Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = maturity-onset diabetes of the young

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 931 KB  
Article
Rare BLK, CEL, KLF11, PDX1, and PAX4 Gene Variants in Russian Patients with Monogenic Diabetes: Clinical and Molecular Characterization
by Rita I. Khusainova, Ildar R. Minniakhmetov, Dmitry N. Laptev, Mariya P. Koltakova, Roman V. Deev, Bulat I. Yalaev, Yaroslav V. Dvoryanchikov, Elena A. Sechko and Natalia G. Mokrysheva
Biomedicines 2025, 13(10), 2452; https://doi.org/10.3390/biomedicines13102452 - 9 Oct 2025
Viewed by 561
Abstract
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics [...] Read more.
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics become increasingly accessible, an expanding number of novel genetic variants are being identified. Objectives: The aim of this study was to characterize the clinical and genetic features of patients carrying rare variants in the BLK, KLF11, PAX4, PDX1, and CEL genes, with attention to population-specific aspects, family history, and treatment outcomes. Methods: Targeted next-generation sequencing (NGS) using a custom-designed panel covering 27 genes implicated in MODY, neonatal diabetes, and related hereditary syndromes was performed on the Illumina NovaSeq 6000 platform (Illumina). Results: We identified 21 variants in five genes associated with rare MODY subtypes among 24 unrelated patients. MODY9 was diagnosed in two unrelated patients of Russian ethnicity harboring an identical heterozygous missense mutation in exon 5 of the PAX4 gene (HG38, chr7:127615049G>A, c.191C>T, p.Thr64Ile), which has not been previously described in patients with diabetes. MODY11 was diagnosed in a patient carrying the c.773-1G>A variant in the BLK gene. A patient with a de novo c.40_41dupGC (p.Val15Glnfs*41) variant in the KLF11 gene was clinically diagnosed with type 1 diabetes. Conclusion: Our findings expand the current understanding of rare MODY subtypes and contribute to the growing body of evidence on the spectrum and frequency of potentially pathogenic variants in BLK, CEL, KLF11, PDX1, and PAX4 genes across ethnically diverse populations worldwide. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

13 pages, 526 KB  
Review
MODY5 and 17q12 Microdeletion Syndrome: Phenotype Variability, Prenatal and Postnatal Counseling
by Paolo Fontana, Claudia Costabile, Mariateresa Falco, Maria Rosaria Barillari and Fortunato Lonardo
Genes 2025, 16(9), 1002; https://doi.org/10.3390/genes16091002 - 25 Aug 2025
Viewed by 1335
Abstract
Maturity-Onset Diabetes of the Young Type 5 (MODY5) is caused by heterozygous pathogenic variants in the HNF1B gene, encoding the transcription factor hepatocyte nuclear factor-1β. HNF1B haploinsufficiency typically leads to young-onset non-immune diabetes and highly variable renal involvement, whose more frequent features are [...] Read more.
Maturity-Onset Diabetes of the Young Type 5 (MODY5) is caused by heterozygous pathogenic variants in the HNF1B gene, encoding the transcription factor hepatocyte nuclear factor-1β. HNF1B haploinsufficiency typically leads to young-onset non-immune diabetes and highly variable renal involvement, whose more frequent features are bilateral kidney cysts and renal hypodysplasia. Kidney cysts or echogenic kidneys can be identified by ultrasonography in the prenatal period, but the renal involvement can also start in childhood or later. Notably, a recurrent microdeletion syndrome at 17q12 (deleting HNF1B plus ~15 neighboring genes) accounts for ~40–50% of cases. The 17q12 deletion is a contiguous gene syndrome and affected individuals present with a complex phenotype, including neurodevelopmental disorders, liver and pancreas abnormalities, and other congenital defects. When counseling the patient and the parents, the clinician must consider multiple factors, including the molecular defect and the age of onset of the symptoms, with particular attention to prenatal diagnosis. A multidisciplinary approach and an early diagnosis are essential for the management of these conditions. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

15 pages, 1126 KB  
Review
Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances
by Ali Mazloum, Sofya G. Feoktistova, Anna Gubaeva, Almaqdad Alsalloum, Olga N. Mityaeva, Alexander Kim, Natalia A. Bodunova, Mary V. Woroncow and Pavel Yu Volchkov
Int. J. Mol. Sci. 2025, 26(16), 8110; https://doi.org/10.3390/ijms26168110 - 21 Aug 2025
Viewed by 1890
Abstract
Maturity-onset diabetes of the young type 10 (MODY10) is a monogenic diabetes subtype caused by heterozygous mutations in the insulin gene (INS), leading to defective proinsulin processing, endoplasmic reticulum (ER) stress, and β-cell dysfunction. Current management relies on sulfonylureas or insulin [...] Read more.
Maturity-onset diabetes of the young type 10 (MODY10) is a monogenic diabetes subtype caused by heterozygous mutations in the insulin gene (INS), leading to defective proinsulin processing, endoplasmic reticulum (ER) stress, and β-cell dysfunction. Current management relies on sulfonylureas or insulin therapy, but these fail to address the underlying genetic defect. Recent research has elucidated the molecular mechanisms of MODY10, including ER stress induced by proinsulin misfolding, activation of the unfolded protein response (UPR), and β-cell apoptosis. Emerging therapies such as Adeno-Associated Virus (AAV)-mediated gene delivery to induce the glucose-responsive hepatic insulin expression, plasmid-based single-chain insulin analogs, and cell-based therapies show promise in preclinical studies. However, critical challenges remain, including immune responses to AAV vectors, incomplete correction of dominant-negative mutant effects, and the need for long-term safety data. This review summarizes current knowledge on MODY10 genetics, pathophysiology, and therapeutic innovations, while identifying key gaps for future research to enable precision medicine approaches. Full article
(This article belongs to the Special Issue Type 1 Diabetes: Molecular Mechanisms and Therapeutic Approach)
Show Figures

Figure 1

18 pages, 657 KB  
Review
Pregnancy and Neonatal Outcomes in Maturity-Onset Diabetes of the Young: A Systematic Review
by Franciszek Ługowski, Julia Babińska, Katarzyna Makowska, Artur Ludwin and Paweł Jan Stanirowski
Int. J. Mol. Sci. 2025, 26(13), 6057; https://doi.org/10.3390/ijms26136057 - 24 Jun 2025
Viewed by 2179
Abstract
Maturity-onset diabetes of the young (MODY)—a monogenic form of diabetes—accounts for approximately 1–2% of all diabetes cases, with GCK-MODY being the second most commonly diagnosed type. Although the inherited nature of the disease implies that the interplay between maternal glycemia and fetal genotype [...] Read more.
Maturity-onset diabetes of the young (MODY)—a monogenic form of diabetes—accounts for approximately 1–2% of all diabetes cases, with GCK-MODY being the second most commonly diagnosed type. Although the inherited nature of the disease implies that the interplay between maternal glycemia and fetal genotype directly influences neonatal outcomes, clinical guidelines for MODY-complicated pregnancies remain underdeveloped. A systematic literature search in the PubMed, Scopus, Web of Science, and Cochrane databases was conducted following the PRISMA guidelines. The study protocol has been logged in the PROSPERO registry with the identification number CRD42024609390. Data, such as MODY type, the gestational age at delivery, mode of delivery, insulin administration, mutational status of the fetus, fetal birthweight (FBW), occurrence of small-/large-for-gestational age fetus, shoulder dystocia, and neonatal hypoglycemia, were extracted and evaluated. Among 19 studies selected for the final analysis, 15 investigated perinatal outcomes in the GCK-MODY variant. Women diagnosed with GCK-MODY treated with insulin delivered approximately 1–2 weeks earlier than those managed with diet alone. FBW was significantly higher in GCK-negative as compared to GCK-positive offspring. Accordingly, fetal macrosomia was notably more common among unaffected neonates. In GCK-affected fetuses, insulin therapy was associated with a significantly lower FBW. Fetal genotype critically modifies perinatal outcomes in GCK-MODY pregnancies. In the absence of fetal genotyping, conservative management should be prioritized to mitigate the risks of fetal growth restriction and iatrogenic prematurity. As data regarding other types of MODY in pregnancy remain sparse, there is an urgent need for more research in this area. Full article
Show Figures

Figure 1

11 pages, 2769 KB  
Article
In Silico Analysis Identified Putative Pathogenic Missense Single Nucleotide Polymorphisms (SNPs) in the Human HNF1A Gene
by Hitham Aldharee and Hamdan Z. Hamdan
Int. J. Mol. Sci. 2025, 26(8), 3768; https://doi.org/10.3390/ijms26083768 - 16 Apr 2025
Cited by 1 | Viewed by 1424
Abstract
Maturity-onset diabetes of the young (MODY) is a rare genetic condition that affects children, adolescents, and adults. Studies have shown that genetic changes in the HNF1A gene are associated with MODY-3. However, most of the causative variants and the molecular mechanisms remain underexplored. [...] Read more.
Maturity-onset diabetes of the young (MODY) is a rare genetic condition that affects children, adolescents, and adults. Studies have shown that genetic changes in the HNF1A gene are associated with MODY-3. However, most of the causative variants and the molecular mechanisms remain underexplored. This study aims to better understand MODY-3 by investigating HNF1A-missense variants with clinical uncertainty. Various bioinformatics tools were utilised to address the clinical uncertainty of missense variants in the HNF1A gene that have not been linked with HNF1A-related conditions, sourced from the Genome Aggregation Database (GnomAD v4.1.0). Among the clinically uncertain 2444 variants, only 138 were classified as missense with clinically uncertain significance. Results show that four variants (Arg168Cys, Glu275Ala, Gly375Asp and Val411Phe) were consistently predicted as pathogenic by all tools. The allele frequency (AF) of the commonly predicted disease-causing variants was very low in the global population. The assessment of the secondary structure of filtered variants indicates that variants (Arg168Cys and Glu275Ala) are located in the helical region of the HNF1A protein. At the same time (Gly375Asp and Val411Phe) are found in the protein’s coil, suggesting structural changes at the site of variations. The prediction of protein stability was conducted using I-Mutant and MuPro. Both tools collectively indicate decreased protein stability for the variants (Arg168Cys, Glu275Ala, Gly375Asp and Val411Phe). Predicting the protein’s 3D structure for the HNF1A wild-type and mutants indicates potential structural damages in Arg168Cys and Gly375Asp. Additionally, results show that the amino acids at the variation sites of the variants (Arg168Cys, Glu275Ala, Gly375Asp and Val411Phe) were highly conserved. To conclude, 4 out of the 138 missense variants labelled as uncertain significance were found to be consistently pathogenic using in silico tools in this study. Our findings aim to support variant interpretation, understand the genotype–phenotype association of diabetes, and provide better healthcare services for patients with diabetes. Full article
Show Figures

Figure 1

22 pages, 1456 KB  
Article
Genetic Structure of Hereditary Forms of Diabetes Mellitus in Russia
by Ildar R. Minniakhmetov, Rita I. Khusainova, Dmitry N. Laptev, Bulat I. Yalaev, Yulia S. Karpova, Roman V. Deev, Ramil R. Salakhov, Dmitry D. Panteleev, Kirill V. Smirnov, Galina A. Melnichenko, Marina V. Shestakova and Natalia G. Mokrysheva
Int. J. Mol. Sci. 2025, 26(2), 740; https://doi.org/10.3390/ijms26020740 - 16 Jan 2025
Cited by 1 | Viewed by 1985
Abstract
Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part [...] Read more.
Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia. The study identified 180 pathogenic or likely pathogenic variants across 13 genes (GCK, HNF1A, HNF1B, HNF4A, ABCC8, INS, INSR, KCNJ11, PAX4, PDX1, ZFP57, BLK, WFS1), representing 46.44% of the analyzed cohort (235 individuals). The glucokinase gene (GCK) had the highest number of identified variants, with 111 variants detected in 161 patients, 20 of which were identified for the first time. In the tissue-specific transcription factor genes HNF1A, HNF4A, and HNF1B, 34 variants were found in 38 patients, including 13 that were previously unreported. Seventeen variants were identified in the ABCC8 gene, which encodes the ATP-binding cassette transporter 8 of subfamily C, each found in a different patient; four of these were novel discoveries. Nine pathogenic or likely pathogenic variants were identified in the insulin gene (INS) and its receptor gene (INSR), including four previously unreported variants. Additionally, we identified 10 previously unreported variants in six other genes among 11 patients. Variants in the genes GCK, HNF1A, HNF1B, HNF4A, ABCC8, INS, and INSR were the main contributors to the genetic pathogenesis of hereditary diabetes mellitus in the Russian cohort. These findings enhance our understanding of the molecular mechanisms underlying the disease and provide a solid basis for future studies aimed at improving diagnostic accuracy and advancing personalized therapeutic strategies. This knowledge provides a foundation for developing region-specific genetic testing algorithms and personalized therapeutic strategies, which are critical for future initiatives in precision medicine. Full article
(This article belongs to the Special Issue Diabetes: From Molecular Basis to Therapy, 2nd Edition)
Show Figures

Figure 1

15 pages, 2292 KB  
Review
HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis
by Eloísa Sánchez-Cazorla, Noa Carrera and Miguel Ángel García-González
Int. J. Mol. Sci. 2024, 25(19), 10609; https://doi.org/10.3390/ijms251910609 - 2 Oct 2024
Cited by 4 | Viewed by 5061
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, [...] Read more.
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype–phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Kidney Disease)
Show Figures

Figure 1

18 pages, 1782 KB  
Review
Monogenic Defects of Beta Cell Function: From Clinical Suspicion to Genetic Diagnosis and Management of Rare Types of Diabetes
by Anastasios Serbis, Evanthia Kantza, Ekaterini Siomou, Assimina Galli-Tsinopoulou, Christina Kanaka-Gantenbein and Stelios Tigas
Int. J. Mol. Sci. 2024, 25(19), 10501; https://doi.org/10.3390/ijms251910501 - 29 Sep 2024
Cited by 5 | Viewed by 3682
Abstract
Monogenic defects of beta cell function refer to a group of rare disorders that are characterized by early-onset diabetes mellitus due to a single gene mutation affecting insulin secretion. It accounts for up to 5% of all pediatric diabetes cases and includes transient [...] Read more.
Monogenic defects of beta cell function refer to a group of rare disorders that are characterized by early-onset diabetes mellitus due to a single gene mutation affecting insulin secretion. It accounts for up to 5% of all pediatric diabetes cases and includes transient or permanent neonatal diabetes, maturity-onset diabetes of the young (MODY), and various syndromes associated with diabetes. Causative mutations have been identified in genes regulating the development or function of the pancreatic beta cells responsible for normal insulin production and/or release. To date, more than 40 monogenic diabetes subtypes have been described, with those caused by mutations in HNF1A and GCK genes being the most prevalent. Despite being caused by a single gene mutation, each type of monogenic diabetes, especially MODY, can appear with various clinical phenotypes, even among members of the same family. This clinical heterogeneity, its rarity, and the fact that it shares some features with more common types of diabetes, can make the clinical diagnosis of monogenic diabetes rather challenging. Indeed, several cases of MODY or syndromic diabetes are accurately diagnosed in adulthood, after having been mislabeled as type 1 or type 2 diabetes. The recent widespread use of more reliable sequencing techniques has improved monogenic diabetes diagnosis, which is important to guide appropriate treatment and genetic counselling. The current review aims to summarize the latest knowledge on the clinical presentation, genetic confirmation, and therapeutic approach of the various forms of monogenic defects of beta cell function, using three imaginary clinical scenarios and highlighting clinical and laboratory features that can guide the clinician in reaching the correct diagnosis. Full article
(This article belongs to the Special Issue Diabetes: From Molecular Basis to Therapy)
Show Figures

Figure 1

8 pages, 645 KB  
Case Report
Maternal Transmission of 17q12 Microdeletion: Intrafamilial Phenotypic Variability and Diagnostic Hurdles—A Case Report
by Susanna Negrisolo, Gianluca Caridi, Benedetta Antoniello and Elisa Benetti
DNA 2024, 4(4), 337-344; https://doi.org/10.3390/dna4040023 - 29 Sep 2024
Viewed by 1723
Abstract
The relatively rare proximal 17q12 microdeletion, including the deletion of the HNF1B gene, is associated with renal cysts and diabetes syndrome (RCAD). This genomic rearrangement results in a wide range of phenotypes, including renal cysts and diabetes, which are consistent with maturity-onset diabetes [...] Read more.
The relatively rare proximal 17q12 microdeletion, including the deletion of the HNF1B gene, is associated with renal cysts and diabetes syndrome (RCAD). This genomic rearrangement results in a wide range of phenotypes, including renal cysts and diabetes, which are consistent with maturity-onset diabetes of the young type 5 (MODY5), Mullerian aplasia/dysgenesis, autism spectrum disorder and schizophrenia, speech delay, learning difficulties, transient neonatal hypercalcemia, and neonatal cholestasis. We describe a girl with a 17q12 microdeletion identified using CGH array analysis (about 1.4 Mb, including HNF1B and LHX1 genes). The same deletion was identified in her mother. The proband had shown cystic and hypodysplastic bilateral kidneys since birth and hypertension, while her mother had bilateral renal cysts and diabetes. Despite suggestive findings in the girl and in the mother, no clinical suspicion arose, and genetic testing was carried out only after referral to a pediatric nephrologist. In children, the identification of 17q12 microdeletion may have a significant impact on the diagnosis, prognosis, and management of renal disease and early-onset type II diabetes. This family with a 17q12 microdeletion confirms intrafamilial phenotypic variability and highlights the importance of including it early on in the analysis of the diagnostic workup of children with renal cystic diseases. Full article
Show Figures

Figure 1

12 pages, 2364 KB  
Case Report
A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B
by Ji Yoon Han, Jin Gwack, Tae Yun Kim and Joonhong Park
Int. J. Mol. Sci. 2024, 25(18), 9823; https://doi.org/10.3390/ijms25189823 - 11 Sep 2024
Cited by 2 | Viewed by 2172
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, [...] Read more.
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient’s clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
Show Figures

Figure 1

17 pages, 326 KB  
Review
MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants
by Iderina Hasballa and Davide Maggi
Int. J. Mol. Sci. 2024, 25(16), 8790; https://doi.org/10.3390/ijms25168790 - 13 Aug 2024
Cited by 6 | Viewed by 4065
Abstract
Maturity-onset diabetes of the young (MODY) represents the most frequent form of monogenic diabetes mellitus (DM), currently classified in 14 distinct subtypes according to single gene mutations involved in the differentiation and function of pancreatic β-cells. A significant proportion of MODY has unknown [...] Read more.
Maturity-onset diabetes of the young (MODY) represents the most frequent form of monogenic diabetes mellitus (DM), currently classified in 14 distinct subtypes according to single gene mutations involved in the differentiation and function of pancreatic β-cells. A significant proportion of MODY has unknown etiology, suggesting that the genetic landscape is still to be explored. Recently, novel potentially MODY-causal genes, involved in the differentiation and function of β-cells, have been identified, such as RFX6, NKX2.2, NKX6.1, WFS1, PCBD1, MTOR, TBC1D4, CACNA1E, MNX1, AKT2, NEUROG3, EIF2AK3, GLIS3, HADH, and PTF1A. Genetic and clinical features of MODY variants remain highly heterogeneous, with no direct genotype–phenotype correlation, especially in the low-penetrant subtypes. This is a narrative review of the literature aimed at describing the current state-of-the-art of the novel likely MODY-associated variants. For a deeper understanding of MODY complexity, we also report some related controversies concerning the etiological role of some of the well-known pathological genes and MODY inheritance pattern, as well as the rare association of MODY with autoimmune diabetes. Due to the limited data available, the assessment of MODY-related genes pathogenicity remains challenging, especially in the setting of rare and low-penetrant subtypes. In consideration of the crucial importance of an accurate diagnosis, prognosis and management of MODY, more studies are warranted to further investigate its genetic landscape and the genotype–phenotype correlation, as well as the pathogenetic contribution of the nongenetic modifiers in this cohort of patients. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
17 pages, 1336 KB  
Article
The Importance of Molecular Genetic Testing for Precision Diagnostics, Management, and Genetic Counseling in MODY Patients
by Lăcrămioara Ionela Butnariu, Delia Andreia Bizim, Carmen Oltean, Cristina Rusu, Monica Cristina Pânzaru, Gabriela Păduraru, Nicoleta Gimiga, Gabriela Ghiga, Ștefana Maria Moisă, Elena Țarcă, Iuliana Magdalena Starcea, Setalia Popa and Laura Mihaela Trandafir
Int. J. Mol. Sci. 2024, 25(12), 6318; https://doi.org/10.3390/ijms25126318 - 7 Jun 2024
Cited by 1 | Viewed by 3437
Abstract
Maturity-onset diabetes of the young (MODY) is part of the heterogeneous group of monogenic diabetes (MD) characterized by the non-immune dysfunction of pancreatic β-cells. The diagnosis of MODY still remains a challenge for clinicians, with many cases being misdiagnosed as type 1 or [...] Read more.
Maturity-onset diabetes of the young (MODY) is part of the heterogeneous group of monogenic diabetes (MD) characterized by the non-immune dysfunction of pancreatic β-cells. The diagnosis of MODY still remains a challenge for clinicians, with many cases being misdiagnosed as type 1 or type 2 diabetes mellitus (T1DM/T2DM), and over 80% of cases remaining undiagnosed. With the introduction of modern technologies, important progress has been made in deciphering the molecular mechanisms and heterogeneous etiology of MD, including MODY. The aim of our study was to identify genetic variants associated with MODY in a group of patients with early-onset diabetes/prediabetes in whom a form of MD was clinically suspected. Genetic testing, based on next-generation sequencing (NGS) technology, was carried out either in a targeted manner, using gene panels for monogenic diabetes, or by analyzing the entire exome (whole-exome sequencing). GKC-MODY 2 was the most frequently detected variant, but rare forms of KCNJ11-MODY 13, specifically, HNF4A-MODY 1, were also identified. We have emphasized the importance of genetic testing for early diagnosis, MODY subtype differentiation, and genetic counseling. We presented the genotype–phenotype correlations, especially related to the clinical evolution and personalized therapy, also emphasizing the particularities of each patient in the family context. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Diabetes Mellitus)
Show Figures

Figure 1

8 pages, 1808 KB  
Case Report
Diabetic Nephropathy, Retinopathy, and Functional Hypogonadism in a Patient with MODY10: A Case Report
by Rossana Ruiz-Urbaez, Mariela Viviana Villagómez-Estrada, Carlos Reyes-Silva, Darlyng Quishpe-López, David Males-Maldonado, Jorge Salazar-Vega and Enrique Gea-Izquierdo
Medicina 2024, 60(5), 830; https://doi.org/10.3390/medicina60050830 - 18 May 2024
Cited by 2 | Viewed by 2331
Abstract
(1) Background and objectives: Maturity-onset diabetes of the young (MODY) is a group of diabetes caused by gene defects related to insulin secretion. MODY1, MODY2, and MODY3 are the most common and account for approximately 80% of all cases. Other types are [...] Read more.
(1) Background and objectives: Maturity-onset diabetes of the young (MODY) is a group of diabetes caused by gene defects related to insulin secretion. MODY1, MODY2, and MODY3 are the most common and account for approximately 80% of all cases. Other types are relatively rare. This study describes the clinical, analytical, and genetic characteristics of a patient with MODY10, and diabetic nephropathy, retinopathy, and functional hypogonadism diagnosis. (2) Materials and methods: A clinical case was analyzed and whole exome generation sequencing (WES) was used to detect mutations related to a monogenic variant. (3) Results: A seventeen-year-old male patient, who was diagnosed with apparent type 1 diabetes at the age of eight was started with insulin therapy. He came to the emergency room with glycemic decompensation, facial, and lower limb edema. During his evaluation, he had near-nephrotic range proteinuria of 2902 mg/24 h, a kidney ultrasound showing mild pyelocalyceal dilation, proliferative diabetic retinopathy, and was also diagnosed with functional hypogonadotropic hypogonadism. These comorbidities improved with adequate glycemic control. WES showed missense variant c.94G>A (p.Gly32Ser) in the INS gene, according to Clinvar corresponding to MODY10. It was a “de novo” variant not reported in his parents. (4) Conclusions: Monogenic diabetes (MD) is rare and MODY10 is among the less frequent types. MODY should be suspected in patients with type 1 phenotype with negative autoimmunity even in the absence of a family history of diabetes. To the best of our knowledge, we present here the first patient with these phenotypic traits of MODY10 reported in Latin America. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

13 pages, 530 KB  
Article
Utility of Fasting C-Peptide for the Diagnostic Differentiation of Patients with Type 1, Type 2 Diabetes, MODY, and LADA
by Ricardo Alemán-Contreras, Rita A. Gómez-Díaz, Maura E. Noyola-García, Rafael Mondragón-González, Niels Wacher and Aldo Ferreira-Hermosillo
Life 2024, 14(5), 550; https://doi.org/10.3390/life14050550 - 25 Apr 2024
Cited by 4 | Viewed by 9727
Abstract
Background: The prevalence of obesity has increased in patients with type 1 diabetes (T1D) and latent autoimmune diabetes of the adult (LADA), limiting the use of clinical features such as the body mass index for its differentiation with type 2 diabetes (T2D). Additionally, [...] Read more.
Background: The prevalence of obesity has increased in patients with type 1 diabetes (T1D) and latent autoimmune diabetes of the adult (LADA), limiting the use of clinical features such as the body mass index for its differentiation with type 2 diabetes (T2D). Additionally, some patients with maturity-onset diabetes of the young (MODY) or LADA are misdiagnosed as having T2D. The evaluation of autoantibodies and genetic testing are not fully available. We aimed to evaluate the utility of a widely available and less expensive diagnostic tool such as C-peptide to differentiate between T1D, T2D, MODY, and LADA. Methods: Our study included 38 patients with T1D, 49 with T2D, 13 with MODY, and 61 with LADA. We recorded anthropometric measurements, biochemical profiles, and antidiabetic treatment and determined C-peptide, anti-GAD65, and anti-IA2 antibodies. Results: C-peptide concentration differed significantly among populations (T1D: 0.2 ng/mL; T2D: 2.4 ng/mL; MODY: 1.14 ng/mL; LADA: 1.87 ng/mL). Through a ROC curve, we observed that the C-peptide cut-off point of 0.95 ng/mL allows differentiation between T1D and T2D (sensitivity 82%, specificity 77%); 0.82 ng/mL between T1D and LADA (sensitivity 82%, specificity 77%); and 1.65 ng/mL between T2D and MODY (sensitivity 72%, specificity 72%). Conclusions: C-peptide is useful for the diagnostic differentiation of patients with type 1, type 2 diabetes, MODY, and LADA. Full article
Show Figures

Figure 1

24 pages, 2446 KB  
Article
Molecular Dynamics Simulation of Kir6.2 Variants Reveals Potential Association with Diabetes Mellitus
by Mohamed E. Elangeeb, Imadeldin Elfaki, Ali M. S. Eleragi, Elsadig Mohamed Ahmed, Rashid Mir, Salem M. Alzahrani, Ruqaiah I. Bedaiwi, Zeyad M. Alharbi, Mohammad Muzaffar Mir, Mohammad Rehan Ajmal, Faris Jamal Tayeb and Jameel Barnawi
Molecules 2024, 29(8), 1904; https://doi.org/10.3390/molecules29081904 - 22 Apr 2024
Cited by 8 | Viewed by 2996
Abstract
Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs [...] Read more.
Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs of DM and its complications are huge and expected to rise by the year 2030. DM is caused by genetic and environmental risk factors. Genetic testing will aid in early diagnosis and identification of susceptible individuals or populations using ATP-sensitive potassium (KATP) channels present in different tissues such as the pancreas, myocardium, myocytes, and nervous tissues. The channels respond to different concentrations of blood sugar, stimulation by hormones, or ischemic conditions. In pancreatic cells, they regulate the secretion of insulin and glucagon. Mutations in the KCNJ11 gene that encodes the Kir6.2 protein (a major constituent of KATP channels) were reported to be associated with Type 2 DM, neonatal diabetes mellitus (NDM), and maturity-onset diabetes of the young (MODY). Kir6.2 harbors binding sites for ATP and phosphatidylinositol 4,5-diphosphate (PIP2). The ATP inhibits the KATP channel, while the (PIP2) activates it. A Kir6.2 mutation at tyrosine330 (Y330) was demonstrated to reduce ATP inhibition and predisposes to NDM. In this study, we examined the effect of mutations on the Kir6.2 structure using bioinformatics tools and molecular dynamic simulations (SIFT, PolyPhen, SNAP2, PANTHER, PhD&SNP, SNP&Go, I-Mutant, MuPro, MutPred, ConSurf, HOPE, and GROMACS). Our results indicated that M199R, R201H, R206H, and Y330H mutations influence Kir6.2 structure and function and therefore may cause DM. We conclude that MD simulations are useful techniques to predict the effects of mutations on protein structure. In addition, the M199R, R201H, R206H, and Y330H variant in the Kir6.2 protein may be associated with DM. These results require further verification in protein–protein interactions, Kir6.2 function, and case-control studies. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations of Biomacromolecules)
Show Figures

Figure 1

Back to TopTop