Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = marine polyphenols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1244 KB  
Review
Neuroprotective Bioactive Compounds from Marine Algae and Their By-Products Against Cerebral Ischemia–Reperfusion Injury: A Comprehensive Review
by Joon Ha Park
Appl. Sci. 2025, 15(19), 10791; https://doi.org/10.3390/app151910791 - 7 Oct 2025
Viewed by 543
Abstract
Cerebral ischemia–reperfusion (I/R) injury is a leading cause of death and long-term disability worldwide, characterized by a complex interplay of pathophysiological mechanisms and currently limited therapeutic options. This critical unmet need underscores the importance of exploring novel multi-targeted neuroprotective agents. Marine algae represent [...] Read more.
Cerebral ischemia–reperfusion (I/R) injury is a leading cause of death and long-term disability worldwide, characterized by a complex interplay of pathophysiological mechanisms and currently limited therapeutic options. This critical unmet need underscores the importance of exploring novel multi-targeted neuroprotective agents. Marine algae represent a rich and underexplored source of structurally diverse bioactive compounds with promising therapeutic potential against cerebral I/R injury. This comprehensive review systematically summarizes the preclinical evidence on the neuroprotective effects and underlying mechanisms of key bioactive compounds found in marine algae, including polysaccharides (e.g., fucoidan, laminarin, porphyran), carotenoids (e.g., astaxanthin, fucoxanthin, lutein, zeaxanthin), polyphenols (e.g., dieckol, phlorotannins), and sterols (e.g., β-sitosterol). These compounds consistently demonstrate significant efficacy across various in vitro and in vivo models, primarily through multifaceted actions encompassing anti-excitotoxic, antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as the modulation of crucial signaling pathways and preservation of blood–brain barrier integrity. While the existing preclinical evidence is highly promising, successful clinical translation necessitates further rigorous research to overcome challenges related to precise molecular understanding, translational relevance, pharmacokinetics, and safety. Beyond their pharmacological significance, the sustainable utilization of marine by-products as renewable sources of bioactive agents further highlights their dual value, offering not only novel therapeutic avenues for cerebral I/R injury but also contributing to marine resource valorization. Full article
(This article belongs to the Special Issue Utilization of Marine By-Products)
Show Figures

Figure 1

5 pages, 172 KB  
Perspective
Research Progress on Anti-Aging with Natural Products: From Pathway Modulation to AI-Driven Discovery
by Chang Hyung Lee and Sang-Han Lee
Biomolecules 2025, 15(10), 1384; https://doi.org/10.3390/biom15101384 - 29 Sep 2025
Viewed by 745
Abstract
Aging results from the combined effects of oxidative stress, chronic low-grade inflammation, mitochondrial decline, and cellular senescence, which together drive age-related disorders. Natural products ranging from polyphenols and terpenoids to alkaloids, polysaccharides, peptides, and marine metabolites can influence central pathways such as Nrf2/ARE, [...] Read more.
Aging results from the combined effects of oxidative stress, chronic low-grade inflammation, mitochondrial decline, and cellular senescence, which together drive age-related disorders. Natural products ranging from polyphenols and terpenoids to alkaloids, polysaccharides, peptides, and marine metabolites can influence central pathways such as Nrf2/ARE, NF-κB, MAPK, JAK/STAT, AMPK/PGC1-α, mTOR, and SIRT1/FOXO. By doing so, they strengthen antioxidant defenses, temper inflammation, preserve mitochondrial balance, and regulate autophagy. There is increasing attention to synergy, where combinations of bioactives can achieve stronger and more balanced effects than single agents alone. Advances in artificial intelligence are accelerating this discovery process, while greener extraction and smarter delivery systems such as deep eutectic solvents and nanostructured carriers are improving bioavailability and consistency. Together, these developments underscore the promise of natural product-based strategies for healthy aging. Grounded in rigor and reproducibility, this Special Issue aims to inspire translational advances toward healthier and more graceful aging. Full article
(This article belongs to the Special Issue Research Progress on Anti-Aging with Natural Products)
23 pages, 404 KB  
Review
Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species
by Chao Dong, Cundong Xie, Ziqi Lou, Zu Jia Lee, Colin J. Barrow and Hafiz A. R. Suleria
Mar. Drugs 2025, 23(10), 383; https://doi.org/10.3390/md23100383 - 26 Sep 2025
Viewed by 555
Abstract
This review focuses on five native Australian brown algae species—Cystophora torulosa, Durvillaea potatorum, Ecklonia radiata, Hormosira banksii, and Phyllospora comosa—evaluating their environmental adaptability, biochemical composition, bioactive compounds, and potential for commercial development. Species-specific differences in temperature and [...] Read more.
This review focuses on five native Australian brown algae species—Cystophora torulosa, Durvillaea potatorum, Ecklonia radiata, Hormosira banksii, and Phyllospora comosa—evaluating their environmental adaptability, biochemical composition, bioactive compounds, and potential for commercial development. Species-specific differences in temperature and light tolerance influence their habitat distribution. Nutritional assessments reveal that these algae are rich in proteins, polysaccharides, polyunsaturated fatty acids, and essential trace elements. Bioactive compounds, including polyphenols and fucoidans, exhibit antioxidant, anti-inflammatory, and anti-diabetic properties. D. potatorum extracts have considerable economic value in agriculture by enhancing crop yield, improving nutritional value, and promoting root development. C. torulosa is predominantly found in cooler marine environments and is comparatively more thermally sensitive. In contrast, H. banksii has a higher heat tolerance of up to 40 °C and thrives in warmer environments. E. radiata is widely distributed, highly tolerant of environmental stresses, and exhibits notable disease-resistant activities. P. comosa, due to its high polysaccharide content, demonstrates strong potential for industrial applications. Consumer studies indicate growing acceptance of seaweed-based products in Australia, although knowledge gaps remain. This study highlights the need for continued research, optimized processing methods, and targeted education to support the sustainable development and utilization of Australia’s native brown algae resources. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
10 pages, 746 KB  
Article
Are Algae a Good Source of Antioxidants? Mechanistic Insights into Antiradical Activity of Eckol
by Maciej Spiegel
Int. J. Mol. Sci. 2025, 26(18), 9223; https://doi.org/10.3390/ijms26189223 - 21 Sep 2025
Viewed by 508
Abstract
Eckol (Eck), a polyphenolic compound of marine origin, exhibits strong scavenging activity against hydroperoxyl radicals. This study explores its acid-base speciation in aqueous media and evaluates its antioxidant potential through electronic, thermochemical, and kinetic analyses under biologically relevant conditions. The deprotonated [...] Read more.
Eckol (Eck), a polyphenolic compound of marine origin, exhibits strong scavenging activity against hydroperoxyl radicals. This study explores its acid-base speciation in aqueous media and evaluates its antioxidant potential through electronic, thermochemical, and kinetic analyses under biologically relevant conditions. The deprotonated species of Eck display exceptionally high rate constants for hydrogen atom transfer, indicating a potent antiradical mechanism. The apparent rate constant, accounting for species distribution at physiological pH and the molar fraction of OOH, was calculated as 1.09 × 107 M−1·s−1. Compared to related compounds, Eck demonstrates outstanding hydroperoxyl radical-scavenging capacity, supporting its potential as a natural antioxidant in biological systems. Full article
Show Figures

Figure 1

44 pages, 2354 KB  
Review
Marine Macroalgae in Topical Formulations: Bioactive Compounds, Variability, Analytical Challenges and Skin Benefits
by Cătălina Bogdan, Mara Molnar, Elena Ines Dima, Andreea Alexandra Olteanu, Diana Antonia Safta and Mirela-Liliana Moldovan
Pharmaceutics 2025, 17(9), 1143; https://doi.org/10.3390/pharmaceutics17091143 - 31 Aug 2025
Viewed by 2288
Abstract
Marine macroalgae, classified into three major groups, brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta), represent a source of structurally diverse compounds relevant for topical applications. This narrative review of the peer-reviewed literature and regulatory databases targets macroalgae-derived active ingredients in cosmetic formulations and [...] Read more.
Marine macroalgae, classified into three major groups, brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta), represent a source of structurally diverse compounds relevant for topical applications. This narrative review of the peer-reviewed literature and regulatory databases targets macroalgae-derived active ingredients in cosmetic formulations and in wound-healing applications. It outlines major compound classes (polyphenols, sulfated polysaccharides, carotenoids, fatty acids, and peptides), along with their documented biological effects on skin (antioxidant, anti-inflammatory, moisturizing, photoprotective, and anti-aging activity) and regulatory/safety aspects with formulation strategies. This review also addresses the variability in compound concentrations resulting from species, environmental conditions, and seasonal factors, which impacts reproducibility and standardization. Common extraction techniques like solvent extraction, ultrasound-assisted extraction, supercritical fluid extraction, and enzyme-assisted methods are described in relation to compound class and yield. Analytical methods used for the identification and quantification of these compounds, including HPLC, GC-MS, and FTIR, are then summarized. Additionally, recent in vitro and in vivo studies evaluating the bioactivity and safety of macroalgae-derived ingredients are discussed. This review compiles relevant evidence to inform formulation strategies and ingredient evaluation in the context of marine-based topical products. Full article
Show Figures

Graphical abstract

15 pages, 5187 KB  
Article
Process Optimization for Polyphenol Extraction from Macroalgae Residues and Assessment of Their Compositions, Antioxidant Activities, and Glycosidase Inhibition
by Xianxian Luo, Hao Chen, Jiayi Mi, Xinyan Li, Ziheng Wu, Yan Jiang and Xiufang Dong
Foods 2025, 14(17), 3055; https://doi.org/10.3390/foods14173055 - 29 Aug 2025
Viewed by 563
Abstract
Macroalgae are often used to produce sodium alginate, but their by-products have not been fully utilized. This study aimed to optimize the extraction of bound polyphenols (BPs) from Macrocystis pyrifera (L.) residues, analyze the composition of free polyphenols (FPs) and BPs, and evaluate [...] Read more.
Macroalgae are often used to produce sodium alginate, but their by-products have not been fully utilized. This study aimed to optimize the extraction of bound polyphenols (BPs) from Macrocystis pyrifera (L.) residues, analyze the composition of free polyphenols (FPs) and BPs, and evaluate their antioxidant activities and ability to inhibit glycosidase activity. The optimal conditions for extracting BPs achieved by the response surface method were as follows: 50 °C, a solid–liquid ratio of 1:50, an alkaline hydrolysis time of 2.38 h, and a NaOH concentration of 8 mol/L. Polyphenol content determination results indicated that FPs had significantly higher total polyphenols (13.02 ± 0.05 μg GAE/mg) and phlorotannin (3.44 ± 0.04 μg PE/mg) than BPs (6.57 ± 0.07 μg GAE/mg and 1.32 ± 0.20 μg PE/mg). HPLC/ESI-QTOF-MS showed distinct profiles: FPs had one polyhydroxy phenol, nine flavonoids, and four additional compounds, whereas BPs had five flavonoids and four other compounds. Antioxidant activity was found to be higher in FPs than in BPs (DPPH: 3.03 vs. 1.79 μg TE/mg; FRAP: 19.40 vs. 7.43 μg TE/mg). Furthermore, FPs exhibited 4.59- and 11-fold higher inhibition capacity toward α-amylase and α-glucosidase, respectively, compared to BPs. The results provide valuable basic data for the application of macroalgae residues in the marine biological industry and reveal their potential hypoglycemic ability. Full article
(This article belongs to the Special Issue Nutrition, Safety and Storage of Seafoods)
Show Figures

Figure 1

20 pages, 1646 KB  
Review
A Systematic Review of Nutraceuticals from the Perspective of Life-Cycle Assessment
by Ilija Djekic, Nada Smigic and Dubravka Vitali Čepo
Pharmaceuticals 2025, 18(9), 1278; https://doi.org/10.3390/ph18091278 - 27 Aug 2025
Viewed by 983
Abstract
Background/Objectives: Despite its growing application, life-cycle assessment (LCA) in the nutraceutical sector has not been systematically studied, leaving a gap in our understanding of the unique challenges of assessing its environmental footprint. The main objective of this study was to provide an [...] Read more.
Background/Objectives: Despite its growing application, life-cycle assessment (LCA) in the nutraceutical sector has not been systematically studied, leaving a gap in our understanding of the unique challenges of assessing its environmental footprint. The main objective of this study was to provide an overview of scientific publications related to nutraceuticals from the LCA perspective. Methods: This review combined bibliometric analysis, using VOSViewer as an analytic tool, with the search of the Web of Science database, aiming to identify the most relevant papers associated with nutraceuticals and life-cycle assessment. Results: The final selection of the most relevant publications was set at 65, analyzing 78 different nutraceuticals. Results reveal that the main sources of raw materials for extraction of nutraceuticals are marine-based, plant-based, and from agri-food waste. Polyphenols were analyzed 34 times and were predominantly sourced from plants, while carotenoids, analyzed 17 times, were mainly linked with marine-based and food waste-derived sources. The main environmental footprints were focused on climate change, covering most of the nutraceuticals analyzed (97.4%), followed by acidification (78.2%) and eutrophication (74.4%). SimaPro was the prevailing software used for 43.6% nutraceuticals, while the prevailing database was Ecoinvent, used in two thirds of the cases (66.7%). ReCiPe, as a life-cycle inventory assessment method, was used for calculating 34.6% of analyzed cases, followed by CML (33.3%). Conclusions: This systematic review highlights the main challenge in LCA studies, outlining great variability in study boundaries, functional units, and reported environmental footprints, and making it difficult to compare the environmental impacts of similar nutraceutical groups from a life-cycle perspective. This underscores the urgent need to improve input-data quality and develop standardized methodologies to validate sustainability claims using LCA. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

16 pages, 1679 KB  
Review
Unraveling of Seaweed Bioactive Substances and Their Nutritional Regulation Functions for Poultry
by Si-Bing Li, Qing-Hua Yao, Xue-Qing Ye, Balamuralikrishnan Balasubramanian and Wen-Chao Liu
Mar. Drugs 2025, 23(8), 324; https://doi.org/10.3390/md23080324 - 10 Aug 2025
Cited by 2 | Viewed by 1490
Abstract
Seaweed is a rich and valuable marine biological resource that contains various bioactive substances, including polysaccharides, polyphenols, fatty acids, and more. These compounds exhibit a range of biological activities, such as antimicrobial, antioxidant, and immunomodulation effects. In the face of challenges related to [...] Read more.
Seaweed is a rich and valuable marine biological resource that contains various bioactive substances, including polysaccharides, polyphenols, fatty acids, and more. These compounds exhibit a range of biological activities, such as antimicrobial, antioxidant, and immunomodulation effects. In the face of challenges related to intensive farming, poultry are often exposed to multiple stressors during production, which can lead to oxidative stress, impaired intestinal barrier function, and excessive inflammatory responses. Due to their potent biological activities, seaweeds and their bioactive components have shown potential in improving poultry health and performance. This paper mainly reviews the classification of seaweeds and their extracts, their main biological functions, and the research progress on the application to poultry, with the aim of providing a reference for the research and application of seaweed active substances as functional feed additives in poultry. Full article
Show Figures

Graphical abstract

23 pages, 3357 KB  
Article
Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
by Hai-Xiang Zhou, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen and Jian-Cheng Zhang
Beverages 2025, 11(4), 99; https://doi.org/10.3390/beverages11040099 - 1 Jul 2025
Cited by 1 | Viewed by 1295
Abstract
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to [...] Read more.
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to be the most secure and environmentally friendly strategy. Although numerous microbial tannases have been identified and used in food processing, they are predominantly mesophilic with compromised heat tolerance, which limit their application in high-temperature tea extraction processing. Computer-assisted rational design and site-directed mutagenesis has emerged as a promising strategy in enzyme engineering to improve the thermostability of industrial enzymes. Nevertheless, relevant studies for tannase thermostability improvement remain lacking. In the present study, a novel thermophilic tannase called TanPL1 from marine fungus Penicillium longicatenatum strain SM102 was expressed in the food-grade host Yarrowia lipolytica. After purification and characterization, the thermostability of this enzyme was improved through site-directed mutagenesis guided by computer-aided rational design and molecular dynamics simulations. Then the thermostable mutant MuTanPL1 was applied in green tea processing for both polyphenol extraction and ester catechin hydrolysis. The tannase yield and specific activity values of 166.4 U/mL and 1059.3 U/mg, respectively, were achieved. The optimum pH and temperature of recombinant TanPL1 were determined to be 5.5 and 55 °C, respectively, and the enzyme exhibited high activity toward various gallic acid ester substrates. The site-directed mutagenesis method successfully generated a single-point mutant, MuTanPL1, with significantly enhanced thermostability and a higher optimum temperature of 60 °C. After 2 h of detannification by MuTanPL1, nearly all gallated catechins in green tea infusion were biotransformed. This resulted in a 202.4% and 12.1-fold increase in non-ester catechins and gallic acid levels, respectively. Meanwhile, the quality of the tea infusion was also markedly improved. Sensory evaluation and antioxidant activity assays revealed notable enhancements in these properties, while turbidity was reduced considerably. Additionally, the α-amylase inhibition activity of the tannase-treated tea infusion declined from 50.49% to 8.56%, revealing a significantly lower anti-nutritional effect. These findings suggest that the thermostable tannase MuTanPL1 holds strong application prospects in tea beverage processing. Full article
Show Figures

Figure 1

16 pages, 905 KB  
Review
From Sea to Relief: The Therapeutic Potential of Marine Algal Antioxidants in Pain Alleviation
by Mariola Belda-Antolí, Francisco A. Ros Bernal and Juan Vicente-Mampel
Mar. Drugs 2025, 23(7), 270; https://doi.org/10.3390/md23070270 - 27 Jun 2025
Cited by 1 | Viewed by 1143
Abstract
Chronic pain affects approximately 20% of the global adult population, posing significant healthcare and economic challenges. Effective management requires addressing both biological and psychosocial factors, with emerging therapies such as antioxidants and marine algae offering promising new treatment avenues. Marine algae synthesize bioactive [...] Read more.
Chronic pain affects approximately 20% of the global adult population, posing significant healthcare and economic challenges. Effective management requires addressing both biological and psychosocial factors, with emerging therapies such as antioxidants and marine algae offering promising new treatment avenues. Marine algae synthesize bioactive compounds, including polyphenols, carotenoids, and sulfated polysaccharides, which modulate oxidative stress, inflammation, and neuroimmune signaling pathways implicated in pain. Both preclinical and clinical studies support their potential application in treating inflammatory, neuropathic, muscular, and chronic pain conditions. Notable constituents include polyphenols, carotenoids (such as fucoxanthin), vitamins, minerals, and sulfated polysaccharides. These compounds modulate oxidative stress and inflammatory pathways, particularly by reducing reactive oxygen species (ROS) and downregulating cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Brown and red algae produce phlorotannins and fucoidans that alleviate pain and inflammation in preclinical models. Carotenoids like fucoxanthin demonstrate neuroprotective effects by influencing autophagy and inflammatory gene expression. Algal-derived vitamins (C and E) and minerals (magnesium, selenium, and zinc) contribute to immune regulation and pain modulation. Additionally, sulfated polysaccharides suppress microglial activation in the central nervous system (CNS). Marine algae represent a promising natural source of bioactive compounds with potential applications in pain management. Although current evidence, primarily derived from preclinical studies, indicates beneficial effects in various pain models, further research is necessary to confirm their efficacy, safety, and mechanisms in human populations. These findings advocate for the continued exploration of marine algae as complementary agents in future therapeutic strategies. Full article
Show Figures

Figure 1

19 pages, 6683 KB  
Article
Bioinspired Co-Assembled Hydrogels Constructed from Marine Self-Assembling Peptides and Polyphenol Network: Antioxidant and Infected Wound Healing
by Chuhan Wang, Dingyi Yu, Wen Liu, Xiang Zhu, Hanzhe Zhang, Shuang Zheng and Jingdi Chen
Antioxidants 2025, 14(7), 785; https://doi.org/10.3390/antiox14070785 - 26 Jun 2025
Viewed by 939
Abstract
Infectious wounds pose formidable clinical challenges due to hypoxia, exacerbated inflammation, and persistent microbial colonization. To address this, we developed a bioinspired multifunctional hydrogel (PTDPs) through the in situ freeze-thaw co-assembly of polyvinyl alcohol (PVA), tea polyphenols (TP), polydopamine (PDA), and marine-derived self-assembling [...] Read more.
Infectious wounds pose formidable clinical challenges due to hypoxia, exacerbated inflammation, and persistent microbial colonization. To address this, we developed a bioinspired multifunctional hydrogel (PTDPs) through the in situ freeze-thaw co-assembly of polyvinyl alcohol (PVA), tea polyphenols (TP), polydopamine (PDA), and marine-derived self-assembling peptides (AAPs). The resultant PTDP hydrogel formed an intricate hydrogen-bonded network that enhanced mechanical robustness and substrate adhesion. TP and PDA synergistically confer potent antioxidant properties: TP scavenges radicals via phenolic hydroxyl groups while PDA enhances responsiveness to diverse radicals in hypoxic environments. Integrated with AAPs’ pro-regenerative functions and PDA’s broad-spectrum antimicrobial efficacy, this system generates therapeutic synergy. Characterization revealed outstanding physicochemical properties including tunable plasticity, high swelling ratios, and sustained hydration retention. In vitro studies demonstrated potent antioxidant activity, efficient inhibition of Staphylococcus aureus and Escherichia coli proliferation, and cytocompatibility facilitating endothelial cell migration/proliferation. In murine full-thickness infected wound models, the PTDP hydrogel significantly accelerated wound closure, enhanced neovascularization, and improved collagen deposition, underscoring its potential as an innovative therapeutic platform for infected and chronic wounds with strong translational prospects. Full article
Show Figures

Figure 1

15 pages, 2149 KB  
Article
Biofilm-Forming Lactic Acid Bacteria in Sausages: Isolation, Characterization, and Inhibition Using Eisenia bicyclis-Based Nanoparticles
by Do Kyung Oh, Du-Min Jo, Minji Kim, Jeong-Bin Jo, Ji-Hwan Choi, Jeong Mi Choi, Geum-Jae Jeong, Se Yun Jeong, Fazlurrahman Khan and Young-Mog Kim
Antibiotics 2025, 14(7), 637; https://doi.org/10.3390/antibiotics14070637 - 22 Jun 2025
Viewed by 877
Abstract
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to [...] Read more.
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to identify and characterize LAB strains from sausage products that are capable of biofilm formation, and to evaluate the inhibitory effects of E. bicyclis methanol extract, its ethyl acetate fraction, and phloroglucinol, as well as to synthesize AuNPs, and assess their efficacy in controlling biofilm formation. Methods: Slime or biofilm-producing LAB bacteria were isolated from commercial sausages and identified using 16S rRNA gene sequencing. Lactobacillus sakei S10, which can tolerate high salt concentrations and cold temperatures, was chosen as a representative strain. The isolates were subsequently tested for hemolytic activity, salt and temperature tolerance, and carbohydrate consumption patterns. To evaluate antibiofilm potential, marine-derived compounds from Eisenia bicyclis, such as phloroglucinol (PG), crude methanolic extracts, ethyl acetate fractions, and gold nanoparticle (AuNP) formulations, were tested in situ on sausage surfaces against L. sakei S10 and common pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The biofilm-inhibitory effects of the extracts, PG, and PG-AuNPs were estimated using the colony-counting method. Results: The PG-AuNPs had an average particle size of 98.74 nm and a zeta potential of −29.82 mV, indicating nanoscale dimensions and considerable colloidal stability. Structural analysis confirmed their spherical form and crystalline structure, as well as the presence of phenolic groups in both reduction and stabilization processes. Among the studied treatments, the PG and PG-AuNPs had the strongest antibiofilm activities, dramatically lowering biofilm biomass, particularly for P. aeruginosa and L. sakei S10. However, the inhibitory effects were less prominent in in situ conditions than in in vitro testing, highlighting the complexity of real food matrices. Conclusions: The results of this study indicate that polyphenolic compounds obtained from marine sources, particularly in nano-formulated forms, have a great deal of potential as natural antibiofilm products. Enhancing the microbiological safety of processed meat products and extending their shelf life could be accomplished through the application of these polyphenolic compounds in food packaging or surface treatments. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

21 pages, 1959 KB  
Article
Green Chemistry Meets Olive Mill Wastewater: Bioinspired Oxidation of Phenols and Polyphenols Using Selenium Catalysts
by Cecilia Scimmi, Izabela Szymanek, Diana Rogacz, Sebastiano Passeri, Giulia Patanella, Cezary Kozłowski, Małgorzata Deska, Piotr Rychter, Jozef Drabowicz and Claudio Santi
Int. J. Mol. Sci. 2025, 26(11), 5192; https://doi.org/10.3390/ijms26115192 - 28 May 2025
Viewed by 1709
Abstract
Olive mill wastewater (OMW) represents a toxic waste generated during olive oil production (30 million m3/year). Its phytotoxicity and resistance to biodegradation are mainly due to the presence of polyphenols. Methodologies able to remove these organic compounds from this waste to [...] Read more.
Olive mill wastewater (OMW) represents a toxic waste generated during olive oil production (30 million m3/year). Its phytotoxicity and resistance to biodegradation are mainly due to the presence of polyphenols. Methodologies able to remove these organic compounds from this waste to allow the safe dispose of OMW have been developed, and among them, the most effective are oxidation procedures. In this context, we propose an alternative chemical treatment based on the oxidation of OMW using diluted hydrogen peroxide and seleno-organic compounds (diphenyl diselenide and diseleno-bis-benzoic acid) selected as eco-friendly bioinspired catalysts. The effectiveness of the protocol was monitored by Folin–Ciocalteu (F-C) quantification and NMR quantification. The results demonstrated that the greatest reduction in the total phenols content—up to 96%—was achieved using the highest concentrations of catalyst (0.6% w/w) and oxidant (10% v/v). Moreover, a toxicological evaluation was carried out using the marine bacteria Aliivibrio fischeri, revealing a significant decrease in toxicity. The EC50 value increased from 0.089 mg/L in the untreated OMW to 18.740 mg/L in the treated sample after removal of the residual catalyst and peroxides. Full article
Show Figures

Figure 1

15 pages, 1725 KB  
Review
Marine-Derived Antioxidants: A Comprehensive Review of Their Therapeutic Potential in Oxidative Stress-Associated Diseases
by Ruiqiu Zhang, Yuke Ren, Tianqi Ren, Yue Yu, Bo Li and Xiaobing Zhou
Mar. Drugs 2025, 23(6), 223; https://doi.org/10.3390/md23060223 - 22 May 2025
Cited by 3 | Viewed by 2273
Abstract
Oxidative stress is a critical factor contributing to the pathogenesis of numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions. In recent years, marine-derived antioxidants have emerged as promising therapeutic agents due to their unique biological activities and diverse sources. This comprehensive review [...] Read more.
Oxidative stress is a critical factor contributing to the pathogenesis of numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions. In recent years, marine-derived antioxidants have emerged as promising therapeutic agents due to their unique biological activities and diverse sources. This comprehensive review explores the therapeutic potential of various marine antioxidants in mitigating oxidative stress-associated diseases. Marine organisms are rich in bioactive compounds, such as polysaccharides, polyphenols, carotenoids, peptides, and vitamins, which exhibit potent antioxidant and free radical scavenging abilities. These compounds have been shown to effectively inhibit oxidative reactions, repair oxidative damage, and enhance the body’s antioxidant defense mechanisms. For instance, marine polysaccharides and their derivatives can scavenge reactive oxygen species (ROS), protect neurons from oxidative damage, and alleviate inflammation in neurodegenerative diseases like Alzheimer’s and Parkinson’s diseases. Similarly, marine unsaturated fatty acids, such as omega-3 polyunsaturated fatty acids (PUFAs), have been found to reduce cardiovascular risks by lowering serum triglyceride levels and improving vascular endothelial function. Additionally, marine-derived superoxide dismutase (SOD) plays a crucial role in neutralizing ROS, thereby offering protection against oxidative stress in various diseases. Despite these promising findings, challenges remain in the field, including the need for improved extraction and purification technologies, more comprehensive activity evaluation systems, and further research into the safety and bioavailability of these compounds. This review provides a detailed overview of the current research status, highlighting the types, structural characteristics, antioxidant activities, and mechanisms of action of marine antioxidants. It also identifies key areas for future research and development, aiming to harness the full potential of marine-derived antioxidants in the prevention and treatment of oxidative stress-related diseases. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory Agents )
Show Figures

Figure 1

17 pages, 1271 KB  
Review
Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery
by Sandro Amador, Alice Martins, Margarida Matias, Rui Pedrosa and Susete Pinteus
Mar. Drugs 2025, 23(5), 211; https://doi.org/10.3390/md23050211 - 16 May 2025
Cited by 3 | Viewed by 1989
Abstract
The extraction of bioactive compounds from marine natural products has gained increasing attention due to their diverse applications, such as in pharmaceuticals, nutraceuticals, and cosmetics. Yet, low extraction yields and toxicity associated with common solvents are a major bottleneck. Deep eutectic solvents (DESs) [...] Read more.
The extraction of bioactive compounds from marine natural products has gained increasing attention due to their diverse applications, such as in pharmaceuticals, nutraceuticals, and cosmetics. Yet, low extraction yields and toxicity associated with common solvents are a major bottleneck. Deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs) have emerged as promising green alternatives to conventional organic solvents, offering advantages such as biodegradability, greater environmental and economic sustainability, low toxicity, and enhanced extraction selectivity. This review provides a comprehensive analysis of the principles, physicochemical properties, and applications of DESs/NADESs to obtain bioactive compounds from marine organisms. Among the most recent works, it is possible to verify the success of NADESs to extract carrageenan from the seaweed Kappaphycus alvarezii; pigments from Palmaria palmata; and polyphenols and proteins from different brown seaweeds. NADESs have also shown high potential to extract other valuable compounds from marine by-products, such as chitin from crabs and shrimp shells, and also lipids and proteins from different fish species and protein rich extracts from tilapia viscera. The challenges for DESs/NADESs use at industrial scale are also discussed, and success cases are revealed, highlighting their potential as game changers for extracting bioactive compounds from marine organisms and driving the development of innovative biotechnological products. Full article
Show Figures

Figure 1

Back to TopTop