Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = lacto-N-tetraose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2536 KB  
Article
Patterns of Human Milk Oligosaccharides in Mature Milk Are Associated with Certain Gut Microbiota in Infants
by Shuai Mao, Ai Zhao, Hua Jiang, Jingyu Yan, Wuxian Zhong, Yiping Xun and Yumei Zhang
Nutrients 2024, 16(9), 1287; https://doi.org/10.3390/nu16091287 - 25 Apr 2024
Cited by 5 | Viewed by 3235
Abstract
Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother–infant dyads. Breast milk and [...] Read more.
Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother–infant dyads. Breast milk and infant faecal samples were collected and tested. With milk 2′-fucosyllactose, difucosyllactose, and lacto-N-fucopentaose-I as biomarkers, we divided the mothers into secretor and non-secretor groups. HMO patterns were extracted using principal component analysis. The majority (70.7%) of mothers were categorised as secretor and five different HMO patterns were identified. After adjustment, the infants of secretor mothers exhibited a lower relative abundance of Bifidobacterium bifidum (β = −0.245, 95%CI: −0.465~−0.025). An HMO pattern characterised by high levels of 3-fucosyllactose, lacto-N-fucopentaose-III, and lacto-N-neodifucohexaose-II was positively associated with the relative abundance of Bifidobacterium breve (p = 0.014), while the pattern characterised by lacto-N-neotetraose, 6′-sialyllactose, and sialyllacto-N-tetraose-b was negatively associated with Bifidobacterium breve (p = 0.027). The pattern characterised by high levels of monofucosyl-lacto-N-hexaose-III and monofucosyl-lacto-N-neohexaose was positively associated with Bifidobacterium dentium (p = 0.025) and Bifidobacterium bifidum (p < 0.001), respectively. This study suggests that HMO patterns from mature breast milk were associated with certain gut microbiota of breastfed infants. Full article
(This article belongs to the Special Issue Roles of Dairy Intake in Health Development)
Show Figures

Figure 1

16 pages, 3296 KB  
Article
Isolation and Characterisation of Streptococcus spp. with Human Milk Oligosaccharides Utilization Capacity from Human Milk
by Ye Zhou, Xiaoming Liu, Haiqin Chen, Jianxin Zhao, Hao Zhang, Wei Chen and Bo Yang
Foods 2024, 13(9), 1291; https://doi.org/10.3390/foods13091291 - 23 Apr 2024
Cited by 3 | Viewed by 2548
Abstract
Human milk oligosaccharides (HMO) that promote the growth of beneficial gut microbes in infants are abundant in human milk. Streptococcus, one of the dominant genera in human milk microbiota, is also highly prevalent in the infant gut microbiota, possibly due to its [...] Read more.
Human milk oligosaccharides (HMO) that promote the growth of beneficial gut microbes in infants are abundant in human milk. Streptococcus, one of the dominant genera in human milk microbiota, is also highly prevalent in the infant gut microbiota, possibly due to its adeptness at utilizing HMOs. While previous studies have mainly focused on HMO interactions with gut bacteria like Bifidobacterium and Bacteroides spp., the interaction with Streptococcus spp. has not been fully explored. In this study, Streptococcus spp. was isolated from human milk and identified to exhibit extensive capabilities in utilizing HMOs. Their consumption rates of 2′-fucosyllactose (2′-FL), 6′-sialyllactose (6′-SL), and lacto-N-tetraose (LNT) closely matched those of Bifidobacterium longum subsp. infantis ATCC 15697. Furthermore, we assessed the safety-related genes in the genomes of the Streptococcus species capable of utilizing HMOs, revealing potential virulence and resistance genes. In addition, no haemolytic activity was observed. These findings expand the knowledge of metabolic interactions and networks within the microbiota of human milk and the early life human gut. Full article
Show Figures

Figure 1

21 pages, 5285 KB  
Article
An In Vitro Colonic Fermentation Study of the Effects of Human Milk Oligosaccharides on Gut Microbiota and Short-Chain Fatty Acid Production in Infants Aged 0–6 Months
by Menglu Li, Han Lu, Yuling Xue, Yibing Ning, Qingbin Yuan, Huawen Li, Yannan He, Xianxian Jia and Shijie Wang
Foods 2024, 13(6), 921; https://doi.org/10.3390/foods13060921 - 18 Mar 2024
Cited by 16 | Viewed by 4676
Abstract
The impact of five human milk oligosaccharides (HMOs)—2′-fucosyllactose (2FL), 3′-sialyllactose (3SL), 6′-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)—on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0–6 months was assessed through in vitro fermentation. Analyses of the influence of [...] Read more.
The impact of five human milk oligosaccharides (HMOs)—2′-fucosyllactose (2FL), 3′-sialyllactose (3SL), 6′-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)—on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0–6 months was assessed through in vitro fermentation. Analyses of the influence of different HMOs on the composition and distribution of infant gut microbiota and on SCFA levels were conducted using 16S rRNA sequencing, quantitative real-time PCR (qPCR), and gas chromatography (GC), respectively. The findings indicated the crucial role of the initial microbiota composition in shaping fermentation outcomes. Fermentation maintained the dominant genera species in the intestine but influenced their abundance and distribution. Most of the 10 Bifidobacteria strains effectively utilized HMOs or their degradation products, particularly demonstrating proficiency in utilizing 2FL and sialylated HMOs compared to non-fucosylated neutral HMOs. Moreover, our study using B. infantis-dominant strains and B. breve-dominant strains as inocula revealed varying acetic acid levels produced by Bifidobacteria upon HMO degradation. Specifically, the B. infantis-dominant strain yielded notably higher acetic acid levels than the B. breve-dominant strain (p = 0.000), with minimal propionic and butyric acid production observed at fermentation’s conclusion. These findings suggest the potential utilization of HMOs in developing microbiota-targeted foods for infants. Full article
Show Figures

Figure 1

18 pages, 3408 KB  
Article
Infant Formula Supplemented with Five Human Milk Oligosaccharides Shifts the Fecal Microbiome of Formula-Fed Infants Closer to That of Breastfed Infants
by Andrea Q. Holst, Pernille Myers, Paula Rodríguez-García, Gerben D. A. Hermes, Cathrine Melsaether, Adam Baker, Stina R. Jensen and Katja Parschat
Nutrients 2023, 15(14), 3087; https://doi.org/10.3390/nu15143087 - 10 Jul 2023
Cited by 26 | Viewed by 8121
Abstract
Breastmilk is the optimal source of infant nutrition, with short-term and long-term health benefits. Some of these benefits are mediated by human milk oligosaccharides (HMOs), a unique group of carbohydrates representing the third most abundant solid component of human milk. We performed the [...] Read more.
Breastmilk is the optimal source of infant nutrition, with short-term and long-term health benefits. Some of these benefits are mediated by human milk oligosaccharides (HMOs), a unique group of carbohydrates representing the third most abundant solid component of human milk. We performed the first clinical study on infant formula supplemented with five different HMOs (5HMO-mix), comprising 2′-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3′-sialyllactose and 6′-sialyllactose at a natural total concentration of 5.75 g/L, and here report the analysis of the infant fecal microbiome. We found an increase in the relative abundance of bifidobacteria in the 5HMO-mix cohort compared with the formula-fed control, specifically affecting bifidobacteria that can produce aromatic lactic acids. 5HMO-mix influenced the microbial composition as early as Week 1, and the observed changes persisted to at least Week 16, including a relative decrease in species with opportunistic pathogenic strains down to the level observed in breastfed infants during the first 4 weeks. We further analyzed the functional potential of the microbiome and observed features shared between 5HMO-mix-supplemented and breastfed infants, such as a relative enrichment in mucus and tyrosine degradation, with the latter possibly being linked to the aromatic lactic acids. The 5HMO-mix supplement, therefore, shifts the infant fecal microbiome closer to that of breastfed infants. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

16 pages, 1136 KB  
Article
Human Milk Oligosaccharides Variation in Gestational Diabetes Mellitus Mothers
by Yuqi Dou, Yuanli Luo, Yan Xing, Hui Liu, Botian Chen, Liye Zhu, Defu Ma and Jing Zhu
Nutrients 2023, 15(6), 1441; https://doi.org/10.3390/nu15061441 - 16 Mar 2023
Cited by 15 | Viewed by 3578
Abstract
Gestational diabetes mellitus (GDM) is a common disease of pregnancy, but with very limited knowledge of its impact on human milk oligosaccharides (HMOs) in breast milk. This study aimed to explore the lactational changes in the concentration of HMOs in exclusively breastfeeding GDM [...] Read more.
Gestational diabetes mellitus (GDM) is a common disease of pregnancy, but with very limited knowledge of its impact on human milk oligosaccharides (HMOs) in breast milk. This study aimed to explore the lactational changes in the concentration of HMOs in exclusively breastfeeding GDM mothers and the differences between GDM and healthy mothers. A total of 22 mothers (11 GDM mothers vs. 11 healthy mothers) and their offspring were enrolled in the study and the levels of 14 HMOs were measured in colostrum, transitional milk, and mature milk. Most of the HMOs showed a significant temporal trend with decreasing levels over lactation; however, there were some exceptions for 2′-Fucosyllactose (2′-FL), 3-Fucosyllactose (3-FL), Lacto-N-fucopentaose II (LNFP-II), and Lacto-N-fucopentaose III (LNFP-III). Lacto-N-neotetraose (LNnT) was significantly higher in GDM mothers in all time points and its concentrations in colostrum and transitional milk were correlated positively with the infant’s weight-for-age Z-score at six months postnatal in the GDM group. Significant group differences were also found in LNFP-II, 3′-Sialyllactose (3′-SL), and Disialyllacto-N-tetraose (DSLNT) but not in all lactational periods. The role of differently expressed HMOs in GDM needs to be further explored by follow-up studies. Full article
(This article belongs to the Special Issue The Role of Nutrition and Body Composition on Metabolism)
Show Figures

Figure 1

16 pages, 3290 KB  
Article
Human Milk Oligosaccharides Are Associated with Lactation Stage and Lewis Phenotype in a Chinese Population
by Xiangnan Ren, Jingyu Yan, Ye Bi, Paul William Shuttleworth, Ye Wang, Shan Jiang, Jie Wang, Yifan Duan, Jianqiang Lai and Zhenyu Yang
Nutrients 2023, 15(6), 1408; https://doi.org/10.3390/nu15061408 - 15 Mar 2023
Cited by 20 | Viewed by 4016
Abstract
Background: Human milk oligosaccharides (HMOs) are the third most abundant component of human milk. Various factors may affect the concentration of HMOs, such as the lactation period, Lewis blood type, and the maternal secretor gene status. Objectives: The purpose of this study is [...] Read more.
Background: Human milk oligosaccharides (HMOs) are the third most abundant component of human milk. Various factors may affect the concentration of HMOs, such as the lactation period, Lewis blood type, and the maternal secretor gene status. Objectives: The purpose of this study is to investigate factors associated with HMO concentrations in Chinese populations. Methods: A sub-sample of 481 was randomly selected from a large cross-sectional study in China (n = 6481) conducted in eight provinces (Beijing, Heilongjiang, Shanghai, Yunnan, Gansu, Guangdong, Zhejiang, and Shandong) between 2011 and 2013. HMO concentrations were determined by a high-throughput UPLC-MRM method. Various factors were collected through face-to-face interviews. Anthropometric measurement was conducted by trained staff. Results: Median total HMO concentration was 13.6 g/L, 10.7 g/L, and 6.0 g/L for colostrum, transitional milk, and mature milk, respectively. HMO concentration decreased significantly as the lactation period increased (p < 0.0001). There were significant differences of average total HMO concentration between secretor mothers and non-secretor mothers (secretor 11.3 g/L vs. non-secretor 5.8 g/L, p < 0.0001). There were significant differences of average total HMO concentrations among three Lewis blood types (p = 0.003). Comparing with the concentration of total oligosaccharides of Le+ (a−b+), average of total oligosaccharides concentrations increased by 3.9 (Le+ (a+b−), p = 0.004) and 1.1 g/L (Le− (a−b−), p = 0.049). The volume of breast milk expressed and the province the mother came from affected the concentration of total oligosaccharides (all p < 0.0001). Maternal BMI (p = 0.151), age (p = 0.630), prematurity (p = 0.850), mode of delivery (p = 0.486), infants’ gender (p = 0.685), maternal education level (p = 0.989), maternal occupation (p = 0.568), maternal allergic history (p = 0.370), maternal anemia (p = 0.625), pregnancy-induced hypertension (p = 0.739), gestational diabetes (p = 0.514), and parity (p = 0.098) were not significantly correlated with the concentration of milk oligosaccharides. The concentrations of 2′-fucosyllactose (2′-FL), lacto-N-neotetraose (LNnT), sialyllacto-N-tetraose c (LSTc), lacto-N-fucopentaose I (LNFP-I), disialylated lacto-N-tetraose (DSLNT), difucosyl-para-lacto-N-neohexaose (DFpLNnH), difucosyl-lacto-N-hexaose (DFLNH[a]), and 3-sialyllactose (3′-SL) showed a gradual downward trend, while the concentration of 3-fucosyllactose (3-FL) showed a gradual upward trend among three lactation stages (p < 0.05). Conclusions: The concentration of HMOs changes throughout lactation, and it varies between different HMOs. HMO concentrations differed between lactation stage, maternal secretor gene status, Lewis blood type, volume of breast milk expressed, and the province the mother came from. Prematurity, mode of delivery, parity, infants’ gender, and maternal characteristics did not affect the HMO concentration. Geographical region may be not associated with HMOs concentration in human milk. There may be a mechanism for co-regulation of the secretion of some of the oligosaccharides such as 2′FL vs. 3FL, 2′FL vs. LNnT, and lacto-N-tetraose (LNT). Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

11 pages, 299 KB  
Article
Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China
by Xinyang Li, Yingyi Mao, Shuang Liu, Jin Wang, Xiang Li, Yanrong Zhao, David R. Hill and Shuo Wang
Nutrients 2022, 14(19), 4131; https://doi.org/10.3390/nu14194131 - 4 Oct 2022
Cited by 14 | Viewed by 3953
Abstract
Background: Human milk oligosaccharides (HMOs) are a group of breast milk carbohydrates exerting pivotal benefits for breastfed infants. Whether maternal diet is associated with breastmilk HMO composition has not been well-characterized. Objectives: We investigated the associations between dietary nutrient intake and HMO concentrations [...] Read more.
Background: Human milk oligosaccharides (HMOs) are a group of breast milk carbohydrates exerting pivotal benefits for breastfed infants. Whether maternal diet is associated with breastmilk HMO composition has not been well-characterized. Objectives: We investigated the associations between dietary nutrient intake and HMO concentrations in a general pregnant and postpartum population. Methods: A total of 383 breast milk samples and the corresponding food frequency questionnaires during 0–400 postpartum days from 277 mothers were collected. Six different HMOs were detected in mothers’ milk. The correlation between nutrients and HMOs were analyzed using a linear mixed-effects model. Results: We found plant nutrients, vitamin A, vitamin C and vegetables as positive predictors of 3-fucosyllactose; vitamin B1 and vitamin B2 were positive predictors for 2′-fucosyllactose level and the sum of 2′-fucosyllactose and 3-fucosyllactose; tocopherol and metal elements were positive predictors for 3′-sialyllactose; and metal elements were positively associated with the sum of all the six HMOs; the milk and lactose intake was a positive predictor of lacto-N-tetraose levels and the sum of lacto-N-tetraose and lacto-N-neotetraose. Conclusions: The results show that vegetables, vitamins and metal elements are dietary components positively associated with HMO concentrations. Full article
15 pages, 2325 KB  
Article
1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors
by Maaria Kortesniemi, Tahereh Jafari, Yumei Zhang and Baoru Yang
Molecules 2022, 27(17), 5526; https://doi.org/10.3390/molecules27175526 - 27 Aug 2022
Cited by 10 | Viewed by 3268
Abstract
Human milk is an intricate, bioactive food promoting infant health. We studied the composition of human milk samples collected over an 8-month lactation using 1H NMR metabolomics. A total of 72 human breast milk samples were collected from ten Chinese mothers at [...] Read more.
Human milk is an intricate, bioactive food promoting infant health. We studied the composition of human milk samples collected over an 8-month lactation using 1H NMR metabolomics. A total of 72 human breast milk samples were collected from ten Chinese mothers at eight different time points. The concentrations of ten human milk oligosaccharides (HMOs), fucose and lactose were quantified. Six of the mothers were classified as Lewis-positive secretors (Se+Le+) and four as Lewis-positive non-secretors (SeLe+) based on the levels of 2′-fucosyllactose (2′-FL), lacto-N-fucopentaose (LNFP) II, lactodifucotetraose (LDFT) and lacto-N-neotetraose (LNnT). Acetate, citrate, short/medium-chain fatty acids, glutamine and urea showed a time-dependent trend in relation to the stage of lactation. The concentrations of 2′-FL, 3-FL (3-fucosyllactose), 3′-SL (3′-sialyllactose), LDFT, LNFP I, LNFP II, LNFP III, LNnT, LNT (lacto-N-tetraose), and fucose were statistically different between secretors and non-secretors. A temporal difference of approximately 1–2 months between the development of non-secretor and secretor HMO profiles was shown. The results highlighted the importance of long-term breastfeeding, especially among non-secretors. Full article
(This article belongs to the Special Issue NMR-Based Metabolomics and Human Health)
Show Figures

Graphical abstract

19 pages, 2981 KB  
Article
Growth and Gastrointestinal Tolerance in Healthy Term Infants Fed Milk-Based Infant Formula Supplemented with Five Human Milk Oligosaccharides (HMOs): A Randomized Multicenter Trial
by John Lasekan, Yong Choe, Svyatoslav Dvoretskiy, Amy Devitt, Sue Zhang, Amy Mackey, Karyn Wulf, Rachael Buck, Christine Steele, Michelle Johnson and Geraldine Baggs
Nutrients 2022, 14(13), 2625; https://doi.org/10.3390/nu14132625 - 24 Jun 2022
Cited by 39 | Viewed by 7592
Abstract
Background: Five of the most abundant human milk oligosaccharides (HMOs) in human milk are 2′-fucosyllactose (2′-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL). Methods: A randomized, double-blind, controlled parallel feeding trial evaluated growth in healthy term infants fed a [...] Read more.
Background: Five of the most abundant human milk oligosaccharides (HMOs) in human milk are 2′-fucosyllactose (2′-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL). Methods: A randomized, double-blind, controlled parallel feeding trial evaluated growth in healthy term infants fed a control milk-based formula (CF; n = 129), experimental milk-based formula (EF; n = 130) containing five HMOs (5.75 g/L; 2′-FL, 3-FL, LNT, 3′-SL and 6′-SL) or human milk (HM; n = 104). Results: No significant differences (all p ≥ 0.337, protocol evaluable cohort) were observed among the three groups for weight gain per day from 14 to 119 days (D) of age, irrespective of COVID-19 or combined non-COVID-19 and COVID-19 periods. There were no differences (p ≥ 0.05) among the three groups for gains in weight and length from D14 to D119. Compared to the CF group, the EF group had more stools that were soft, frequent and yellow and were similar to the HM group. Serious and non-serious adverse events were not different among groups, but more CF-fed infants were seen by health care professionals for illness from study entry to D56 (p = 0.044) and D84 (p = 0.028) compared to EF-fed infants. Conclusions: The study demonstrated that the EF containing five HMOs supported normal growth, gastrointestinal (GI) tolerance and safe use in healthy term infants. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

23 pages, 3814 KB  
Article
Human Milk Oligosaccharides and Lactose Differentially Affect Infant Gut Microbiota and Intestinal Barrier In Vitro
by Jane Mea Natividad, Benoît Marsaux, Clara Lucia Garcia Rodenas, Andreas Rytz, Gies Vandevijver, Massimo Marzorati, Pieter Van den Abbeele, Marta Calatayud and Florence Rochat
Nutrients 2022, 14(12), 2546; https://doi.org/10.3390/nu14122546 - 19 Jun 2022
Cited by 56 | Viewed by 7692
Abstract
Background: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. [...] Read more.
Background: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. Infant formulas supplemented with the HMOs 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) reduce infant morbidity and medication use and promote beneficial bacteria in the infant gut ecosystem. To further improve infant formula and achieve closer proximity to human milk composition, more complex HMO mixtures could be added. However, we currently lack knowledge about their effects on infants’ gut ecosystems. Method: We assessed the effect of lactose, 2′-FL, 2′-FL + LNnT, and a mixture of six HMOs (HMO6: consisting of 2′-FL, LNnT, difucosyllactose, lacto-N-tetraose, 3′- and 6′-sialyllactose) on infant gut microbiota and intestinal barrier integrity using a combination of in vitro models to mimic the microbial ecosystem (baby M-SHIME®) and the intestinal epithelium (Caco-2/HT29-MTX co-culture). Results: All the tested products had bifidogenic potential and increased SCFA levels; however, only the HMOs’ fermented media protected against inflammatory intestinal barrier disruption. 2′-FL/LNnT and HMO6 promoted the highest diversification of OTUs within the Bifidobactericeae family, whereas beneficial butyrate-producers were specifically enriched by HMO6. Conclusion: These results suggest that increased complexity in HMO mixture composition may benefit the infant gut ecosystem, promoting different bifidobacterial communities and protecting the gut barrier against pro-inflammatory imbalances. Full article
(This article belongs to the Special Issue Diet and Nutritional Intervention for the Infant Gut Microbiome)
Show Figures

Figure 1

13 pages, 930 KB  
Article
Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides
by Pavlína Nekvasilová, Michaela Hovorková, Zuzana Mészáros, Lucie Petrásková, Helena Pelantová, Vladimír Křen, Kristýna Slámová and Pavla Bojarová
Int. J. Mol. Sci. 2022, 23(8), 4106; https://doi.org/10.3390/ijms23084106 - 7 Apr 2022
Cited by 15 | Viewed by 3282
Abstract
Enzymatic synthesis is an elegant biocompatible approach to complex compounds such as human milk oligosaccharides (HMOs). These compounds are vital for healthy neonatal development with a positive impact on the immune system. Although HMOs may be prepared by glycosyltransferases, this pathway is often [...] Read more.
Enzymatic synthesis is an elegant biocompatible approach to complex compounds such as human milk oligosaccharides (HMOs). These compounds are vital for healthy neonatal development with a positive impact on the immune system. Although HMOs may be prepared by glycosyltransferases, this pathway is often complicated by the high price of sugar nucleotides, stringent substrate specificity, and low enzyme stability. Engineered glycosidases (EC 3.2.1) represent a good synthetic alternative, especially if variations in the substrate structure are desired. Site-directed mutagenesis can improve the synthetic process with higher yields and/or increased reaction selectivity. So far, the synthesis of human milk oligosaccharides by glycosidases has mostly been limited to analytical reactions with mass spectrometry detection. The present work reveals the potential of a library of engineered glycosidases in the preparative synthesis of three tetrasaccharides derived from lacto-N-tetraose (Galβ4GlcNAcβ3Galβ4Glc), employing sequential cascade reactions catalyzed by β3-N-acetylhexosaminidase BbhI from Bifidobacterium bifidum, β4-galactosidase BgaD-B from Bacillus circulans, β4-N-acetylgalactosaminidase from Talaromyces flavus, and β3-galactosynthase BgaC from B. circulans. The reaction products were isolated and structurally characterized. This work expands the insight into the multi-step catalysis by glycosidases and shows the path to modified derivatives of complex carbohydrates that cannot be prepared by standard glycosyltransferase methods. Full article
(This article belongs to the Special Issue Biotechnological Application of Carbohydrate Active Enzymes)
Show Figures

Scheme 1

13 pages, 1341 KB  
Article
Phylogenetic, Functional and Safety Features of 1950s B. infantis Strains
by Stéphane Duboux, Catherine Ngom-Bru, Florac De Bruyn and Biljana Bogicevic
Microorganisms 2022, 10(2), 203; https://doi.org/10.3390/microorganisms10020203 - 18 Jan 2022
Cited by 11 | Viewed by 5120 | Correction
Abstract
Strains of Bifidobacterium longum subsp. infantis (B. infantis) are amongst the first to colonize the infant gut, partly due to their capacity to metabolize complex human milk oligosaccharides (HMO), and are proposed to play a key role in the development of [...] Read more.
Strains of Bifidobacterium longum subsp. infantis (B. infantis) are amongst the first to colonize the infant gut, partly due to their capacity to metabolize complex human milk oligosaccharides (HMO), and are proposed to play a key role in the development of the infant gut. Since early life, B. infantis supplementation is of high interest, and detailed phylogenetic, functional and safety characterization of the selected strains should be pursued. Using a combination of long and short-read sequencing technologies, we first decipher the genetic distance between different isolates of the same B. infantis strain. Using the same approach, we show that several publicly available genomes recapitulate this strain-level distance as compared to two of the first strains obtained in the 1950s. Furthermore, we demonstrate that the two 1950s B. infantis strains display different functional and safety attributes, as ATCC 15697 is resistant to streptomycin and shows a preference towards lacto-N-tetraose LNT and sialylated HMOs, while LMG 11588 is sensitive to all tested antibiotics and shows a preference towards fucosylated HMOs. Overall, our work highlights that the current diversity observed in B. infantis is likely underestimated and that strain selection within this subspecies must be the subject of scientific pursuit and associated evaluation. Full article
(This article belongs to the Special Issue The Gut Microbiota in Infants: Focus on Bifidobacterium)
Show Figures

Figure 1

23 pages, 5152 KB  
Article
Improvement of the Transglycosylation Efficiency of a Lacto-N-Biosidase from Bifidobacterium bifidum by Protein Engineering
by Marlene Vuillemin, Jesper Holck, Martin Matwiejuk, Eduardo S. Moreno Prieto, Jan Muschiol, Dora Molnar-Gabor, Anne S. Meyer and Birgitte Zeuner
Appl. Sci. 2021, 11(23), 11493; https://doi.org/10.3390/app112311493 - 4 Dec 2021
Cited by 14 | Viewed by 3944
Abstract
The lacto-N-biosidase LnbB from Bifidobacterium bifidum JCM 1254 was engineered to improve its negligible transglycosylation efficiency with the purpose of enzymatically synthesizing lacto-N-tetraose (LNT; Gal-β1,3-GlcNAc-β1,3-Gal-β1,4-Glc) in one enzymatic step. LNT is a prebiotic human milk oligosaccharide in itself and [...] Read more.
The lacto-N-biosidase LnbB from Bifidobacterium bifidum JCM 1254 was engineered to improve its negligible transglycosylation efficiency with the purpose of enzymatically synthesizing lacto-N-tetraose (LNT; Gal-β1,3-GlcNAc-β1,3-Gal-β1,4-Glc) in one enzymatic step. LNT is a prebiotic human milk oligosaccharide in itself and constitutes the structural core of a range of more complex human milk oligosaccharides as well. Thirteen different LnbB variants were expressed and screened for transglycosylation activity by monitoring transglycosylation product formation using lacto-N-biose 1,2-oxazoline as donor substrate and lactose as acceptor substrate. LNT was the major reaction product, yet careful reaction analysis revealed the formation of three additional LNT isomers, which we identified to have a β1,2-linkage, a β1,6-linkage, and a 1,1-linkage, respectively, between lacto-N-biose (Gal-β1,3-GlcNAc) and lactose. Considering both maximal transglycosylation yield and regioselectivity as well as minimal product hydrolysis, the best variant was LnbB W394H, closely followed by W465H and Y419N. A high transglycosylation yield was also obtained with W394F, yet the substitution of W394 and W465 of the subsite −1 hydrophobic platform in the enzyme with His dramatically impaired the undesirable product hydrolysis as compared to substitution with Phe; the effect was most pronounced for W465. Using p-nitrophenyl-β-lacto-N-bioside as donor substrate manifested W394 as an important target position. The optimization of the substrate concentrations confirmed that high initial substrate concentration and high acceptor-to-donor ratio both favor transglycosylation. Full article
(This article belongs to the Special Issue Carbohydrate-Active Enzymes for Valuable Product Creation)
Show Figures

Figure 1

12 pages, 697 KB  
Article
Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum
by Shuang Liu, Xiaokun Cai, Jin Wang, Yingyi Mao, Yan Zou, Fang Tian, Bo Peng, Jiaqiang Hu, Yanrong Zhao and Shuo Wang
Nutrients 2021, 13(11), 4017; https://doi.org/10.3390/nu13114017 - 11 Nov 2021
Cited by 16 | Viewed by 4339
Abstract
This study investigated the variation in oligosaccharide levels in the breast milk of south Chinese mothers in a prolonged breastfeeding period of up to 400 days postpartum. A total of 488 breast milk samples were collected from 335 healthy mothers at five different [...] Read more.
This study investigated the variation in oligosaccharide levels in the breast milk of south Chinese mothers in a prolonged breastfeeding period of up to 400 days postpartum. A total of 488 breast milk samples were collected from 335 healthy mothers at five different time points: 0–5 days, 10–15 days, 40–45 days, 200–240 days, and 300–400 days postpartum. A high-performance anion-exchange chromatography-pulsed amperometric detector (HPAEC-PAD) was used to quantify 2′-fucosyllactose (2′-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL). In this study, we found six oligosaccharides that were present in breast milk from 0 to 400 days postpartum. The median value ranges of individual oligosaccharide components in this study were 1013–2891 mg/L 2′-FL, 193–1421 mg/L 3-FL, 314–1478 mg/L LNT, 44–255 mg/L LNnT, 111–241 mg/L 3′-SL, and 23–602 mg/L6′-SL. HMO levels decreased over the lactation periods, except for 3-FL, which increased throughout lactation. The predominant fucosylated and sialylated HMOs were 2′-FL and 6′-SL at 40–45 days postpartum and changed to 3-FL and 3′-SL at 200–240 days postpartum. Results from this study showed that lactating women continue to provide their offspring with a high level of 2′-FL one year after delivery, suggesting that 2′-FL may play an important role for infants in early life. Our findings also provide further evidence in support of breastfeeding after one-year postpartum. Full article
Show Figures

Figure 1

17 pages, 2203 KB  
Article
Human Milk Oligosaccharide-Stimulated Bifidobacterium Species Contribute to Prevent Later Respiratory Tract Infections
by Shaillay Kumar Dogra, Francois-Pierre Martin, Dominique Donnicola, Monique Julita, Bernard Berger and Norbert Sprenger
Microorganisms 2021, 9(9), 1939; https://doi.org/10.3390/microorganisms9091939 - 12 Sep 2021
Cited by 38 | Viewed by 4684
Abstract
(1) Background: Human milk oligosaccharides (HMOs) may support immune protection, partly via their action on the early-life gut microbiota. Exploratory findings of a randomized placebo-controlled trial associated 2′fucosyllactose (2′FL) and lacto-N-neotetraose (LNnT) formula feeding with reduced risk for reported bronchitis and lower respiratory [...] Read more.
(1) Background: Human milk oligosaccharides (HMOs) may support immune protection, partly via their action on the early-life gut microbiota. Exploratory findings of a randomized placebo-controlled trial associated 2′fucosyllactose (2′FL) and lacto-N-neotetraose (LNnT) formula feeding with reduced risk for reported bronchitis and lower respiratory tract illnesses (LRTI), as well as changes in gut microbiota composition. We sought to identify putative gut microbial mechanisms linked with these clinical observations. (2) Methods: We used stool microbiota composition, metabolites including organic acids and gut health markers in several machine-learning-based classification tools related prospectively to experiencing reported bronchitis or LRTI, as compared to no reported respiratory illness. We performed preclinical epithelial barrier function modelling to add mechanistic insight to these clinical observations. (3) Results: Among the main features discriminant for infants who did not experience any reported bronchitis (n = 80/106) or LRTI (n = 70/103) were the 2-HMO formula containing 2′FL and LNnT, higher acetate, fucosylated glycans and Bifidobacterium, as well as lower succinate, butyrate, propionate and 5-aminovalerate, along with Carnobacteriaceae members and Escherichia. Acetate correlated with several Bifidobacterium species. By univariate analysis, infants experiencing no bronchitis or LRTI, compared with those who did, showed higher acetate (p < 0.007) and B. longum subsp. infantis (p ≤ 0.03). In vitro experiments demonstrate that 2′FL, LNnT and lacto-N-tetraose (LNT) stimulated B. longum subsp. infantis (ATCC15697) metabolic activity. Metabolites in spent culture media, primarily due to acetate, supported epithelial barrier protection. (4) Conclusions: An early-life gut ecology characterized by Bifidobacterium-species-driven metabolic changes partly explains the observed clinical outcomes of reduced risk for bronchitis and LRTI in infants fed a formula with HMOs. (Trial registry number NCT01715246.). Full article
Show Figures

Figure 1

Back to TopTop