Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = marine biotoxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1442 KB  
Article
Survey of Tetrodotoxins (TTXs) in Gastropods, Sea Urchins, and Blue Crabs from the Adriatic Sea: First Report in Paracentrotus lividus
by Simone Bacchiocchi, Melania Siracusa, Giulia Diomedi, Simone Mazza, Erica Calandri, Tamara Tavoloni, Veronica Vivani, Monica Cangini, Giuseppe Arcangeli, Carmen Losasso, Silva Rubini, Gabriella Di Francesco, Francesca Leoni, Arianna Piersanti and Francesca Barchiesi
Foods 2025, 14(23), 4036; https://doi.org/10.3390/foods14234036 - 25 Nov 2025
Viewed by 160
Abstract
The detection of tetrodotoxins (TTXs) in European shellfish led the European Union to request a risk assessment from the European Food Safety Authority (EFSA). EFSA set a reference limit of 44 µg TTX equivalents kg−1 and called for more data on TTX [...] Read more.
The detection of tetrodotoxins (TTXs) in European shellfish led the European Union to request a risk assessment from the European Food Safety Authority (EFSA). EFSA set a reference limit of 44 µg TTX equivalents kg−1 and called for more data on TTX occurrence, especially in gastropods, which can accumulate in TTXs but remain poorly studied. Recently, preliminary monitoring has revealed the recurrent presence of TTXs in mussels in three areas along the North–Central Adriatic coast of Italy, while research on non-bivalve organisms has not yet been carried out. This study presents a preliminary survey, conducted from January 2023 to March 2025, on the presence of TTXs in gastropods, echinoderms, and arthropods collected from this area. A method in Hydrophilic Interaction Liquid Chromatography coupled with tandem Mass Spectrometry (HILIC-MS/MS) for detecting TTXs in bivalve mollusks was first tested through an international proficiency test, then optimized for the other invertebrates, the object of this study. TTX levels in all gastropods and arthropod samples were undetectable, while traces (~5 µg kg−1) were found in one echinoderm sample (Paracentrotus lividus), marking the first reported occurrence of TTX in this species. Sea urchins are widely consumed in Italy; therefore, this finding is of particular importance from a public health perspective and deserves further investigation. Some gastropod genera or species sampled (e.g., Nassarius, Rapana venosa) have been identified as TTX carriers in other regions; therefore, the negative results obtained in this study may be related to seasonal or geographic variability. These results provide valuable data to EFSA’s call for monitoring emerging risks, particularly as climate change may increase TTX prevalence in European waters as well as worldwide. Full article
Show Figures

Figure 1

17 pages, 795 KB  
Review
Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins
by Adewale Aderogba, Joana F. Leal and Maria L. S. Cristiano
Mar. Drugs 2025, 23(10), 398; https://doi.org/10.3390/md23100398 - 12 Oct 2025
Viewed by 859
Abstract
The marine environment emerges as a key provider of food and sustainable products. However, these benefits are accompanied by numerous challenges owing to harmful algal blooms (HAB) and their associated biotoxins, which accumulate in organisms, like bivalves, threatening seafood quality. Among the various [...] Read more.
The marine environment emerges as a key provider of food and sustainable products. However, these benefits are accompanied by numerous challenges owing to harmful algal blooms (HAB) and their associated biotoxins, which accumulate in organisms, like bivalves, threatening seafood quality. Among the various biotoxins, paralytic shellfish toxins (PST), the causative agents of paralytic shellfish poisoning (PSP), are among the most potent, lethal, and frequently reported instances of human intoxication. Removing PST from marine system is particularly challenging because of their hydrophilicity, susceptibility to biotransformation and the potential influence of other substances naturally present in the environment. Although there are several methods applied to mitigate HAB, to the best of our knowledge there are no proven effective methods for removing PST in marine environments. Consequently, there is a need to develop efficient removal technologies, especially envisaging fast, environmentally safe, inexpensive, and readily available solutions. Having examined several proposed methods for removing PST (e.g., thermal and industrial procedures, adsorption using different materials, photodegradation, AOPs) and comparing their efficacy, this study aims to streamline the current knowledge on PST removal, identify knowledge gaps, and provide valuable insights for researchers, environmental managers, and policymakers engaged in mitigating the risks associated with PST. Full article
Show Figures

Graphical abstract

20 pages, 4532 KB  
Article
Harnessing in Silico Design for Electrochemical Aptasensor Optimization: Detection of Okadaic Acid (OA)
by Margherita Vit, Sondes Ben-Aissa, Alfredo Rondinella, Lorenzo Fedrizzi and Sabina Susmel
Biosensors 2025, 15(10), 665; https://doi.org/10.3390/bios15100665 - 3 Oct 2025
Viewed by 651
Abstract
The urgent need for advanced analytical tools for environmental monitoring and food safety drives the development of novel biosensing approaches and solutions. A computationally driven workflow for the development of a rapid electrochemical aptasensor for okadaic acid (OA), a critical marine biotoxin, is [...] Read more.
The urgent need for advanced analytical tools for environmental monitoring and food safety drives the development of novel biosensing approaches and solutions. A computationally driven workflow for the development of a rapid electrochemical aptasensor for okadaic acid (OA), a critical marine biotoxin, is reported. The core of this strategy is a rational design process, where in silico modeling was employed to optimize the biological recognition element. A 63-nucleotide aptamer was successfully truncated to a highly efficient 31-nucleotide variant. Molecular docking simulations confirmed the high binding affinity of the minimized aptamer and guided the design of the surface immobilization chemistry to ensure robust performance. The fabricated sensor, which utilizes a ferrocene-labeled aptamer, delivered a sensitive response with a detection limit of 2.5 nM (n = 5) over a linear range of 5–200 nM. A significant advantage for practical applications is the remarkably short assay time of 5 min. The sensor’s applicability was successfully validated in complex food matrices, achieving excellent recovery rates of 82–103% in spiked mussel samples. This study establishes an integrated computational–experimental methodology that streamlines the development of high-performance biosensors for critical food safety and environmental monitoring challenges. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring and Food Safety—2nd Edition)
Show Figures

Figure 1

14 pages, 1850 KB  
Article
Rapid Detection of Saxitoxin Using a Nucleic Acid Aptamer Biosensor Based on Graphene Oxide as a Fluorescence Quencher
by Yi Jiao, Liqing Yang, Junping Hao, Yuhang Wen, Jianhua Wang, Hengchao E, Zhiyong Zhao, Yufeng Chen and Xianli Yang
Toxins 2025, 17(9), 430; https://doi.org/10.3390/toxins17090430 - 28 Aug 2025
Viewed by 1258
Abstract
Saxitoxin (STX) is a toxin with paralyzing and lethal properties, necessitating the development of a simple analytical method. This study developed a nucleic acid aptamer biosensor using graphene oxide (GO) as a fluorescence quencher for STX detection. GO was combined with M30-f, an [...] Read more.
Saxitoxin (STX) is a toxin with paralyzing and lethal properties, necessitating the development of a simple analytical method. This study developed a nucleic acid aptamer biosensor using graphene oxide (GO) as a fluorescence quencher for STX detection. GO was combined with M30-f, an STX nucleic acid aptamer modification with 5-carboxyfluorescein, which can produce fluorescence absorption under the conditions of an excitation wavelength of 408 nm and emission wavelength of 515 nm. Based on the principle of fluorescence resonance energy transfer, the fluorescence of M30-f was quenched. In the presence of STX, M30-f specifically binds to STX and dissociates from the GO surface, thereby restoring fluorescence. The STX content can be quantitatively detected through differences in fluorescence absorption. The influence of ultrasonic time on the fluorescence quenching ability of GO was investigated. The aqueous solution of graphene oxide, 30GO, optimized by ultrasound treatment for a duration of 30 min, demonstrated excellent fluorescence quenching capability. 30GO was analyzed utilizing various characterization techniques, including SEM, FT-IR, UV, XPS, XRD, AFM, and contact angle measurements. The methodological validation showed that the established STX sensor exhibits excellent linearity within a concentration range of 10–100,000 ng/L, with a limit of detection (LOD) as low as 0.098 μg/L. In addition, the results further demonstrated the sensor’s high specificity for detecting neurotoxic shellfish toxin STX. The recovery rate for clam samples ranged from 89.12% to 104.71%, while that for oyster samples ranged from 91.20% to 109.65%, with relative standard deviations (RSDs) all below 3%. This aptamer sensor is characterized by its simplicity, high sensitivity, and broad detection range, providing significant technical support for advancing marine biotoxin research. Full article
(This article belongs to the Special Issue Exploration of Toxins from Marine Organisms)
Show Figures

Figure 1

20 pages, 5041 KB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Cited by 1 | Viewed by 1254
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

22 pages, 629 KB  
Article
Investigation into Paralytic Shellfish Toxins and Microcystins in Seabirds from Portugal
by Lucía Soliño, Andrew D. Turner, Begoña Ben-Gigirey, Ryan P. Alexander, Karl J. Dean, Robert G. Hatfield, Benjamin H. Maskrey and María V. Mena Casero
Toxins 2025, 17(3), 135; https://doi.org/10.3390/toxins17030135 - 13 Mar 2025
Cited by 1 | Viewed by 1469
Abstract
Microalgae form the basis of marine food webs, essential in sustaining top predators including seabirds. However, certain species of microalgae synthesize biotoxins, which can accumulate in shellfish and fish and may cause harm to marine animals feeding on them. Toxins produced by dinoflagellates [...] Read more.
Microalgae form the basis of marine food webs, essential in sustaining top predators including seabirds. However, certain species of microalgae synthesize biotoxins, which can accumulate in shellfish and fish and may cause harm to marine animals feeding on them. Toxins produced by dinoflagellates have been previously observed to be poisonous to seabirds. Also, in freshwater and brackish habitats, cyanobacteria have caused bird mortality events. In this work, we analyze the prevalence of six families of biotoxins (paralytic shellfish toxins (PSTs), microcystins (MCs), anatoxins, amnesic shellfish toxins (ASTs), cylindrospermopsin, and tetrodotoxins (TTXs)) in 340 samples from 193 wild birds admitted to a wildlife rehabilitation centre in south Portugal. Furthermore, we consider the clinical picture and signs of 17 birds that presented quantifiable levels of biotoxins in their tissues. The relationship between toxin burdens and the symptomatology observed, as well as possible biotoxin sources, are discussed. Based on previously published research data, we conclude that, in these birds, the biotoxins are unlikely to be the only cause of death but might contribute to some extent to a reduction in birds’ fitness. Full article
Show Figures

Figure 1

11 pages, 1256 KB  
Article
Structural Characterization of Pinnatoxin Isomers
by Andrew I. Selwood, Christopher O. Miles, Alistair L. Wilkins, Frode Rise, Sarah C. Finch and Roel van Ginkel
Mar. Drugs 2025, 23(3), 103; https://doi.org/10.3390/md23030103 - 26 Feb 2025
Viewed by 1530
Abstract
Pinnatoxins, a group of marine biotoxins primarily produced by the dinoflagellate Vulcanodinium rugosum, have garnered significant attention due to their potent toxic effects and widespread distribution in marine ecosystems. LC–MS analysis of shellfish and V. rugosum cultures revealed the presence of previously [...] Read more.
Pinnatoxins, a group of marine biotoxins primarily produced by the dinoflagellate Vulcanodinium rugosum, have garnered significant attention due to their potent toxic effects and widespread distribution in marine ecosystems. LC–MS analysis of shellfish and V. rugosum cultures revealed the presence of previously unidentified isomers of pinnatoxins D, E, F, and H, at levels approximately six times lower than those of known isomers. The chemical structures of these isopinnatoxins were determined using a combination of LC–MS/MS and NMR spectroscopy, which demonstrated that the isomerization of each pinnatoxin occurred through the opening and recyclization of the spiro-linked tetrahydropyranyl D-ring to form a smaller tetrahydrofuranyl ring. The acute toxicity of isopinnatoxin E was determined by intraperitoneal injection into mice and was found to be significantly lower than that of pinnatoxin E. Given their low toxicity and low abundance, it is unlikely that isopinnatoxins contribute significantly to the overall toxicity of pinnatoxins. Full article
Show Figures

Graphical abstract

38 pages, 2970 KB  
Review
The Toxic Effects of Environmental Domoic Acid Exposure on Humans and Marine Wildlife
by Ami E. Krasner, Margaret E. Martinez, Cara L. Field and Spencer E. Fire
Mar. Drugs 2025, 23(2), 61; https://doi.org/10.3390/md23020061 - 29 Jan 2025
Cited by 4 | Viewed by 4462
Abstract
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review [...] Read more.
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review of DA toxicosis after environmental exposure in humans and wildlife, including an introduction to HAB toxins, the history of DA toxicosis, DA production, toxicokinetic properties of DA, susceptibility, clinical signs, DA detection methods and other diagnostic tests, time course of toxicosis, treatment, prognostics, and recommendations for future research. Additionally, we highlight the utility of California sea lions (CSLs; Zalophus californianus) as a model and sentinel of environmental DA exposure. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

24 pages, 4362 KB  
Article
Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay
by Thomas Yon, Philippe Cruchet, Jérôme Viallon, J. Sam Murray, Emillie Passfield, Mireille Chinain, Hélène Taiana Darius and Mélanie Roué
Mar. Drugs 2025, 23(1), 42; https://doi.org/10.3390/md23010042 - 16 Jan 2025
Viewed by 1926
Abstract
Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus Gambierdiscus. Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. [...] Read more.
Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus Gambierdiscus. Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. However, little information on their effectiveness for nonpolar CTXs is available, yet these congeners, contributing to the risk of CP, are required for the establishment of effective food safety monitoring programs. An evaluation of six extraction/purification protocols, performed with CTX3C spiked on fish flesh and a neuroblastoma cell-based assay (CBA-N2a), revealed recoveries from 6 to 45%. This led to the development of an optimized 3-day protocol designed for a large number of samples, with CTX1B and CTX3C eluting in a single fraction and showing recoveries of 73% and 70%, respectively. In addition, a reduction in adverse matrix effects in the CBA-N2a analyses was demonstrated with naturally contaminated specimens, increasing the sensitivity of the method, which now meets the very low guidance level recommended by international agencies. However, efforts are still required to reduce the signal suppression observed in LC-MS/MS analysis. This optimized protocol contributes to the technological advancement of detection methods, promoting food safety and improving CP risk assessment in marine products. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

16 pages, 2308 KB  
Article
A Comparative Study of the In Vitro Intestinal Permeability of Pinnatoxins and Portimine
by Rachelle Lanceleur, Vincent Hort, Marion Peyrat, Denis Habauzit, Andrew I. Selwood and Valérie Fessard
Mar. Drugs 2025, 23(1), 26; https://doi.org/10.3390/md23010026 - 7 Jan 2025
Viewed by 1933
Abstract
The pinnatoxins (PnTXs) and portimines, produced by Vulcanodinium rugosum, have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body [...] Read more.
The pinnatoxins (PnTXs) and portimines, produced by Vulcanodinium rugosum, have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body after oral administration. Therefore, we investigated the impact of PnTX analogs (PnTX-A, -E, -F, -G, and -H) and portimine (8, 16, and 32 ng/mL) on intestinal barrier integrity and their oral bioavailability using human Caco-2 cell monolayers treated for 2, 6, and 24 h. Our results demonstrated that all of the toxins could impair barrier integrity after 24 h, with differences observed for PnTX-A, -E, and -F, as well as portimine, the most potent of all. While PnTX-A and -E exhibited poor permeability, the other PnTXs were more penetrative, with a Papp > 1.5 × 10−6 cm·s−1. Portimine was the only toxin displaying both a time- and concentration-dependent passage, likely involving a passive diffusion process. The experimental results were compared to predictions obtained by QSAR tools. Although only qualitative, our results suggest that some of these compounds may be more likely to be distributed throughout the body. Further in vivo studies are required to estimate oral bioavailability and potential public health concerns. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Figure 1

23 pages, 722 KB  
Review
New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability
by Antónia Juliana Pais-Costa, António Marques, Helena Oliveira, Amparo Gonçalves, Carolina Camacho, Helga Coelho Augusto and Maria Leonor Nunes
Foods 2025, 14(1), 99; https://doi.org/10.3390/foods14010099 - 2 Jan 2025
Cited by 1 | Viewed by 7113
Abstract
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh [...] Read more.
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds. This review revisits the effects of canning on product quality and highlights the potential hazards that may compromise safety. It also examines emerging trends in product development, particularly novel formulations aimed at optimizing nutritional value while maintaining safety standards without compromising sustainability. Overall, the quality of most canned seafood meets industry requirements, for example, with improvements in processing strategies and strict safety protocols, leading to reduced histamine levels. However, data on marine biotoxins and microplastics in canned seafood remain limited, calling for more research and monitoring. Environmental contaminants, along with those generated during processing, are generally found to be within acceptable limits. Product recalls related to these contaminants in Europe are scarce, but continuous monitoring and regulatory enforcement remain essential. While new formulations of canned fish show promise, they require thorough evaluation to ensure both nutritional value and safety. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

24 pages, 1964 KB  
Article
Detection of the Cyclic Imines Pinnatoxin G, 13-Desmethyl Spirolide C and 20-Methyl Spirolide G in Bivalve Molluscs from Great Britain
by Ryan P. Alexander, Alison O’Neill, Karl J. Dean, Andrew D. Turner and Benjamin H. Maskrey
Mar. Drugs 2024, 22(12), 556; https://doi.org/10.3390/md22120556 - 12 Dec 2024
Cited by 1 | Viewed by 1464
Abstract
Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in [...] Read more.
Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in operation in the UK for other non-regulated toxins. To assess the potential presence of such compounds, a systematic screen of bivalve shellfish was conducted throughout Great Britain. A rapid dispersive methanolic extraction was used with UHPLC-MS/MS analysis to test for fifteen cyclic imines and seven brevetoxins in 2671 shellfish samples taken from designated shellfish harvesting areas around Great Britain during 2018. Out of the 22 toxins incorporated into the method, only pinnatoxin G, 13-desmethyl spirolide C and 20-methyl spirolide G were detected, with maximum concentrations of 85.4 µg/kg, 13.4 µg/kg and 51.4 µg/kg, respectively. A follow up study of pinnatoxin G-positive samples examined its potential esterification to fatty acids and concluded that following hydrolysis, pinnatoxin G concentration increased by an average of 8.6%, with the tentative identification of these esters determined by LC-HRMS. This study highlights the requirement for ongoing monitoring of emerging threats and the requirement for toxicological and risk assessment studies. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Figure 1

17 pages, 1822 KB  
Review
Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach
by Goran Gajski, Marko Gerić, Ana Baričević and Mirta Smodlaka Tanković
Antioxidants 2024, 13(11), 1366; https://doi.org/10.3390/antiox13111366 - 8 Nov 2024
Cited by 2 | Viewed by 2847
Abstract
In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human [...] Read more.
In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human diet, and human health on the other. In a changing environment, algal blooms are more frequent. For domoic acid production, the growth of Pseudo-nitzschia diatoms is of particular interest. They produce this toxin, whose capability of accumulation and biomagnification through the food web impacts other organisms in the ecosystem. Domoic acid targets nervous system receptors inducing amnestic shellfish poisoning, among other less severe health-related problems. However, the impact of domoic acid on non-target cells is rather unknown, so we reviewed the currently available literature on cytogenetic effects on human and animal cells. The results of different studies indicate that domoic acid has the potential to induce early molecular events, such as oxidative imbalance and DNA damage, thus posing an additional threat which needs to be thoroughly addressed and monitored in the future. Full article
Show Figures

Figure 1

10 pages, 2813 KB  
Article
Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water
by Awatef Al-Tabban, Amina Rhouati, Amjad Fataftah, Dana Cialla-May, Jürgen Popp and Mohammed Zourob
Toxins 2024, 16(11), 476; https://doi.org/10.3390/toxins16110476 - 4 Nov 2024
Cited by 1 | Viewed by 1548
Abstract
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein [...] Read more.
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM). In parallel, complementary DNA (cDNA) sequences specific to each aptamer were conjugated to a fluorescence quencher BHQ1. In the absence of the target, an aptamer–cDNA duplex structure is formed, and the fluorescence is quenched. By adding the toxin, the aptamer tends to bind to its target and releases the cDNA. The fluorescence intensity is consequently restored after the formation of the complex aptamer–toxin, where the fluorescence recovery is directly correlated with the analyte concentration. Based on this principle, a highly sensitive detection of the six marine toxins was achieved, with the limits of detection of 0.15, 0.06, 0.075, 0.027, 0.041, and 0.026 nM for microcystin-LR, anatoxin-α, saxitoxin, cylindrospermopsin, okadaic acid, and brevetoxin, respectively. Moreover, each aptameric assay showed a very good selectivity towards the other five marine toxins. Finally, the developed technique was applied for the detection of the six toxins in spiked water samples with excellent recoveries. Full article
Show Figures

Figure 1

12 pages, 2628 KB  
Article
Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish
by Chenhao Zhao, Zhi Zhang, Jiayu Li, Yaofan Lu, Fuyuan Ma, Zheng Wang, Jiaxin Geng, Biao Huang and Yuan Qin
Toxins 2024, 16(8), 341; https://doi.org/10.3390/toxins16080341 - 2 Aug 2024
Cited by 1 | Viewed by 2026
Abstract
Saxitoxin (STX), an exceptionally potent marine toxin for which no antidote is currently available, is produced by methanogens and cyanobacteria. This poses a significant threat to both shellfish aquaculture and human health. Consequently, the development of a rapid, highly sensitive STX detection method [...] Read more.
Saxitoxin (STX), an exceptionally potent marine toxin for which no antidote is currently available, is produced by methanogens and cyanobacteria. This poses a significant threat to both shellfish aquaculture and human health. Consequently, the development of a rapid, highly sensitive STX detection method is of great significance. The objective of this research is to create a novel approach for identifying STX. Therefore, amplified luminescent proximity homogeneous assay (AlphaLISA) was established using a direct competition method based on the principles of fluorescence resonance energy transfer and antigen–antibody specific binding. This method is sensitive, rapid, performed without washing, easy to operate, and can detect 8–128 ng/mL of STX in only 10 min. The limit of detection achieved by this method is as low as 4.29 ng/mL with coefficients of variation for the intra-batch and inter-batch analyses ranging from 2.61% to 3.63% and from 7.67% to 8.30%, respectively. In conclusion, our study successfully establishes a simple yet sensitive, rapid, and accurate AlphaLISA method for the detection of STX which holds great potential in advancing research on marine biotoxins. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

Back to TopTop