Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (165)

Search Parameters:
Keywords = laminar–turbulent transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8901 KB  
Article
Aerodynamic Performance of a Natural Laminar Flow Swept-Back Wing for Low-Speed UAVs Under Take Off/Landing Flight Conditions and Atmospheric Turbulence
by Nikolaos K. Lampropoulos, Ioannis E. Sarris, Spyridon Antoniou, Odysseas Ziogas, Pericles Panagiotou and Kyros Yakinthos
Aerospace 2025, 12(10), 934; https://doi.org/10.3390/aerospace12100934 - 16 Oct 2025
Viewed by 268
Abstract
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The [...] Read more.
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The aim of this work is the numerical verification that a typical wing design (tapered with moderate aspect ratio and wash-out), being constructed out of aerodynamically highly efficient NLF airfoils during cruise, can deliver high aerodynamic loading under minimal freestream turbulence as well as realistic atmospheric conditions of intermediate turbulence. Thus, high mission flexibility is achieved, e.g., short take off/landing capabilities on the deck of ship where moderate air turbulence is prevalent. Special attention is paid to the effect of the Wing Tip Vortex (WTV) under minimal inflow turbulence regimes. The flight conditions are take off or landing at moderate Reynolds number, i.e., one to two millions. The numerical simulation is based on an open source CFD code and parallel processing on a High Performance Computing (HPC) platform. The aim is the identification of both mean flow and turbulent structures around the wing and subsequently the formation of the wing tip vortex. Due to the purely three-dimensional character of the flow, the turbulence is resolved with advanced modeling, i.e., the Improved Delayed Detached Eddy Simulation (IDDES) which is well-customized to switch modes between Delayed Detached Eddy Simulation (DDES) and Wall-Modeled Large Eddy Simulation (WMLES), thus increasing the accuracy in the shear layer regions, the tip vortex and the wake, while at the same time keeping the computational cost at reasonable levels. IDDES also has the capability to resolve the transition of the boundary layer from laminar to turbulent, at least with engineering accuracy; thus, it serves as a high-fidelity turbulence model in this work. The study comprises an initial benchmarking of the code against wind tunnel measurements of the airfoil and verifies the adequacy of mesh density that is used for the simulation around the wing. Subsequently, the wing is positioned at near-stall conditions so that the aerodynamic loading, the kinematics of the flow and the turbulence regime in the wing vicinity, the wake and far downstream can be estimated. In terms of the kinematics of the WTV, a thorough examination is attempted which comprises its inception, i.e., the detachment of the boundary layer on the cut-off wing tip, the roll-up of the shear layer to form the wake and the motion of the wake downstream. Moreover, the effect of inflow turbulence of moderate intensity is investigated that verifies the bibliography with regard to the performance degradation of static airfoils in a turbulent atmospheric regime. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 8069 KB  
Article
The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures
by Xinyu Chang, Mengyuan Ge, Kai Wang, Bo Zhang, Sheng Xue and Yu Sun
Fire 2025, 8(10), 393; https://doi.org/10.3390/fire8100393 - 7 Oct 2025
Viewed by 792
Abstract
To mitigate explosion hazards arising from hydrogen leakage and subsequent mixing with air, the injection of inert gases can substantially diminish explosion risk. However, prevailing research has predominantly characterized inert gas dilution effects on explosion behavior under quiescent conditions, largely neglecting the turbulence-mediated [...] Read more.
To mitigate explosion hazards arising from hydrogen leakage and subsequent mixing with air, the injection of inert gases can substantially diminish explosion risk. However, prevailing research has predominantly characterized inert gas dilution effects on explosion behavior under quiescent conditions, largely neglecting the turbulence-mediated explosion enhancement inherent to dynamic mixing scenarios. A comprehensive investigation was conducted on the combustion behavior of 30%, 50%, and 70% H2-air mixtures subjected to jet-induced (CO2, N2, He) turbulent flow, incorporating quantitative characterization of both the evolving turbulent flow field and flame front dynamics. Research has demonstrated that both an increased H2 concentration and a higher jet medium molecular weight increase the turbulence intensity: the former reduces the mixture molecular weight to accelerate diffusion, whereas the latter results in more pronounced disturbances from heavier molecules. In addition, when CO2 serves as the jet medium, a critical flame radius threshold emerges where the flame propagation velocity decreases below this threshold because CO2 dilution effects suppress combustion, whereas exceeding it leads to enhanced propagation as initial disturbances become the dominant factor. Furthermore, at reduced H2 concentrations (30–50%), flow disturbances induce flame front wrinkling while preserving the spherical geometry; conversely, at 70% H2, substantial flame deformation occurs because of the inverse correlation between the laminar burning velocity and flame instability governing this transition. Through systematic quantitative analysis, this study elucidates the evolutionary patterns of both turbulent fields and flame fronts, offering groundbreaking perspectives on H2 combustion and explosion propagation in turbulent environments. Full article
Show Figures

Figure 1

20 pages, 3033 KB  
Review
Particle-Laden Two-Phase Boundary Layer: A Review
by Aleksey Yu. Varaksin and Sergei V. Ryzhkov
Aerospace 2025, 12(10), 894; https://doi.org/10.3390/aerospace12100894 - 2 Oct 2025
Viewed by 500
Abstract
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review [...] Read more.
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review of computational, theoretical, and experimental work devoted to the study of the characteristics of the boundary layers (BL) of gas with solid particles was performed. The features of particle motion in laminar and turbulent boundary layers, as well as their inverse effect on gas flow, are considered. Available studies on the stability of the laminar boundary layer and the effect of particles on the laminar–turbulent transition are analyzed. At the end of the review, conclusions are drawn, and priorities for future research are discussed. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

20 pages, 4517 KB  
Article
An Investigation of the Laminar–Turbulent Transition Mechanisms of Low-Pressure Turbine Boundary Layers with Linear Stability Theories
by Alice Fischer and Frank Eulitz
Int. J. Turbomach. Propuls. Power 2025, 10(4), 33; https://doi.org/10.3390/ijtpp10040033 - 2 Oct 2025
Viewed by 665
Abstract
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) [...] Read more.
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) and Linear Parabolized Stability Equations (LPSEs) over a wider parametric space. A parametric study was done to examine the wall-shear stress, shape factor, momentum thickness, as well as the growth rate and N-factor envelope. Additionally, the methodology was applied to active control techniques like suction and blowing. The results are consistent with the expected physical behavior and initial observations, while also offering a quantitative description of trends in frequencies, amplitude growth, and wavelengths. This confirms the suitability of the two stability theories, laying the base for their future validation to ensure accuracy and reliability. Full article
Show Figures

Figure 1

23 pages, 24962 KB  
Article
Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component
by Dana Bolibruchová, Marek Matejka, Richard Pastirčák and Radka Podprocká
Metals 2025, 15(10), 1065; https://doi.org/10.3390/met15101065 - 23 Sep 2025
Viewed by 323
Abstract
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any [...] Read more.
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any deficiencies in these aspects can lead to a significant reduction in the mechanical properties of the components. This article deals with the influence of plunger speed during high-pressure die casting on microstructure homogeneity and the occurrence of porosity in critical areas of AlSi9Cu3(Fe) alloy castings. Numerical simulations and experimental evaluation demonstrated that with increasing plunger speed, there is a transition from a transitional to a laminar flow regime to a fully turbulent regime, which affects the homogeneity of the alloy and its solidification. Turbulent flow minimizes shrinkage porosity in castings but increases the risk of gas porosity and oxide inclusions due to reoxidation processes, leading to the entrainment of air and oxide layers. Microporosity analysis showed that the lowest occurrence of shrinkage-type pores was found at a plunger speed of 4 m/s due to rapid filling and shorter solidification time. The optimal plunger speed range is between 3 and 3.6 m/s, ensuring a compromise between microstructure stability and minimization of porosity in critical areas. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

25 pages, 7391 KB  
Article
Assessment of Transitional RANS Models and Implementation of Transitional IDDES Method for Boundary Layer Transition and Separated Flows in OpenFOAM-V2312
by Sandip Ghimire, Xiang Ni and Yue Wang
Fluids 2025, 10(9), 230; https://doi.org/10.3390/fluids10090230 - 1 Sep 2025
Viewed by 741
Abstract
Traditional hybrid RANS/LES methods often struggle to accurately capture both the boundary layer transition and flow separation simultaneously due to their reliance on fully turbulent RANS models. To address this limitation, the present study first evaluates three transitional RANS models (γ-Reθt-SST, [...] Read more.
Traditional hybrid RANS/LES methods often struggle to accurately capture both the boundary layer transition and flow separation simultaneously due to their reliance on fully turbulent RANS models. To address this limitation, the present study first evaluates three transitional RANS models (γ-Reθt-SST, γ-SST, and Kγ-SST) on the E387 airfoil. The results demonstrate that the γ-SST model offers the best balance of accuracy and computational efficiency in predicting laminar separation bubbles (LSBs) and transition points. Building on this, we implement the γ-SST-IDDES model into OpenFOAM-v2312, which integrates the γ-SST transitional RANS model with the Improved Delayed Detached Eddy Simulation (IDDES) approach. This coupling allows for the simultaneous prediction of the laminar-turbulent transition and high-fidelity resolution of separated flows. The γ-SST-IDDES model is rigorously validated across three airfoil cases with distinct separation characteristics: E387 (small separation), DBLN-526 (moderate separation), and NACA 0021 (massive separation). The results show that the γ-SST-IDDES model outperforms conventional methods, capturing leading-edge LSBs with high accuracy compared to fully turbulent IDDES. Additionally, it successfully resolves complex 3D vortical structures in separated regions, whereas unsteady URANS provides only quasi-2D results. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

21 pages, 1439 KB  
Article
Laminar Pipe Flow Instability: A Theoretical-Experimental Perspective
by Franz Durst and El-Sayed Zanoun
Fluids 2025, 10(8), 216; https://doi.org/10.3390/fluids10080216 - 18 Aug 2025
Viewed by 808
Abstract
This paper revisits the theoretically predicted inherent stability of fully developed laminar pipe flow, which remains unconfirmed by experimental evidence. A recently developed theory of pipe-flow stability/instability addresses the gap between experimental observations and classical theoretical predictions by accounting for a parallel secondary [...] Read more.
This paper revisits the theoretically predicted inherent stability of fully developed laminar pipe flow, which remains unconfirmed by experimental evidence. A recently developed theory of pipe-flow stability/instability addresses the gap between experimental observations and classical theoretical predictions by accounting for a parallel secondary flow through the pipe’s roughness layer that accompanies the main stream. This secondary flow alters the near-wall velocity profile in the rough-wall region, creating an inflection point that promotes shear-driven instabilities and triggers the laminar-to-turbulent transition. A stability factor S=Dc/D is introduced, where D is the nominal pipe diameter and Dc refers to the critical pipe diameter. The pipe flow remains laminar and stable for S>1.0, and becomes unstable for S<1. Various experimental findings are theoretically derived, and the laminar-to-turbulent transition is identified at S=1.0. Particular attention is paid to the dependence of flow transition on both pipe diameter and pipe length. Rather than relying on a critical Reynolds number Rec, this study proposes the critical pipe diameter Dc as the key parameter governing the laminar pipe flow instability, where Rec refers here to the condition-dependent threshold at which laminar pipe flow becomes unstable and transition to turbulence occurs. The present analysis further suggests that instability arises only if the pipe length L exceeds a critical threshold Lc, that is, L>Lc. The theoretical treatment presented provides deeper physical insights into the onset of laminar pipe flow instability including the phenomenon of reverse transition. It also distinguishes between natural and forced flow transitions, providing a refined understanding of the transition process. Finally, suggestions for future experimental work are made to further validate or challenge this new theoretical perspective on pipe flow instability. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

21 pages, 8217 KB  
Article
Numerical Study of Irregularly Roughened Micro-Particles’ Drag in Laminar Flow
by Eleni Papazoglou, Konstantinos-Stefanos Nikas and Demetri Bouris
Appl. Sci. 2025, 15(16), 9090; https://doi.org/10.3390/app15169090 - 18 Aug 2025
Viewed by 471
Abstract
The effect of surface roughness in laminar flow has been the focus of recent research related to drag reduction. However, although particle transport is governed by laminar flow in most applications, the effect of surface texture on the drag of a sphere has [...] Read more.
The effect of surface roughness in laminar flow has been the focus of recent research related to drag reduction. However, although particle transport is governed by laminar flow in most applications, the effect of surface texture on the drag of a sphere has mostly been addressed in the transitional and turbulent regimes. The aim of the present study is to explore the drag behavior of rough spherical micro-particles in laminar flow. The spheres’ roughness has been structured based on a 3D complex Weaire–Phelan model, as well as on a simpler orthogonal lattice one, and quantified as per various definitions. The emerging surface roughness comprises irregular elements in terms of shape and size. The investigation has been performed at Reynolds numbers ranging from 2 to 8. The drag coefficient is found to drop quadratically with increasing roughness. Relative roughness can reduce the total drag on the particle by over 21%. The key physical mechanism is explained by the particles’ surface cavities, which contain recirculating, nearly stagnant fluid, thus creating a self-lubricating effect that reduces skin friction, as the main flow skims over the top without entering the cavities. A reduction in total drag arises when skin friction drag reduction is larger than the increase in form drag. Understanding the drag behavior of spherical particles with irregular surface texture provides new and useful insight into low Reynolds number transport phenomena related to a variety of engineering applications. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

17 pages, 11318 KB  
Article
Porous Surface Design with Stability Analysis for Turbulent Transition Control in Hypersonic Boundary Layer
by Youngwoo Kim, Minjae Jeong, Suhun Cho, Donghun Park and Solkeun Jee
Aerospace 2025, 12(6), 518; https://doi.org/10.3390/aerospace12060518 - 8 Jun 2025
Viewed by 721
Abstract
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like [...] Read more.
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like in the ultrasonic frequency range and can be effectively attenuated by porous surfaces. Previous studies have explored porous surfaces, either by targeting a specific frequency or by adopting geometrically complex configurations for various frequencies. In contrast, the present study proposes a porous surface design that effectively stabilizes the Mack second mode over a wide frequency range, while maintaining structural simplicity. In addition, this porous surface design incorporates constraints associated with practical fabrication to enhance manufacturability. The absorption characteristics of porous surfaces are evaluated with an acoustic impedance model, and the stabilization performance is assessed with linear stability theory. The proposed porous surface design is compared with a conventional design method that focuses on the Mack second mode with a single frequency. Consequently, the proposed design methodology demonstrates robust and consistent suppression of the Mack second mode in a broad frequency range. This approach improves both stabilization performance and manufacturability with a uniform porous surface, contributing to its practical application in high-speed vehicles. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 5476 KB  
Article
The Harmonic Pitching NACA 0018 Airfoil in Low Reynolds Number Flow
by Jan Michna, Maciej Śledziewski and Krzysztof Rogowski
Energies 2025, 18(11), 2884; https://doi.org/10.3390/en18112884 - 30 May 2025
Cited by 1 | Viewed by 1232
Abstract
This study investigates the aerodynamic performance of a symmetric NACA 0018 airfoil under harmonic pitching motions at low Reynolds numbers, a regime characterized by the presence of laminar separation bubbles and their impact on aerodynamic forces. The analysis encompasses oscillation frequencies of 1 [...] Read more.
This study investigates the aerodynamic performance of a symmetric NACA 0018 airfoil under harmonic pitching motions at low Reynolds numbers, a regime characterized by the presence of laminar separation bubbles and their impact on aerodynamic forces. The analysis encompasses oscillation frequencies of 1 Hz, 2 Hz, and 13.3 Hz, with amplitudes of 4° and 8°, along with steady-state simulations conducted for angles of attack up to 20° to validate the numerical model. The results reveal that the γ-Reθ turbulence model provides improved predictions of aerodynamic forces at higher Reynolds numbers but struggles at lower Reynolds numbers, where laminar flow effects dominate. The inclusion of the 13.3 Hz frequency, relevant to Darrieus vertical-axis wind turbines, demonstrates the effectiveness of the model in capturing dynamic hysteresis loops and reduced oscillations, in contrast to the k-ω SST model. Comparisons with XFOIL further highlight the challenges in accurately modeling laminar-to-turbulent transitions and dynamic flow phenomena. These findings offer valuable insights into the aerodynamic behavior of thick airfoils under low Reynolds number conditions and contribute to the advancement of turbulence modeling, particularly in applications involving vertical-axis wind turbines. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

22 pages, 7959 KB  
Article
Numerical Investigation of Transitional Oscillatory Boundary Layers: Turbulence Quantities
by Selman Baysal and V. S. Ozgur Kirca
Fluids 2025, 10(6), 143; https://doi.org/10.3390/fluids10060143 - 28 May 2025
Cited by 1 | Viewed by 1151
Abstract
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous [...] Read more.
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous study involving a bypass transition mechanism in the intermittently turbulent regime. To trigger the initial perturbations, a roughness element was placed on the bed and removed at the very moment a two-dimensional vortex tube, caused by an inflectional-point shear-layer instability, was observed on it. Then, the turbulent spots where the flow experienced intense fluctuations in an otherwise laminar boundary layer were identified from the bed shear-stress distribution on the bed, which served as a reliable indicator of turbulence. These flow features emerged as the first sign of the initiation of turbulence. Several measurement points were selected to follow the bed shear-stress variations and to observe the spatial and temporal development of turbulent spots at a low-wave Reynolds number, Re=1.8×105. Along with these observations, phase-resolved turbulence quantities were also investigated over successive half-cycles for the first time in the literature to understand how turbulence develops and spreads over the flow domain. The results show that the turbulence generated in the near-bed region becomes stronger in the deceleration stage due to the adverse pressure gradient and diffuses away from the bed during the subsequent phases of the developing oscillatory boundary-layer flow. The findings related to the turbulence quantities also indicate that the turbulence gradually evolves and spreads into the fluid domain in successive half-cycles. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

12 pages, 940 KB  
Article
The Effect of Turbulent Intensity on Friction Coefficient in Boundary-Layer Transitional Flat Plate Flow
by Muhsine Saru, Hıfzı Arda Erşan and Erhan Pulat
Appl. Sci. 2025, 15(11), 5852; https://doi.org/10.3390/app15115852 - 23 May 2025
Viewed by 1029
Abstract
In this study, the effect of inlet-turbulence intensity on the friction coefficient for the transitional boundary layer has been investigated computationally. For this purpose, two equation turbulence models of Std. k-ε, RNG k-ε, Std. k-ω, and SST k-ω have been compared with the [...] Read more.
In this study, the effect of inlet-turbulence intensity on the friction coefficient for the transitional boundary layer has been investigated computationally. For this purpose, two equation turbulence models of Std. k-ε, RNG k-ε, Std. k-ω, and SST k-ω have been compared with the Gamma–Theta (GT) transitional model, and it has been found that the Gamma–Theta model is the most consistent model with the experimental values of the ERCOFTAC T3A test case. Then, the effect of inlet-turbulence intensity on the friction coefficient has been computed by using this Gamma–Theta model. The transition from laminar to turbulence is shortened with increasing turbulence intensity by changing it from 1% to 10%. The most suitable inlet-turbulence intensity value with the experimental results of the ERCOFTAC T3A test case is found as Tu = 3.3%. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

37 pages, 1062 KB  
Review
The Universal Presence of the Reynolds Number
by Aldo Tamburrino and Yarko Niño
Fluids 2025, 10(5), 117; https://doi.org/10.3390/fluids10050117 - 1 May 2025
Cited by 2 | Viewed by 3708
Abstract
The Reynolds number is a fundamental parameter in fluid dynamics, initially introduced by O. Reynolds in 1883 to characterize the transition between laminar and turbulent flow in fluids and necessary in the scaling of viscous resistance. Over time, its application has expanded significantly, [...] Read more.
The Reynolds number is a fundamental parameter in fluid dynamics, initially introduced by O. Reynolds in 1883 to characterize the transition between laminar and turbulent flow in fluids and necessary in the scaling of viscous resistance. Over time, its application has expanded significantly, becoming essential for studying a vast range of fluid phenomena—from microscopic scales such as cellular motion to macroscopic scales like turbulent flows and even intergalactic dynamics. The article highlights the universal relevance of the Reynolds number across various fields, including its adaptation to non-Newtonian fluids and granular flows. It emphasizes how the Reynolds number has evolved from a simple dimensionless group to a critical tool for understanding complex physical processes across different scales and environments. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics: Feature Papers, 2024)
14 pages, 1622 KB  
Article
Study on Hydrogen Combustion Flame Acceleration Mechanism and Prediction Method During Severe Accidents in Nuclear Power Plants
by Ran Liu, Jingyi Yu, Xiaoming Yang, Yong Liu, Rubing Ma and Yidan Yuan
Energies 2025, 18(9), 2150; https://doi.org/10.3390/en18092150 - 22 Apr 2025
Viewed by 588
Abstract
Combustion caused by hydrogen-dominated combustible gas mixtures presents critical threats to nuclear safety during severe accidents in nuclear power plants, primarily due to their propensity for flame acceleration, deflagration, and subsequent detonation. Although the direct initiation of detonation from localized hydrogen accumulation at [...] Read more.
Combustion caused by hydrogen-dominated combustible gas mixtures presents critical threats to nuclear safety during severe accidents in nuclear power plants, primarily due to their propensity for flame acceleration, deflagration, and subsequent detonation. Although the direct initiation of detonation from localized hydrogen accumulation at critical concentrations remains challenging, flame acceleration can induce rapid pressure escalation and lead to deflagration-to-detonation transition under suitable conditions. The ultra-high-pressure loads generated almost instantaneously will pose serious risks to containment integrity and equipment or instrument functionality within nuclear facilities. This paper investigates the flame acceleration mechanism and criterion, which is crucial for precise hydrogen risk assessment. A hydrogen combustion flame acceleration model is developed, integrating both laminar and turbulent flame propagation across multiple control volumes. Validated against the RUT test, the model demonstrates high fidelity with a maximum 3.17% deviation in flame propagation velocity and successfully captures the pressure discontinuity. The developed model enables comprehensive simulation with improved predictive accuracy of the flame acceleration process, making it an essential tool for advancing fundamental understanding of hydrogen behavior and severe accident analysis. This model’s development marks a paradigm in nuclear safety research by providing an analytical instrument for integrated severe accident programs in nuclear power plants, contributing to improving the potential hydrogen risks assessment and management in next-generation reactor safety. Full article
(This article belongs to the Special Issue Thermal Hydraulics and Safety Research for Nuclear Reactors)
Show Figures

Figure 1

14 pages, 2636 KB  
Article
A Similarity Theory-Based Study on Natural Convection Condensation Boundary Layer Characteristics of Vertical Walls
by Jialei Liu, Yuqing Chen, Haifeng Gu, Yinxing Zhang, Wei Wang and Hongguang Xiao
Processes 2025, 13(4), 1050; https://doi.org/10.3390/pr13041050 - 1 Apr 2025
Viewed by 819
Abstract
To address the challenge of heat transfer enhancement in the condensation of steam with non-condensable gases on a vertical wall under natural convection conditions, an improved boundary layer model with coupled multi-physics field was proposed in this paper, and traditional theoretical limitations were [...] Read more.
To address the challenge of heat transfer enhancement in the condensation of steam with non-condensable gases on a vertical wall under natural convection conditions, an improved boundary layer model with coupled multi-physics field was proposed in this paper, and traditional theoretical limitations were broken through by innovations. The particle swarm optimization algorithm was first introduced into the solution of the condensation boundary layer, and the convergence difficulty in the laminar–turbulent transition region under infinite boundary conditions was overcome. A coupled momentum–energy–mass equation system that simultaneously considered temperature–concentration dual-driven gravity terms and liquid film drag–suction dual effects was established, and higher computational efficiency and accuracy were achieved. A new mechanism where the concentration boundary layer dominated heat transfer resistance under the coupled action of the Prandtl number (Pr) and Schmidt number (Sc) was revealed. Experimental validation demonstrated that a prediction error of less than 5% was exhibited by the model under typical operating conditions of passive containment cooling systems (pressures of 1.5–4.5 atm and subcooling temperatures of 14–36 °C), and a theoretical tool for high-precision condensation heat transfer design was provided. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop