality. The 48 h mortality in G. mellonella of lineage II strains was significantly higher than that in lineage I. Compared with other STs, ST1930, ST3, ST5, and ST1032 exhibited higher cytotoxicity to JEG-3 cells. Based on the classification of sources (food and clinical strains) and serogroups (II a, II b, and II c), there were no significant differences observed in terms of G. mellonella mortality, cytotoxicity, and hemolytic activity. In addition, ST121 exhibited significantly higher hly, inlA, inlB, prfA, plcA, and plcB gene expression compared with other STs. A gray relation analysis showed a high correlation between the toxicity of G. mellonella and the expression of the hly and inlB genes; in addition, L. monocytogenes may have a consistent virulence mechanism involving hemolysis activity and cytotoxicity. Through the integration of in vivo and in vitro infection models with information on the expression of virulence factor genes, the differences in virulence between strains or subtypes can be better understood. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

47 pages, 2058 KB  
Article
A Quantitative Risk Assessment Model for Listeria monocytogenes in Ready-to-Eat Smoked and Gravad Fish
by Ursula Gonzales-Barron, Régis Pouillot, Taran Skjerdal, Elena Carrasco, Paula Teixeira, Matthew J. Stasiewicz, Akio Hasegawa, Juliana De Oliveira Mota, Laurent Guillier, Vasco Cadavez and Moez Sanaa
Foods 2024, 13(23), 3831; https://doi.org/10.3390/foods13233831 - 27 Nov 2024
Cited by 5 | Viewed by 5289
Abstract
This study introduces a quantitative risk assessment (QRA) model aimed at evaluating the risk of invasive listeriosis linked to the consumption of ready-to-eat (RTE) smoked and gravad fish. The QRA model, based on published data, simulates the production process from fish harvest through [...] Read more.
This study introduces a quantitative risk assessment (QRA) model aimed at evaluating the risk of invasive listeriosis linked to the consumption of ready-to-eat (RTE) smoked and gravad fish. The QRA model, based on published data, simulates the production process from fish harvest through to consumer intake, specifically focusing on smoked brine-injected, smoked dry-salted, and gravad fish. In a reference scenario, model predictions reveal substantial probabilities of lot and pack contamination at the end of processing (38.7% and 8.14% for smoked brined fish, 34.4% and 6.49% for smoked dry-salted fish, and 52.2% and 11.1% for gravad fish), although the concentrations of L. monocytogenes are very low, with virtually no packs exceeding 10 CFU/g at the point of sale. The risk of listeriosis for an elderly consumer per serving is also quantified. The lot-level mean risk of listeriosis per serving in the elderly population was 9.751 × 10−8 for smoked brined fish, 9.634 × 10−8 for smoked dry-salted fish, and 2.086 × 10−7 for gravad fish. Risk reduction strategies were then analyzed, indicating that the application of protective cultures and maintaining lower cold storage temperatures significantly mitigate listeriosis risk compared to reducing incoming fish lot contamination. The model also addresses the effectiveness of control measures during processing, such as minimizing cross-contamination. The comprehensive QRA model has been made available as a fully documented qraLm R package. This facilitates its adaptation for risk assessment of other RTE seafood, making it a valuable tool for public health officials to evaluate and manage food safety risks more effectively. Full article
(This article belongs to the Special Issue Quantitative Risk Assessment of Listeria monocytogenes in Foods)
Show Figures

Figure 1

14 pages, 754 KB  
Article
A Quick Sequential Organ Failure Assessment (qSOFA) Score Greater than 1 and Shortened Ampicillin Use Predict Death and One-Year Mortality in Hospitalized Patients with Non-Perinatal Invasive Listeriosis: A Retrospective Analysis of 118 Consecutive Cases
by Shuh-Kuan Liau, Cheng-Chieh Hung, Chao-Yu Chen, Yi-Chun Liu, Yueh-An Lu, Yu-Jr Lin, Yung-Chang Chen, Ya-Chung Tian, Fan-Gang Tseng and Hsiang-Hao Hsu
Microorganisms 2024, 12(11), 2365; https://doi.org/10.3390/microorganisms12112365 - 19 Nov 2024
Viewed by 3064
Abstract
Listeria monocytogenes causes listeriosis, a serious foodborne illness with a high mortality rate, especially in vulnerable populations. It accounts for 19% of foodborne deaths, with invasive cases having a mortality rate of up to 44%, leading to conditions like meningitis, bacteremia, and meningoencephalitis. [...] Read more.
Listeria monocytogenes causes listeriosis, a serious foodborne illness with a high mortality rate, especially in vulnerable populations. It accounts for 19% of foodborne deaths, with invasive cases having a mortality rate of up to 44%, leading to conditions like meningitis, bacteremia, and meningoencephalitis. However, the prognostic factors remain unclear. This study examines the hospital outcomes of invasive listeriosis and identifies risk factors for in-hospital and one-year mortality. We analyzed the electronic medical records of 118 hospitalized patients with non-perinatal, culture-proven invasive listeriosis collected over a 21-year period. The in-hospital mortality rate was 36.4%, with only 33.1% surviving one year and 22.0% surviving two years. The key findings indicate that a quick Sequential Organ Failure Assessment (qSOFA) score of ≥2 (OR 106.59, p < 0.001), respiratory failure (OR 7.58, p = 0.031), and shorter ampicillin duration (OR 0.53, p = 0.012) independently predicted poorer in-hospital outcomes. Additionally, a qSOFA score of ≥2 (OR 8.46, p < 0.001) and shorter ampicillin duration (OR 0.65, p < 0.001) were linked to higher one-year mortality. This study is the first to identify a qSOFA score of ≥2 as a significant marker for high-risk invasive listeriosis patients, with poorer outcomes linked to a qSOFA score of ≥2, respiratory failure, and shorter ampicillin use. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

28 pages, 1837 KB  
Article
A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables
by Ursula Gonzales-Barron, Régis Pouillot, Juliana De Oliveira Mota, Akio Hasegawa, Ana Allende, Qingli Dong, Matthew J. Stasiewicz, Jovana Kovacevic, Vasco Cadavez, Laurent Guillier and Moez Sanaa
Foods 2024, 13(22), 3610; https://doi.org/10.3390/foods13223610 - 12 Nov 2024
Cited by 4 | Viewed by 3947
Abstract
A quantitative risk assessment (QRA) model was developed to evaluate the risk of invasive listeriosis from the consumption of non-ready-to-eat (non-RTE) frozen vegetables. On a lot basis, the QRA model simulates Listeria monocytogenes concentration and prevalence in a “Processing module” that comprises blanching, [...] Read more.
A quantitative risk assessment (QRA) model was developed to evaluate the risk of invasive listeriosis from the consumption of non-ready-to-eat (non-RTE) frozen vegetables. On a lot basis, the QRA model simulates Listeria monocytogenes concentration and prevalence in a “Processing module” that comprises blanching, potential recontamination and packaging, any post-packaging inactivation treatment, and within-lot end-product testing and in a subsequent “Consumer’s handling module” that encompasses portioning of frozen vegetables, defrosting, and cooking. Based on available published data, the model was coded in nine sequential R functions designed to assess the effectiveness of blanching, the improvement in processing environment hygiene, the implementation of sampling schemes at the end of processing, and improved consumer instructions on the product’s package. In a reference scenario, the model estimated that 9.4% of 500 g packages of frozen vegetables would be contaminated, although at mean levels lower than 10 CFU/g, and assuming that 20% of the portions of frozen vegetables would be left to thaw at room temperature for 2 h, the lot-level mean risk of listeriosis in the susceptible population would be 2.935 × 10−14 (median 5.446 × 10−15) for uncooked 50 g servings and 2.765 × 10−17 (median 5.184 × 10−18) for cooked 50 g servings. Analysis of selected scenarios suggested that not cooking the non-RTE product contributes to the risk to a greater extent than the level of contamination in the incoming raw vegetables, the latter in turn being more influential than the level of contamination in the processing environment. The QRA model is freely available as an R package with full documentation and can be used as a tool to inform the consideration of strengthened risk management measures in view of the current changes in consumer behavior and new diet trends. Full article
(This article belongs to the Special Issue Quantitative Risk Assessment of Listeria monocytogenes in Foods)
Show Figures

Figure 1

15 pages, 1022 KB  
Article
Listeria monocytogenes in Fruits and Vegetables: Antimicrobial Resistance, Biofilm, and Genomic Insights
by María Guadalupe Avila-Novoa, Oscar Alberto Solis-Velazquez, Pedro Javier Guerrero-Medina, Liliana Martínez-Chávez, Nanci Edid Martínez-Gonzáles and Melesio Gutiérrez-Lomelí
Antibiotics 2024, 13(11), 1039; https://doi.org/10.3390/antibiotics13111039 - 3 Nov 2024
Cited by 7 | Viewed by 3293
Abstract
Background/Objectives: Listeria monocytogenes is a foodborne pathogen that can infect both humans and animals and cause noninvasive gastrointestinal listeriosis or invasive listeriosis. The objectives of this study were to determine the genetic diversity of L. monocytogenes; the genes associated with its resistance [...] Read more.
Background/Objectives: Listeria monocytogenes is a foodborne pathogen that can infect both humans and animals and cause noninvasive gastrointestinal listeriosis or invasive listeriosis. The objectives of this study were to determine the genetic diversity of L. monocytogenes; the genes associated with its resistance to antibiotics, benzalkonium chloride (BC), and cadmium chloride (CdCl2); and its biofilm formation. Methods: A total of 132 fresh fruits (44 samples) and vegetables (88 samples) were selected for this study. The genetic diversity of the isolates and the genes associated with their antibiotic resistance were determined using PCR amplification; meanwhile, their levels of susceptibility to antibiotics were determined using the agar diffusion method. Their levels of resistance to BC and CdCl2 were determined using the minimum inhibitory concentration method, and their capacity for biofilm formation was evaluated using the crystal violet staining method. Results: A total of 17 L. monocytogenes strains were collected: 12.8% (17/132) from fresh fruits and vegetables in this study. The isolates of L. monocytogenes belonged to phylogenetic groups I.1 (29.4% (5/17); serotype 1/2a) and II.2 (70.5% (12/17); serotype 1/2b); strains containing Listeria pathogenicity islands (LIPIs) were also identified at prevalence rates of 100% for LIPI-1 and LIPI-2 (17/17), 29.4% for LIPI-3 (5/17), and 11.7% for LIPI-4 (2/17). The antibiotic susceptibility tests showed that the L. monocytogenes isolates exhibited six different multiresistant patterns, with multiple antibiotic resistance (MAR) index of ≥0.46 (70.5%; 12/17); additionally, the genes Ide, tetM, and msrA, associated with efflux pump Lde, tetracycline, and ciprofloxacin resistance, were detected at 52.9% (9/17), 29.4% (5/17), and 17.6% (3/17), respectively. The phenotypic tests showed that 58.8% (10/17) of cadmium-resistant L. monocytogenes isolates had a co-resistance of 23.5% (4/17) to BC. Finally, all strains of L. monocytogenes exhibited moderate biofilm production. Conclusions: The results of this study contribute to our understanding of the persistence and genetic diversity of L. monocytogenes strains isolated from fresh fruits and vegetables; in addition, their resistance to CdCl2, which is correlated with co-resistance to BC disinfectant, is helpful for the food industry. Full article
16 pages, 1107 KB  
Review
Listeriosis: Characteristics, Occurrence in Domestic Animals, Public Health Significance, Surveillance and Control
by Ana Končurat and Tomislav Sukalić
Microorganisms 2024, 12(10), 2055; https://doi.org/10.3390/microorganisms12102055 - 12 Oct 2024
Cited by 7 | Viewed by 5010
Abstract
Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte [...] Read more.
Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte to a powerful intracellular pathogen is driven by the invasion mechanisms and virulence factors that enable cell invasion, replication and cell-to-cell spread. Key regulatory systems, including positive regulatory factor A (PrfA) and the stress-responsive sigma factor σB, control the expression of virulence genes and facilitate invasion of host cells. Listeriosis poses a significant threat to cattle, sheep and goat herds, leading to abortions, septicemia and meningoencephalitis, and ruminants are important reservoirs for Listeria, facilitating transmission to humans. Other Listeria species such as Listeria ivanovii and Listeria innocua can also cause disease in ruminants. Resilience of LM in food processing environments makes it an important foodborne pathogen that is frequently transmitted through contaminated meat and dairy products, with contamination often occurring along the food production chain. In humans, listeriosis primarily affects immunocompromised individuals, pregnant women and the elderly and leads to severe conditions, such as meningitis, septicemia and spontaneous abortion. Possible treatment requires antibiotics that penetrate the blood–brain barrier. Despite the relatively low antimicrobial resistance, multidrug-resistant LM strains have been detected in animals, food and the environment. Controlling and monitoring the disease at the herd level, along with adopting a One Health approach, are crucial to protect human and animal health and to minimize the potential negative impacts on the environment. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

17 pages, 5247 KB  
Article
Biofilm Formation, Motility, and Virulence of Listeria monocytogenes Are Reduced by Deletion of the Gene lmo0159, a Novel Listerial LPXTG Surface Protein
by Weidi Shi, Qiwen Zhang, Honghuan Li, Dongdong Du, Xun Ma, Jing Wang, Jianjun Jiang, Caixia Liu, Lijun Kou and Jingjing Ren
Microorganisms 2024, 12(7), 1354; https://doi.org/10.3390/microorganisms12071354 - 2 Jul 2024
Cited by 6 | Viewed by 3096
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that causes listeriosis in humans and other animals. Surface proteins with the LPXTG motif have important roles in the virulence of L. monocytogenes. Lmo0159 is one such protein, but little is known [...] Read more.
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that causes listeriosis in humans and other animals. Surface proteins with the LPXTG motif have important roles in the virulence of L. monocytogenes. Lmo0159 is one such protein, but little is known about its role in L. monocytogenes virulence, motility, and biofilm formation. Here, we constructed and characterized a deletion mutant of lmo0159 (∆lmo0159). We analyzed not only the capacity of biofilm formation, motility, attachment, and intracellular growth in different cell types but also LD50; bacterial load in mice’s liver, spleen, and brain; expression of virulence genes; and survival time of mice after challenge. The results showed that the cross-linking density of the biofilm of ∆lmo0159 strain was lower than that of WT by microscopic examination. The expression of biofilm-formation and virulence genes also decreased in the biofilm state. Subsequently, the growth and motility of ∆lmo0159 in the culture medium were enhanced. Conversely, the growth and motility of L. monocytogenes were attenuated by ∆lmo0159 at both the cellular and mouse levels. At the cellular level, ∆lmo0159 reduced plaque size; accelerated scratch healing; and attenuated the efficiency of adhesion, invasion, and intracellular proliferation in swine intestinal epithelial cells (SIEC), RAW264.7, mouse-brain microvascular endothelial cells (mBMEC), and human-brain microvascular endothelial cells (hCMEC/D3). The expression of virulence genes was also inhibited. At the mouse level, the LD50 of the ∆lmo0159 strain was 100.97 times higher than that of the WT strain. The bacterial load of the ∆lmo0159 strain in the liver and spleen was lower than that of the WT strain. In a mouse model of intraperitoneal infection, the deletion of the lmo0159 gene significantly prolonged the survival time of the mice, suggesting that the lmo0159 deletion mutant also exhibited reduced virulence. Thus, our study identified lmo0159 as a novel virulence factor among L. monocytogenes LPXTG proteins. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

11 pages, 896 KB  
Article
High Prevalence of Virulence-Associated Genes and Length Polymorphism in actA and inlB Genes Identified in Listeria monocytogenes Isolates from Meat Products and Meat-Processing Environments in Poland
by Iwona Kawacka and Agnieszka Olejnik-Schmidt
Pathogens 2024, 13(6), 444; https://doi.org/10.3390/pathogens13060444 - 23 May 2024
Cited by 6 | Viewed by 2094
Abstract
Listeria monocytogenes is a human pathogen that has the ability to cause listeriosis, a disease with possible fatal outcomes. The typical route of infection is ingestion of the bacteria with contaminated food. In this study, 13 virulence-associated genes were examined with PCR in [...] Read more.
Listeria monocytogenes is a human pathogen that has the ability to cause listeriosis, a disease with possible fatal outcomes. The typical route of infection is ingestion of the bacteria with contaminated food. In this study, 13 virulence-associated genes were examined with PCR in the genomes of 153 L. monocytogenes isolates collected from meat products and processing environments in Poland. All isolates possessed genes from LIPI-1—hly, actA, plcA, plcB and mpl—as well as four internalins: inlA, inlB, inlC, inlJ. Invasion-associated protein iap, as well as genes prfA and sigB, encoding regulatory proteins, were also detected in all isolates. Gene flaA, encoding flagellin, was detected in 113 (74%) isolates. This was the only gene that was not detected in all isolates, as its presence is serotype-dependent. Gene actA showed polymorphism with longer and shorter variants in PCR amplicons. Two isolates were characterized by truncated inlB genes, lacking 141 bp in their sequence, which was confirmed by gene sequencing. All isolates were positive in hemolysis assays, proving the synthesis of functional PrfA and Hly proteins. Four genotypes of L. monocytogenes based on actA polymorphism and two genotypes based on inlB polymorphism were distinguished within the isolates’ collection. Full article
Show Figures

Figure 1

15 pages, 749 KB  
Article
Updated Parameters for Listeria monocytogenes Dose–Response Model Considering Pathogen Virulence and Age and Sex of Consumer
by Régis Pouillot, Andreas Kiermeier, Laurent Guillier, Vasco Cadavez and Moez Sanaa
Foods 2024, 13(5), 751; https://doi.org/10.3390/foods13050751 - 29 Feb 2024
Cited by 31 | Viewed by 3759
Abstract
Better knowledge regarding the Listeria monocytogenes dose–response (DR) model is needed to refine the assessment of the risk of foodborne listeriosis. In 2018, the European Food Safety Agency (EFSA) derived a lognormal Poisson DR model for 14 different age–sex sub-groups, marginally to strain [...] Read more.
Better knowledge regarding the Listeria monocytogenes dose–response (DR) model is needed to refine the assessment of the risk of foodborne listeriosis. In 2018, the European Food Safety Agency (EFSA) derived a lognormal Poisson DR model for 14 different age–sex sub-groups, marginally to strain virulence. In the present study, new sets of parameters are developed by integrating the EFSA model for these sub-groups together with three classes of strain virulence characteristics (“less virulent”, “virulent”, and “more virulent”). Considering classes of virulence leads to estimated relative risks (RRs) of listeriosis following the ingestion of 1000 bacteria of “less virulent” vs. “more virulent” strains ranging from 21.6 to 24.1, depending on the sub-group. These relatively low RRs when compared with RRs linked to comorbidities described in the literature suggest that the influence of comorbidity on the occurrence of invasive listeriosis for a given exposure is much more important than the influence of the virulence of the strains. The updated model parameters allow better prediction of the risk of invasive listeriosis across a population of interest, provided the necessary data on population demographics and the proportional contribution of strain virulence classes in food products of interest are available. An R package is made available to facilitate the use of these dose–response models. Full article
(This article belongs to the Special Issue Quantitative Risk Assessment of Listeria monocytogenes in Foods)
Show Figures

Figure 1

13 pages, 3819 KB  
Article
Unveiling the Mutations and Conservation of InlA in Listeria monocytogenes
by Lingling Li, Yan Wang, Ji Pu, Jinni Chen, Lingyun Liu, Pan Mao, Hui Sun, Xia Luo and Changyun Ye
Microorganisms 2024, 12(3), 485; https://doi.org/10.3390/microorganisms12030485 - 28 Feb 2024
Cited by 7 | Viewed by 2690
Abstract
Listeria monocytogenes (L. monocytogenes) is a pathogen that is transmitted through contaminated food and causes the illness known as listeriosis. The virulence factor InlA plays a crucial role in the invasion of L. monocytogenes into the human intestinal epithelium. In addition, [...] Read more.
Listeria monocytogenes (L. monocytogenes) is a pathogen that is transmitted through contaminated food and causes the illness known as listeriosis. The virulence factor InlA plays a crucial role in the invasion of L. monocytogenes into the human intestinal epithelium. In addition, InlA enhances the pathogenicity of host strains, and different strains of L. monocytogenes contain varying variations of InlA. Our study analyzed a total of 4393 published L. monocytogenes genomes from 511 sequence types (STs) of diverse origins. We identified 300 unique InlA protein sequence types (PSTs) and revealed 45 highly mutated amino acid sites. The leucine-rich repeat (LRR) region was found to be the most conserved among the InlA, while the protein A (PA) region experienced the highest mutation rate. Two new types of mutations were identified in the B-repeat region of InlA. Correspondence analysis (CA) was used to analyze correlations between the lineages or 10 most common sequence types (STs) and amino acid (aa) sites. ST8 was strongly correlated with site 192_F, 454_T. ST7 exhibited a strong correlation with site 51_A, 573_E, 648_S, and 664_A, and it was also associated with ST6 and site 544_N, 671_A, 738_B, 739_B, 740_B, and 774_Y. Additionally, a strong correlation between ST1 and site 142_S, 738_N, ST2 and site 2_K, 142_S, 738_N, as well as ST87 and site2_K, 738_N was demonstrated. Our findings contribute significantly to the understanding of the distribution, composition, and conservation of InlA in L. monocytogenes. These findings also suggest a potential role of InlA in supporting molecular epidemiological tracing efforts. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

17 pages, 302 KB  
Review
A Critical Review of Risk Assessment Models for Listeria monocytogenes in Seafood
by Ursula Gonzales-Barron, Vasco Cadavez, Juliana De Oliveira Mota, Laurent Guillier and Moez Sanaa
Foods 2024, 13(5), 716; https://doi.org/10.3390/foods13050716 - 26 Feb 2024
Cited by 9 | Viewed by 4022
Abstract
Invasive listeriosis, due to its severe nature in susceptible populations, has been the focus of many quantitative risk assessment (QRA) models aiming to provide a valuable guide in future risk management efforts. A review of the published QRA models of Listeria monocytogenes in [...] Read more.
Invasive listeriosis, due to its severe nature in susceptible populations, has been the focus of many quantitative risk assessment (QRA) models aiming to provide a valuable guide in future risk management efforts. A review of the published QRA models of Listeria monocytogenes in seafood was performed, with the objective of appraising the effectiveness of the control strategies at different points along the food chain. It is worth noting, however, that the outcomes of a QRA model are context-specific, and influenced by the country and target population, the assumptions that are employed, and the model architecture itself. Studies containing QRA models were retrieved through a literature search using properly connected keywords on Scopus and PubMed®. All 13 QRA models that were recovered were of short scope, covering, at most, the period from the end of processing to consumption; the majority (85%) focused on smoked or gravad fish. Since the modelled pathways commenced with the packaged product, none of the QRA models addressed cross-contamination events. Many models agreed that keeping the product’s temperature at 4.0–4.5 °C leads to greater reductions in the final risk of listeriosis than reducing the shelf life by one week and that the effectiveness of both measures can be surpassed by reducing the initial occurrence of L. monocytogenes in the product (at the end of processing). It is, therefore, necessary that future QRA models for RTE seafood contain a processing module that can provide insight into intervention strategies that can retard L. monocytogenes’ growth, such as the use of bacteriocins, ad hoc starter cultures and/or organic acids, and other strategies seeking to reduce cross-contamination at the facilities, such as stringent controls for sanitation procedures. Since risk estimates were shown to be moderately driven by growth kinetic parameters, namely, the exponential growth rate, the minimum temperature for growth, and the maximum population density, further work is needed to reduce uncertainties. Full article
(This article belongs to the Special Issue Quantitative Risk Assessment of Listeria monocytogenes in Foods)
16 pages, 860 KB  
Review
Clinical Findings of Listeria monocytogenes Infections with a Special Focus on Bone Localizations
by Marco Bongiovanni, Claudio Cavallo, Beatrice Barda, Lukasz Strulak, Enos Bernasconi and Andrea Cardia
Microorganisms 2024, 12(1), 178; https://doi.org/10.3390/microorganisms12010178 - 16 Jan 2024
Cited by 4 | Viewed by 4924
Abstract
Listeria monocytogenes is a Gram-positive pathogenic bacterium which can be found in soil or water. Infection with the microorganism can occur after ingestion of contaminated food products. Small and large outbreaks of listeriosis have been described in the past. L. monocytogenes can cause [...] Read more.
Listeria monocytogenes is a Gram-positive pathogenic bacterium which can be found in soil or water. Infection with the microorganism can occur after ingestion of contaminated food products. Small and large outbreaks of listeriosis have been described in the past. L. monocytogenes can cause a number of different clinical syndromes, most frequently sepsis, meningitis, and rhombencephalitis, particularly in immunocompromised hosts. L. monocytogenes systemic infections can develop following tissue penetration across the gastrointestinal tract or to hematogenous spread to sterile sites, possibly evolving towards bacteremia. L. monocytogenes only rarely causes bone or joint infections, usually in the context of prosthetic material that can provide a site for bacterial seeding. We describe here the clinical findings of invasive listeriosis, mainly focusing on the diagnosis, clinical management, and treatment of bone and vertebral infections occurring in the context of invasive listeriosis. Full article
(This article belongs to the Special Issue Microorganisms Associated with Infectious Disease 2.0)
Show Figures

Figure 1

Back to TopTop