Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = leakage current density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4874 KB  
Article
Detection Method of Residual Magnetism in Power Transformers Based on the Hysteresis Area of Magnetization
by Yuwei Wang, Wenjuan Dong, Delinuer Azan, Xingang Wang, Renaguli Wufuer, Hao Wang, Changao Ji, Chunwei Song, Jinlong He and Gang Li
Electronics 2025, 14(21), 4272; https://doi.org/10.3390/electronics14214272 - 31 Oct 2025
Abstract
Residual magnetism in the core of a power transformer can lead to an increased inrush current during closing, which may trigger relay protection malfunctions and cause equipment aging. Accurate detection of residual magnetism is crucial for grid safety. Traditional offline detection requires interrupting [...] Read more.
Residual magnetism in the core of a power transformer can lead to an increased inrush current during closing, which may trigger relay protection malfunctions and cause equipment aging. Accurate detection of residual magnetism is crucial for grid safety. Traditional offline detection requires interrupting operation, while online methods are susceptible to interference and have limited accuracy. This paper proposes a method for detecting residual magnetism in power transformers based on the hysteresis area of magnetization. First, the magnetic flux distribution of the transformer is analyzed through finite element simulation, revealing that low-frequency excitation can make the core’s magnetic flux density distribution more uniform, and that the leakage flux and the flux inside the core have similar characteristics, which helps to determine the optimal position for flux detection. Next, the relationship between the small hysteresis loop area and residual magnetism is studied, revealing a monotonic mapping relationship between the normalized area of the negative hysteresis loop under current pulse excitation and the residual magnetism. Finally, experimental verification shows that this method effectively detects residual magnetism under different levels and operational conditions. The method is non-invasive, real-time, and highly resistant to interference, offering a new approach for residual magnetism detection in power transformers. Full article
Show Figures

Figure 1

12 pages, 3385 KB  
Article
Advanced BCl3-Driven Deep Ion Etching of β-Ga2O3 for Precision High-Aspect-Ratio Nanostructures
by Badriyah Alhalaili
Sensors 2025, 25(21), 6609; https://doi.org/10.3390/s25216609 - 27 Oct 2025
Viewed by 386
Abstract
Gallium oxide-based devices are critical in various applications, including industrial safety, the gas and petroleum sectors, and research environments. However, the deep etching process has not been thoroughly explored. Key parameters such as etching rate, selectivity, uniformity, isotropic/anisotropic behavior, and surface properties all [...] Read more.
Gallium oxide-based devices are critical in various applications, including industrial safety, the gas and petroleum sectors, and research environments. However, the deep etching process has not been thoroughly explored. Key parameters such as etching rate, selectivity, uniformity, isotropic/anisotropic behavior, and surface properties all influence the effectiveness of the etching process and its reproducibility. This research was motivated by the need for efficient fabrication processes, particularly in applications where sensors must operate in harsh environments, due to their instead of owning to low leakage current density of their power devices. In this study, we studied a deep etching technique for Ga2O3, focusing on the chemical stability of the two planes and identifying suitable protocols that could enhance etching depth via a dry-etching process. A deep ion-etching process for Ga2O3 was successfully developed, achieving deep etches of 6.97 µm in the Ga2O3. These advancements pave the way for high-aspect-ratio Ga2O3 nanostructures, offering new possibilities for robust nanosensors in harsh environments. Full article
Show Figures

Figure 1

36 pages, 3632 KB  
Article
Integrated Modeling of Maritime Accident Hotspots and Vessel Traffic Networks in High-Density Waterways: A Case Study of the Strait of Malacca
by Sien Chen, Xuzhe Cai, Jiao Qiao and Jian-Bo Yang
J. Mar. Sci. Eng. 2025, 13(11), 2052; https://doi.org/10.3390/jmse13112052 - 27 Oct 2025
Viewed by 277
Abstract
The Strait of Malacca faces persistent maritime safety challenges due to high vessel density and complex navigational conditions. Current risk assessment methods often lean towards treating static accident analysis and dynamic traffic modeling separately, although some nascent hybrid approaches exist. However, these hybrids [...] Read more.
The Strait of Malacca faces persistent maritime safety challenges due to high vessel density and complex navigational conditions. Current risk assessment methods often lean towards treating static accident analysis and dynamic traffic modeling separately, although some nascent hybrid approaches exist. However, these hybrids frequently lack the capacity for comprehensive, real-time factor integration. This study proposes an integrated framework coupling accident hotspot identification with vessel traffic network analysis. The framework combines trajectory clustering using improved DBSCAN with directional filters, Kernel Density Estimation (KDE) for accident hotspots, and Fuzzy Analytic Hierarchy Process (FAHP) for multi-factor risk evaluation, acknowledging its subjective and region-specific nature. The model was trained and tuned exclusively on the 2023 dataset (47 incidents), reserving the 2024 incidents (24 incidents) exclusively for independent, zero-information-leakage validation. Results demonstrate superior performance: Area Under the ROC Curve (AUC) improved by 0.14 (0.78 vs. 0.64; +22% relative to KDE-only), and Precision–Recall AUC (PR-AUC) improved by 0.16 (0.65 vs. 0.49); both p < 0.001. Crucially, all model tuning and parameter finalization (including DBSCAN/Fréchet, FAHP weights, and adaptive thresholds) relied solely on 2023 data, with the 2024 incidents reserved exclusively for independent temporal validation. The model captures 75.2% of reported incidents within 20% of the study area. Cross-validation confirms stability across all folds. The framework reveals accidents concentrate at network bottlenecks where traffic centrality exceeds 0.15 and accident density surpasses 0.6. Model-based associations suggest amplification through three pathways: environmental-mediated (34%), traffic convergence (34%), and historical persistence (23%). The integrated approach enables identification of both where and why maritime accidents cluster, providing practical applications for vessel traffic services, risk-aware navigation, and evidence-based safety regulation in congested waterways. Full article
(This article belongs to the Special Issue Recent Advances in Maritime Safety and Ship Collision Avoidance)
Show Figures

Figure 1

19 pages, 3047 KB  
Article
Thermal Management of Wide-Bandgap Power Semiconductors: Strategies and Challenges in SiC and GaN Power Devices
by Gyuyeon Han, Junseok Kim, Sanghyun Park and Wongyu Bae
Electronics 2025, 14(21), 4193; https://doi.org/10.3390/electronics14214193 - 27 Oct 2025
Viewed by 454
Abstract
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven [...] Read more.
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven hot spots within the ultra-thin (tens of nanometers) two-dimensional electron gas (2DEG) channel of GaN HEMTs and to thermal boundary resistance at layer interfaces. We compare wire-bondless package concepts—double-sided cooling, embedded packaging, and interleaved planar layouts—and survey system-level cooling that shortens the conduction path and raises heat-transfer coefficients. The impact on reliability is discussed using temperature-sensitive electrical parameters (e.g., on-state VDS, threshold voltage, drain leakage, di/dt, and gate current) for real-time junction-temperature estimation and compact electro-thermal RC models for remaining-useful-life prediction. Evidence from recent literature points to interface resistance in GaN-on-SiC as a primary bottleneck, while near-junction cooling and advanced packages are effective mitigations. We argue for integrated co-design—devices, packaging, electromagnetic interference (EMI)-aware layout, and cooling—together with interface engineering and health monitoring to deliver reliable, high-density WBG systems. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

12 pages, 3041 KB  
Article
Characteristics of Stray Current Distribution in the Power Supply System of Subway Tunnels with a Hollow Circular Section Structure
by Junyang Ma, Zihao Wang, Gen Qian, Weihe Lin and Yadong Fan
Energies 2025, 18(21), 5626; https://doi.org/10.3390/en18215626 - 26 Oct 2025
Viewed by 140
Abstract
The DC traction power system adopts the track as the return rail. When the track-to-earth insulation in the subway tunnel deteriorates, stray currents will cause electrochemical corrosion to tunnel steel structures and seriously affect the service life and safety of metro tunnels. Stray [...] Read more.
The DC traction power system adopts the track as the return rail. When the track-to-earth insulation in the subway tunnel deteriorates, stray currents will cause electrochemical corrosion to tunnel steel structures and seriously affect the service life and safety of metro tunnels. Stray currents cannot be directly measured and can only be calculated. Therefore, a calculation model with a hollow circular cross-section structure was proposed, and the stray current distribution in tunnel steel structures was calculated. In addition, the effects of different rail-to-ground transition resistances and adjacent buried metallic pipelines on the stray current distribution of the tunnel steel structures were taken into account. The results show that the total amount of stray current dispersed into the tunnel steel structures and soil is similar. The stray current density distribution in each steel tunnel is related to its location. The total stray current carried by the steel structures of the bottom tunnel segment is 102, 15.7 and 3.1 times higher than that of the top, upper and lower side tunnel segments, respectively. The reduction in the transition resistance and increase in the distance of the train from the traction substation increase the total rail leakage current and have a small effect on the percentage distribution of stray current in tunnel structures. The buried metal pipeline parallel to the tunnel has a lower impact on the total stray current leakage, but can reduce the total stray current in steel structures and drainage net, enlarging the positive stray current scope of some tunnel steel bars, further increasing the stray current density on tunnel steel bars. The results of this study can be used to determine the degree of corrosion of the underground steel tunnels and thereby provide support for corrosion prevention. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 6716 KB  
Article
Enhancing Breakdown Field Strength and Energy Density in Sandwich-Structured P(VDF-HFP)/BT Films with BN Coating
by Yinzhang Cheng, Xueting Bai, Zhenyu Lu, Ruijue Wang, Wei Wang, Ruizhou Guo, Yudong Xu and Zhipeng Lei
Processes 2025, 13(10), 3295; https://doi.org/10.3390/pr13103295 - 15 Oct 2025
Viewed by 269
Abstract
With the rapid development of communication, electronics, medical, and energy industries in modern society, film capacitors have garnered widespread attention and undergone significant growth. However, the low energy density (Ue) resulting from low breakdown strength (Eb) significantly [...] Read more.
With the rapid development of communication, electronics, medical, and energy industries in modern society, film capacitors have garnered widespread attention and undergone significant growth. However, the low energy density (Ue) resulting from low breakdown strength (Eb) significantly limits the application of thin-film capacitors. In this work, we use a low-cost and effective dip-coating method to apply boron nitride (BN) layers onto the outer layers of poly(vinylidene fluoride-co-hexafluoropropylene)/barium titanate (P(VDF-HFP)/BT) composite films to prepare boron nitride-poly(vinylidene fluoride-co-hexafluoropropylene/barium titanate-boron nitride (BN-P(VDF-HFP)/BT-BN) composite films with a sandwich structure that exhibits extremely high Eb and Ue. The experimental results show that the sandwich-structured BN-P(VDF-HFP)/BT-BN films containing 7.5 wt% BT nanoparticles obtained 530 MV/m Eb and 18.12 J/cm3 Ue, both of which are much higher than those of the corresponding monolayer films. In addition, the finite element simulation results show that the designed sandwich-structured films can reduce local field strength distortion, decrease leakage current, and suppress the development of breakdown channels, thereby significantly improving Eb and Ue. In summary, this study presents a low-cost and effective method for enhancing the breakdown strength and energy density of thin-film capacitors. Full article
(This article belongs to the Special Issue Fiber-Reinforced Composites: Latest Advances and Interesting Research)
Show Figures

Figure 1

18 pages, 3967 KB  
Article
Enhanced Piezoelectric and Ferroelectric Properties in the Lead-Free [(BiFeO3)m/(SrTiO3)n]p Multilayers by Varying the Thickness Ratio r = n/m and Periodicity p
by Jonathan Vera Montes, Francisco J. Flores-Ruiz, Carlos A. Hernández-Gutiérrez, Enrique Camps, Enrique Campos-González, Gonzalo Viramontes Gamboa, Fernando Ramírez-Zavaleta and Dagoberto Cardona Ramírez
Coatings 2025, 15(10), 1170; https://doi.org/10.3390/coatings15101170 - 6 Oct 2025
Viewed by 463
Abstract
Multilayer heterostructures of [(BiFeO3)m/(SrTiO3)n]p were synthesized on ITO-coated quartz substrates via pulsed laser deposition, with varying thickness ratios (r = n/m) and periodicities (p = 1–3). Structural, electrical, and piezoelectric properties were systematically [...] Read more.
Multilayer heterostructures of [(BiFeO3)m/(SrTiO3)n]p were synthesized on ITO-coated quartz substrates via pulsed laser deposition, with varying thickness ratios (r = n/m) and periodicities (p = 1–3). Structural, electrical, and piezoelectric properties were systematically investigated using X-ray diffraction, AFM, and PFM. The BiFeO3 layers crystallized in a distorted rhombohedral phase (R3c), free of secondary phases. Compared to single-layer BiFeO3 films, the multilayers exhibited markedly lower leakage current densities and enhanced piezoelectric response. Electrical conduction transitioned from space-charge-limited current at low fields (E < 100 kV/cm) to Fowler–Nordheim tunneling at high fields (E > 100 kV/cm). Optimal performance was achieved for r = 0.30, p = 1, with minimal leakage (J = 8.64 A/cm2 at E = 400 kV/cm) and a peak piezoelectric coefficient (d33 = 55.55 pm/V). The lowest coercive field (Ec = 238 kV/cm) occurred in the configuration r = 0.45, p = 3. Saturated hysteresis loops confirmed stable ferroelectric domains. These findings demonstrate that manipulating layer geometry in [(BiFeO3)m/(SrTiO3)n]p stacks significantly enhances functional properties, offering a viable path toward efficient, lead-free piezoelectric nanodevices. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Graphical abstract

13 pages, 3051 KB  
Article
Leakage Current Equalization via Thick Semiconducting Coatings Suppresses Pin Corrosion in Disc Insulators
by Cong Zhang, Hongyan Zheng, Zikui Shen, Junbin Su, Yibo Yang, Heng Zhong and Xiaotao Fu
Energies 2025, 18(19), 5246; https://doi.org/10.3390/en18195246 - 2 Oct 2025
Viewed by 319
Abstract
In coastal hot and humid regions, the steel pin of AC porcelain insulators often suffers from severe electrochemical corrosion due to surface contamination and moisture, leading to insulator string breakage. Contrary to the common belief that AC corrosion is negligible, this study reveals [...] Read more.
In coastal hot and humid regions, the steel pin of AC porcelain insulators often suffers from severe electrochemical corrosion due to surface contamination and moisture, leading to insulator string breakage. Contrary to the common belief that AC corrosion is negligible, this study reveals the significant role of the DC component in leakage currents and the synergy of this DC component with localized high current densities in accelerating corrosion, based on field investigations and experiments. Using a simulation model based on the Suwarno equivalent circuit, it is shown that non-linear contamination causes highly non-sinusoidal leakage currents, with total harmonic distortion up to 40% and a DC component of approximately 22%. To mitigate this, a conductive silicone rubber coating is proposed to block moisture and distribute leakage current evenly, keeping surface current density below the critical threshold of 100 A/m2. Simulations indicate that a 2 mm thick coating with conductivity around 10−4 S/m effectively reduces current density to a safe level. Accelerated corrosion tests confirm that this conductive coating significantly suppresses pitting corrosion caused by high current densities, outperforming traditional insulating coatings. This study presents a practical and effective approach for protecting AC insulators in harsh environments, contributing to improved transmission line reliability in high-temperature and high-humidity regions. Full article
(This article belongs to the Special Issue Advances in High-Voltage Engineering and Insulation Technologies)
Show Figures

Figure 1

11 pages, 2198 KB  
Article
Effect of Hafnium-Based Thin Film Thickness on Microstructure and Electrical of Yttrium-Doped Hafnium Oxide Ferroelectric Devices Prepared by Magnetron Sputtering
by Bei Ma, Ke Ma, Xinhui Qin, Yingxue Xi, Jin Zhang, Xinyu Yang, Pengfei Yang and Weiguo Liu
Micromachines 2025, 16(9), 1066; https://doi.org/10.3390/mi16091066 - 21 Sep 2025
Viewed by 483
Abstract
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical [...] Read more.
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical properties of TiN/Y-HfO2/TiN thin film devices. Radio frequency magnetron sputtering was utilized to deposit Y-HfO2 films of varying thicknesses on TiN electrodes by controlling deposition time, with a yttrium doping concentration of 8.24 mol.%. The surface morphology and crystal structure of the thin films were characterized using atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD). Results indicate that as film thickness increases, surface roughness and Raman peak intensity increase correspondingly, with the tetragonal phase (t) characteristic peak being most prominent at 65 nm. DC magnetron sputtering was employed to deposit TiN top electrodes, resulting in TiN/Y-HfO2/TiN thin film devices. Following rapid thermal annealing at 700 °C, electrical properties were evaluated using a ferroelectric tester. Leakage current density exhibited a decreasing trend with increasing film thickness, while the maximum polarization intensity gradually increased, reaching a maximum of 11.5 μC/cm2 at 120 nm. Full article
(This article belongs to the Special Issue Recent Advances in Thin-Film Devices)
Show Figures

Figure 1

10 pages, 1588 KB  
Article
385 nm AlGaN Near-Ultraviolet Micro Light-Emitting Diode Arrays with WPE 30.18% Realized Using an AlN-Inserted Hole Spreading Enhancement S Electron Blocking Layer
by Qi Nan, Shuhan Zhang, Jiahao Yao, Yun Zhang, Hui Ding, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2025, 15(8), 910; https://doi.org/10.3390/coatings15080910 - 3 Aug 2025
Viewed by 616
Abstract
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays [...] Read more.
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays in this work comprise 228 chips in parallel with wavelengths at 385 nm, and each single chip size is 15 × 30 μm2. Compared with conventional bulk AlGaN-based EBL structures, the NUV-Micro LED arrays that implemented the new hole spreading enhanced superlattice electrical blocking layer (HSESL-EBL) structure proposed in this work had a remarkable increase in light output power (LOP) at current density, increasing the range down from 0.02 A/cm2 to as high as 97 A/cm2. The array’s light output power is increased up to 1540% at the lowest current density 0.02 A/cm2, and up to 58% at the highest current density 97 A/cm2, measured under room temperature (RT); consequently, the WPE is increased from 13.4% to a maximum of 30.18%. This AlN-inserted HESEL-EBL design significantly enhances both the lateral expansion efficiency and the hole injection efficiency into the multi quantum well (MQW) in the arrays, improving the concentration distribution of the holes in MQW while maintaining good suppression of electron leakage. The array’s efficiency droop has also been greatly reduced. Full article
Show Figures

Figure 1

13 pages, 13107 KB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 549
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 3623 KB  
Article
Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
by Ha-Jung Kim, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim and Hee-Chul Lee
Materials 2025, 18(15), 3547; https://doi.org/10.3390/ma18153547 - 29 Jul 2025
Viewed by 784
Abstract
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN [...] Read more.
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN electrode structure, incorporating W electrodes as insertion layers, were fabricated. Rapid thermal annealing (RTA) was subsequently employed to control the crystalline phase of the films. The electrical and structural properties of the capacitors were analyzed based on the RTA temperature, and the presence, thickness, and position of the W insertion electrode layer. Consequently, the capacitor with 5 nm-thick W electrode layers inserted on both the top and bottom sides and annealed at 700 °C exhibited the highest remnant polarization (2Pr = 61.0 μC/cm2). Moreover, the symmetric hybrid electrode capacitors annealed at 500–600 °C also exhibited high 2Pr values of approximately 50.4 μC/cm2, with a leakage current density of approximately 4 × 10−5 A/cm2 under an electric field of 2.5 MV/cm. The findings of this study are expected to contribute to the development of electrode structures for improved performance of HZO-based ferroelectric memory devices. Full article
Show Figures

Figure 1

12 pages, 1867 KB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 753
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

20 pages, 2705 KB  
Article
Joule Heating in Grounding Electrodes Under Fault Conditions: Effects on System Potentials and Electrode Efficiency
by Gabriel Asensio, Eduardo Faleiro, Jorge Moreno, Daniel García and Gregorio Denche
Appl. Sci. 2025, 15(13), 7504; https://doi.org/10.3390/app15137504 - 3 Jul 2025
Viewed by 627
Abstract
This paper presents a numerical study of the thermal behavior of grounding electrodes subjected to fault currents, focusing on Joule heating within both the electrode and the surrounding soil. A one-dimensional transient model is developed, accounting for heat generation due to both internal [...] Read more.
This paper presents a numerical study of the thermal behavior of grounding electrodes subjected to fault currents, focusing on Joule heating within both the electrode and the surrounding soil. A one-dimensional transient model is developed, accounting for heat generation due to both internal resistance in the electrode and current leakage into the soil. The model incorporates the temperature dependence of electrical resistivity, particularly emphasizing the nonlinear and material-specific behavior observed in soils, as captured by three different resistivity models. The temperature–resistivity coupling induces a feedback mechanism that dynamically alters the current distribution and the resulting temperature profiles. A numerical procedure was implemented to simulate this process, following a computational flowchart that captures the interaction between thermal and electrical fields over time. The model was applied to synthetic test cases involving different soil types, segmentation strategies, and resistivity behaviors. The results reveal significant differences between resistivity models, affecting both the magnitude and distribution of grounding potential and temperature fields. In particular, elevated temperatures were observed in regions where current density concentrates—such as corners and exposed ends of the electrode—highlighting the need for targeted reinforcement to prevent thermal degradation. The proposed model provides a practical tool for evaluating the thermal performance of grounding systems under extreme conditions, offering insight into design optimization and material selection. Full article
Show Figures

Graphical abstract

9 pages, 2066 KB  
Article
SiGe-Surrounded Bitline Structure for Enhancing 3D NAND Flash Erase Speed
by Dohyun Kim and Wonbo Shim
Appl. Sci. 2025, 15(13), 7405; https://doi.org/10.3390/app15137405 - 1 Jul 2025
Viewed by 1117
Abstract
Three-dimensional NAND Flash has adopted the cell-over-peripheral (COP) structure to increase storage density. Unlike the conventional structure, the COP structure cannot directly increase the channel potential via substrate bias during the erase operation. Therefore, the gate-induced drain leakage (GIDL) erase method, which utilizes [...] Read more.
Three-dimensional NAND Flash has adopted the cell-over-peripheral (COP) structure to increase storage density. Unlike the conventional structure, the COP structure cannot directly increase the channel potential via substrate bias during the erase operation. Therefore, the gate-induced drain leakage (GIDL) erase method, which utilizes band-to-band tunneling (BTBT) to raise the channel potential, is employed. However, compared to bulk erase, the BTBT-based erase method requires a longer time to generate holes in the channel, leading to erase speed degradation. To address this issue, we propose a structure which enhances the erase speed by surrounding the bitline (BL) PAD with SiGe. In the case of a SiGe thickness (tSiGe) of 13 nm, the lower bandgap of SiGe increases the BTBT generation rate, boosting the channel potential rise at the end of the erase voltage ramp-up by 861% compared to the Si-only structure, while limiting the reduction in read on-current to within 4%. We modeled the voltage and electric field across the SiGe layer, as well as BTBT generation rate and GIDL current in the SiGe layer, by varying tSiGe, Ge composition ratio (SiGeX), and the voltage difference between VBL and VGIDL_TR. Full article
Show Figures

Figure 1

Back to TopTop