Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (964)

Search Parameters:
Keywords = melt extrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3646 KB  
Article
Upscaling the Production of Polyethylene-Based Precursor Fibres for Carbon Fibre Manufacturing: Challenges and Solutions
by Jannis Langer, Flávio A. Marter Diniz, Tim Röding, Remi Mahfouz and Thomas Gries
J. Compos. Sci. 2025, 9(12), 653; https://doi.org/10.3390/jcs9120653 (registering DOI) - 1 Dec 2025
Abstract
On the road to developing more sustainable and cost-efficient carbon fibres (CFs), replacing the conventional polyacrylonitrile (PAN) precursor with polyethylene (PE) is a promising alternative. Yet most PE-CF studies focus on fibre properties at laboratory or pilot scale and largely overlook scalability—especially in [...] Read more.
On the road to developing more sustainable and cost-efficient carbon fibres (CFs), replacing the conventional polyacrylonitrile (PAN) precursor with polyethylene (PE) is a promising alternative. Yet most PE-CF studies focus on fibre properties at laboratory or pilot scale and largely overlook scalability—especially in melt-spinning, where precursor filament counts have typically been limited to 32–100, far below industrial CF tows (1000–48,000). This study addresses that gap by (i) modifying a staple-fibre melt-spinning line (MSFP) to directly produce a 10,000-filament PE precursor and (ii) demonstrating inline filament merging on an industrial yarn (IDY) plant at Institut für Textiltechnik (ITA) as a pragmatic scale-up route. Direct 10 k spinning proved technically feasible but did not meet convertibility targets owing to inhomogeneous extrusion and quench: the MSFP precursor showed 18.1 ± 2.0 µm filament diameter, 21.9 ± 3.8 cN/tex tenacity and 130.8 ± 40.8% elongation (total solid draw ratio 2.02). In contrast, the IDY route delivered a fine and uniform precursor with a 9.43 ± 0.02 µm filament diameter, 38.42 ± 0.43 cN/tex tenacity, 15.91 ± 0.76% elongation, and 15.32 ± 1.16% shrinkage at 120 °C (total solid draw ratio 4.55). After discontinuous sulfonation, TGA indicated superior cross-linking of the IDY precursor (≈15% mass loss at 400–600 °C) versus MSFP (≈18%). Inline merging doubled filament count inline and small-scale plying enabled a 6 k tow. Transferring the IDY precursor into continuous sulfonation and carbonisation yielded PE-based CF with a filament diameter < 8.5 µm, tensile strength up to 2.0 GPa, tensile modulus up to 170 GPa, and elongation at break up to 1.75%, without surface defects. The results establish a clear scale-up roadmap: prioritise homogeneous fine-filament extrusion at low throughputs, co-develop segmented quench, and use a stepwise strategy (1–2 k filaments → inline merging → ≥6 k) to enable industrially relevant, cost-effective PE-based CF production. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

33 pages, 1512 KB  
Review
Pineapple-Derived Nanocellulose for Nanocomposites: Extraction, Processing, and Properties
by Marianelly Esquivel-Alfaro, Oscar Rojas-Carrillo, Belkis Sulbarán-Rangel, Lilliana Rodríguez-Barquero, Hasbleidy Palacios-Hinestroza and Orlando J. Rojas
J. Compos. Sci. 2025, 9(12), 652; https://doi.org/10.3390/jcs9120652 (registering DOI) - 1 Dec 2025
Abstract
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes [...] Read more.
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes (hydrolysis, oxidation, carboxymethylation, and mechanical fibrillation) and bottom-up strategies (ionic liquids and deep eutectic solvents). The review examines the influence of the morphology and crystallinity of nanocellulose on the functional performance of the nanocomposites. Strategies for processing pineapple-derived nanocellulose composites are analyzed by technique (solution casting, film stacking, and melt blending/extrusion) and polymer matrices (starch, PVA, chitosan, PLA, PHBV, PBAT, proteins, and polysaccharides), including typical loading levels for most polymer-reinforced systems (0.5–5 wt.%), while higher levels (15–50 wt.%) are used in particular cases such as PVA, CMC, and cellulosic matrices. The impact on mechanical strength, barrier behavior, UV shielding, and optical properties is summarized, along with reports of self-reinforced and hybrid cellulose-derived matrices. A benchmarking section was prepared to show nanocellulose loading ranges, trends in properties, and processing-relevant information categorized by type of matrix. Finally, the review describes the potential roles of pineapple waste within a bioeconomy context and identifies some extraction by-products that could be incorporated into diverse value chains. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

2 pages, 138 KB  
Correction
Correction: Gottschalk et al. Predicting Throughput and Melt Temperature in Pharmaceutical Hot Melt Extrusion. Pharmaceutics 2022, 14, 1757
by Tobias Gottschalk, Cihangir Özbay, Tim Feuerbach and Markus Thommes
Pharmaceutics 2025, 17(12), 1523; https://doi.org/10.3390/pharmaceutics17121523 - 27 Nov 2025
Viewed by 77
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Drug Formulation and Process Optimization)
20 pages, 1653 KB  
Article
Simulation of the Melt Conveying Zone of a Single-Screw Extruder for Mixed Polymer Materials Using an Isothermal Analytical Flat Plate Model
by Emil Wagner, Christian Kneidinger, Christoph Burgstaller and Gernot Zitzenbacher
Polymers 2025, 17(23), 3145; https://doi.org/10.3390/polym17233145 - 26 Nov 2025
Viewed by 116
Abstract
An optimized extrusion process is desired for both an environmentally friendly and economically sustainable recycling process. The aim of this study is to simulate the melt conveying zone of a single-screw extruder when using contaminated polymers instead of commonly used pure materials, to [...] Read more.
An optimized extrusion process is desired for both an environmentally friendly and economically sustainable recycling process. The aim of this study is to simulate the melt conveying zone of a single-screw extruder when using contaminated polymers instead of commonly used pure materials, to optimize a mechanical recycling process, and to reduce the number of measurements needed for rheological input data by using mixing rules. Polypropylene (PP) is blended with a polyamide 12 (PA 12) grade and another PP grade to introduce polymer impurities into the material. The blends are subjected to extrusion experiments in a lab-scale single-screw extruder with pressure and temperature sensors along the barrel. An isothermal analytical simulation model is proposed using representative shear rate values and rheological mixing rules to calculate the pressure distribution along the screw channel throughout the melt conveying zone. The rheological input data for the simulation is taken from high-pressure capillary rheometric measurements, but also substituted with values derived from mixing rules. The results show that the application of the shear viscosity through mixing models yields simulated pressure values similar to those measured in the experiments. With the introduction of representative viscosity into the model, relative deviations of around 5% at certain screw speeds can be achieved. Full article
Show Figures

Figure 1

17 pages, 3971 KB  
Article
Improving the Pharmaceutical Potential of Lycopene Using Hot-Melt Extrusion
by Anna Kulawik, Maciej Kulawik, Natalia Rosiak, Wei Lu, Aleksandra Kryszak, Judyta Cielecka-Piontek and Przemysław Zalewski
Appl. Sci. 2025, 15(22), 12311; https://doi.org/10.3390/app152212311 - 20 Nov 2025
Viewed by 249
Abstract
Background: Lycopene is a powerful antioxidant, classified as a carotenoid. Numerous studies confirm its beneficial effects in both the prevention and treatment of various diseases. However, its therapeutic application is significantly limited due to its poor water solubility and low bioavailability from natural [...] Read more.
Background: Lycopene is a powerful antioxidant, classified as a carotenoid. Numerous studies confirm its beneficial effects in both the prevention and treatment of various diseases. However, its therapeutic application is significantly limited due to its poor water solubility and low bioavailability from natural sources. Developing a formulation with improved therapeutic characteristics could enhance the effectiveness of lycopene, making it more suitable for medical and nutritional use. The objective of this work was to apply hot-melt extrusion to produce extrudates containing an acetone-based lycopene extract combined with selected polymers, aiming to enhance its dissolution properties. Methods: Lycopene-rich extracts were prepared using ultrasound-assisted extraction with acetone. The obtained extract was processed via hot-melt extrusion together with PVP VA64 and Soluplus. The resulting extrudates were characterized using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Dissolution behavior was assessed using a paddle apparatus, and collected samples were quantified by HPLC. Antioxidant capacity was determined via DPPH radical-scavenging analysis. Results: The polymers PVP VA64 and Soluplus improve lycopene’s dissolution in acidic environments while showing its antioxidant potential. Conclusions: The formulation combining lycopene obtained through hot-melt extrusion with PVP VA64 and Soluplus polymers will enable its wider and more effective application. Full article
Show Figures

Figure 1

20 pages, 7391 KB  
Article
Thermoformability of Biopolymer Composites with Coffee Silverskin
by Ana C. Machado, Mariana Beltrão, Maria C. R. Castro, Carla I. Martins, Vasco Cruz, Pedro V. Rodrigues and Fernando M. Duarte
Polymers 2025, 17(22), 3067; https://doi.org/10.3390/polym17223067 - 19 Nov 2025
Viewed by 258
Abstract
The valorisation of agro-industrial residues in polymer composites represents a promising strategy for waste valorisation and the development of sustainable packaging materials. In this study, coffee silverskin (CSS), a lignocellulosic by-product, was added at concentrations up to 15 wt.% and processed into sheets [...] Read more.
The valorisation of agro-industrial residues in polymer composites represents a promising strategy for waste valorisation and the development of sustainable packaging materials. In this study, coffee silverskin (CSS), a lignocellulosic by-product, was added at concentrations up to 15 wt.% and processed into sheets via extrusion, followed by thermoforming using moulds with different draw ratios. Processability (MFI) and structural (FTIR), morphological (SEM, optical microscopy), thermal (TGA, DSC), and mechanical characterizations (tensile tests) were performed. Although the SEM images showed that CSS particles were well dispersed in the polymer matrix, and the mechanical behaviour was negatively affected when compared to the neat biopolymer. On the other hand, the addition of CSS increased the melt flow index, suggesting a lubricating/plasticizing effect. DSC results showed a reduction in cold crystallization temperature with CSS addition, confirming a nucleating effect, while glass transition and melting temperatures remained unchanged. Despite a narrower thermoforming temperature window with increasing CSS content, defect-free parts with adequate mould replication were successfully obtained for all formulations. Overall, the incorporation of CSS into PLA matrix provides a viable pathway for producing thermoformable as potential compostable composites, enabling waste valorisation within a circular bioeconomy framework. Full article
Show Figures

Graphical abstract

31 pages, 10581 KB  
Article
Advancing Personalized Medicine Through FDM 3D Printing: Ketoprofen Tablets with Customizable Drug Release Profiles and In Silico Simulation
by Haya Khader Ahmad Yasin, Moawia M. Al-Tabakha and Siok Yee Chan
Pharmaceutics 2025, 17(11), 1495; https://doi.org/10.3390/pharmaceutics17111495 - 19 Nov 2025
Viewed by 412
Abstract
Background/Objectives: Fused deposition modeling (FDM) three-dimensional (3D) printing represents an emerging manufacturing platform for personalized oral dosage forms. Its success relies on developing robust drug-loaded filaments with consistent mechanical, thermal, and dissolution properties. This work aims to (i) develop and characterize ketoprofen-loaded [...] Read more.
Background/Objectives: Fused deposition modeling (FDM) three-dimensional (3D) printing represents an emerging manufacturing platform for personalized oral dosage forms. Its success relies on developing robust drug-loaded filaments with consistent mechanical, thermal, and dissolution properties. This work aims to (i) develop and characterize ketoprofen-loaded filaments using hot-melt extrusion (HME) and (ii) utilize them to fabricate both immediate-release (IR) and sustained-release (SR) tablets via FDM 3D printing. Methods: Filaments were prepared using Kollicoat® IR and hydroxypropyl methylcellulose (HPMC, 2600–5600 cP) as functional polymers. Sorbitol and sodium lauryl sulfate (SLS) were incorporated as plasticizer and surfactant, respectively. Filaments were evaluated for quality attributes, drug content, tensile strength, and physicochemical and surface characteristics using Scanning Electron Microscopy (SEM), Attenuated Total Reflection Fourier-transform infrared (ATR-FTIR), X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Optimized filaments were fed into an FDM 3D printer to fabricate ketoprofen tablets with varied geometries, shell numbers, and infill densities. Tablets were subjected to USP tests (weight variation, friability, hardness, disintegration, assay, content uniformity), dissolution profiling, and release kinetics modeling. Comparative dissolution studies with market Profenid® and Bi-Profenid® tablets were conducted. GastroPlus® simulations were used for in vitro–in silico correlation. Results: Among the tested formulations, Kollicoat® IR-based filaments with sorbitol and SLS (F6) demonstrated superior printability, characterized by consistent feeding, stable extrusion, and reliable formation of uniform structures for immediate-release applications. In contrast, HPMC-based filaments with sorbitol (F13) offered the most robust performance for SR formulations. Both exhibited uniform diameter, drug loading, and mechanical strength. IR tablets achieved >80% release within 30 min, while SR tablets prolonged release up to 12 h, following Higuchi and Korsmeyer–Peppas kinetics. All quality attributes complied with USP limits. Market products showed comparable dissolution, validating the approach. GastroPlus® simulations predicted pharmacokinetic profiles consistent with reported data, supporting IVIVC. Conclusions: This integrated workflow establishes a robust strategy for producing IR and SR ketoprofen tablets from a single FDM platform. The results highlight the feasibility of point-of-care, personalized medicine using 3D printing technologies. Full article
Show Figures

Figure 1

24 pages, 3586 KB  
Article
Valorization of Brewer’s Yeast Waste as a Low-Cost Biofiller for Polylactide: Analysis of Processing, Mechanical, and Thermal Properties
by Krzysztof Moraczewski, Małgorzata Łazarska, Magdalena Stepczyńska, Bartłomiej Jagodziński, Tomasz Karasiewicz and Cezary Gozdecki
Materials 2025, 18(21), 5052; https://doi.org/10.3390/ma18215052 - 6 Nov 2025
Viewed by 426
Abstract
The aim of this study was the valorization of brewer’s yeast waste as a low-cost, biodegradable filler for polylactide (PLA) and the evaluation of the effect of yeast biomass on the processing, mechanical, thermal properties, and biodegradation of the resulting composites. The materials [...] Read more.
The aim of this study was the valorization of brewer’s yeast waste as a low-cost, biodegradable filler for polylactide (PLA) and the evaluation of the effect of yeast biomass on the processing, mechanical, thermal properties, and biodegradation of the resulting composites. The materials were prepared using extrusion and injection molding techniques, with the addition of brewer’s yeast (Saccharomyces cerevisiae) in amounts ranging from 5 to 30 wt%. Fourier-transform infrared spectroscopy (FTIR) analysis revealed the absence of strong interfacial chemical interactions, indicating physical dispersion of the filler within the matrix. The addition of biomass significantly modified the properties of PLA. The results demonstrated increased melt flowability (melt flow rate increased from 18.8 to 39.8 g/10 min) and stiffness (a 13% increase in Young’s modulus for 20 wt%), accompanied by a considerable reduction in tensile strength (from 63.2 to 20.2 MPa) and impact strength (from 22.8 to 6.2 kJ/m2). Thermal analyses showed a systematic decrease in the glass transition temperature by approximately 5 °C and a dual effect of the filler on crystallization behavior. At low concentrations, the waste acted as a nucleating agent, while at higher loadings it limited crystallinity, leading to an amorphous structure. Thermal stability decreased with increasing biomass content (from 329.3 °C to 266.8 °C). Industrial composting tests indicated that at a 30 wt% yeast content, the mass loss (27.5%) was higher than that of neat PLA (25.5%), suggesting accelerated biodegradation. Despite the deterioration of mechanical performance, the developed biocomposites represent a promising material for single-use applications, combining low cost, easy processability, and an environmentally favorable profile consistent with the principles of the circular economy. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

25 pages, 5108 KB  
Article
In Situ Polymerization as an Effective Method, Compared to Melt Mixing, for Synthesis of Flexible Poly(lactic acid) Nanocomposites Based on Metal Nanoparticles
by Kyriaki Lazaridou, Rafail O. Ioannidis and Dimitrios N. Bikiaris
J. Compos. Sci. 2025, 9(11), 610; https://doi.org/10.3390/jcs9110610 - 5 Nov 2025
Viewed by 505
Abstract
A comprehensive investigation was conducted focusing on two series of poly(lactic acid) (PLA)-based nanocomposites filled with small amounts (0.5 and 1.0%) of metal (Ag/Cu) nanoparticles (NPs). Our work aimed to synthesize PLA/Ag nanocomposites via in situ ring-opening polymerization (ROP), and for comparison purposes, [...] Read more.
A comprehensive investigation was conducted focusing on two series of poly(lactic acid) (PLA)-based nanocomposites filled with small amounts (0.5 and 1.0%) of metal (Ag/Cu) nanoparticles (NPs). Our work aimed to synthesize PLA/Ag nanocomposites via in situ ring-opening polymerization (ROP), and for comparison purposes, the same materials were also prepared via solution casting followed by melt mixing. PLA/Cu nanocomposites were also prepared via melt extrusion. Gel permeation chromatography (GPC) and intrinsic viscosity measurements [η] showed that the incorporation of Ag nanoparticles (AgNPs) resulted in a decrease in the molecular weight of the PLA matrix, indicating a direct effect of the AgNPs on its macromolecular structure. Fourier-transform infrared spectroscopy (FTIR) revealed no significant changes in the characteristic peaks of the nanocomposites, except for an in situ sample containing 1.0 wt% of AgNPs, where slight interactions in the C=O region were detected. Differential scanning calorimetry (DSC) analysis confirmed the semi-crystalline nature of the materials. Glass transition temperature was strongly affected by the presence of NPs in the case of the in situ-based samples. Melt crystallized studies suggested potential indirect polymer–NP interactions, while isothermal melt crystallization experiments confirmed the nucleation ability of the NPs. The mechanical performance was assessed via tensile and flexural measurements, revealing that the in situ-based samples exhibited remarkable flexibility. Moreover, during the three-point bending tests, none of the in situ nanocomposite samples broke. In this context, next-generation PLA-based nanocomposites have been proposed for advanced applications, including flexible printed electronics. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

20 pages, 4301 KB  
Article
Chestnut Burr as a Multifunctional Filler for PLA-Based Bio-Composites: Processing, Characterization, and Antioxidant Functionality
by Tommaso Olmastroni, Simone Pepi, Milad Sarwari, Eugenio Paccagnini, Alfonso Trezza, Anna Visibelli, Pietro Lupetti, Agnese Magnani, Valter Travagli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(21), 11743; https://doi.org/10.3390/app152111743 - 4 Nov 2025
Viewed by 462
Abstract
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents [...] Read more.
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents of 2.5%, 5%, 10%, and 15% w/w, and their chemical, thermal, morphological, and mechanical properties were systematically characterized. ATR-FTIR confirmed the absence of major chemical modifications of the PLA matrix. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the latter performed on both the extruded filaments and the material after fused deposition modeling (FDM) 3D printing, revealed a slight decrease in thermal stability with increasing filler content, coupled with enhanced crystallinity. Mechanical properties analysis showed that the addition of chestnut burrs did not negatively impact the viscoelastic behavior of the filaments. Scanning electron microscopy (SEM) highlighted good filler dispersion up to 5% loading, while higher percentages led to increased surface roughness and microvoids. Importantly, antioxidant activity assays (DPPH, ABTS, FRAP, and Folin–Ciocâlteu) demonstrated that the incorporation of chestnut burr significantly enhanced the radical-scavenging capacity, reducing power, and total phenolic content (TPC) of PLA. These functionalities were preserved, and in some cases amplified, after FDM 3D printing, indicating that the processing conditions did not degrade the bioactive constituents. Overall, chestnut burrs are confirmed as an effective multifunctional filler for PLA, improving its antioxidant activity while maintaining structural and thermal performance, supporting the development of sustainable biocomposites for emerging applications. Full article
Show Figures

Figure 1

21 pages, 8013 KB  
Article
Analysis of Microstructure Evolution, Mechanical Properties, and Strengthening Mechanisms in Extruded 2014Al-GNP Composites
by Junjie Xiong, Shaolong Ma, Jinsheng Zhou and Yu Zhou
Metals 2025, 15(11), 1213; https://doi.org/10.3390/met15111213 - 31 Oct 2025
Viewed by 262
Abstract
A 2014Al matrix composite reinforced with 0.8 wt.% graphene nanoplatelets (GNPs) was prepared by pre-dispersion and ultrasonic melt casting. Subsequently, the as-cast 2014Al-GNP composite was subjected to hot extrusion under different parameters, followed by a comparative analysis of the microstructure and properties of [...] Read more.
A 2014Al matrix composite reinforced with 0.8 wt.% graphene nanoplatelets (GNPs) was prepared by pre-dispersion and ultrasonic melt casting. Subsequently, the as-cast 2014Al-GNP composite was subjected to hot extrusion under different parameters, followed by a comparative analysis of the microstructure and properties of the various alloys. Microstructure and phase composition of the prepared samples were characterized using OM, SEM, EDS, EBSD and TEM inspections. The results indicate that the addition of GNPs effectively promoted the refinement of the as-cast matrix alloy microstructure, while hot extrusion with appropriate parameters further refined the microstructure of the as-cast matrix alloy. At an extrusion ratio of 16, the Al2Cu, Al2CuMg, and GNPs in the microstructure displayed a band-like distribution along the extrusion direction, with reduced size and enhanced uniformity. Concurrently, the dislocation density and Kernel Average Misorientation (KAM) values of the composite increased significantly, dynamic recrystallization intensified, and the texture was further enhanced. The tensile strength reached 572.1 MPa, hardness was 369.6 HV, and elongation was 11.9%, representing improvements of 89.0%, 92.0%, and 142.9%, respectively, compared to the as-cast matrix alloy. Fracture surface analysis exhibited brittle fracture characteristics in the matrix alloy, while the extruded composite with optimal parameters displayed distinct ductile fracture features. In the extruded aluminum matrix composite, the interface between GNPs and the matrix was clean, with mutual diffusion of Al and C atoms, achieving an excellent interfacial bonding state. The significant enhancement in mechanical properties of the extruded alloy was primarily attributed to grain refinement strengthening, dislocation strengthening, and load transfer strengthening by GNPs. Full article
Show Figures

Figure 1

22 pages, 11649 KB  
Article
Dual-Modified A- and B-Type Wheat Starch–PCL Composite Films: Antibacterial and HACCP-Oriented Biodegradable Packaging from Kazakhstani Resources
by Gulnazym Ospankulova, Saule Saduakhasova, Svetlana Kamanova, Dana Toimbayeva, Indira Temirova, Zhainagul Kakimova, Yernaz Yermekov, Berdibek Bulashev, Tultabayeva Tamara and Marat Muratkhan
Foods 2025, 14(21), 3730; https://doi.org/10.3390/foods14213730 - 30 Oct 2025
Viewed by 425
Abstract
Biodegradable packaging based on starch–polycaprolactone (PCL) composites is a promising route to reduce reliance on petroleum-derived plastics. Here, wheat starches with A- and B-type crystallinity—sourced from Kazakhstani varieties—were dual-modified by electron-beam irradiation followed by acetylation and incorporated into PCL (30–50 wt%) via melt [...] Read more.
Biodegradable packaging based on starch–polycaprolactone (PCL) composites is a promising route to reduce reliance on petroleum-derived plastics. Here, wheat starches with A- and B-type crystallinity—sourced from Kazakhstani varieties—were dual-modified by electron-beam irradiation followed by acetylation and incorporated into PCL (30–50 wt%) via melt extrusion and compression molding. The resulting films were characterized for morphology, mechanical performance, water-vapor permeability (WVP), thermal behavior, antibacterial activity, and biodegradation under soil and composting conditions. Acetylated A-type starch dispersed more uniformly within the PCL matrix, yielding smoother surfaces, higher tensile strength, and moderate WVP. In contrast, B-type starch produced a more porous microstructure with increased WVP and accelerated mass loss during composting (up to ~45% within 10 days at higher starch loadings). Incorporation of starch slightly decreased thermal stability relative to neat PCL, while agar-diffusion assays against Escherichia coli and Staphylococcus aureus showed loading-dependent inhibition zones, with A-type composites generally outperforming B-type at equivalent contents. Taken together, A-type starch–PCL films are better suited for applications requiring mechanical integrity and controlled moisture transfer, whereas B-type systems favor breathable packaging and rapid compostability. These results clarify how starch crystalline type governs structure–property–degradation relationships in PCL composites and support the targeted design of sustainable packaging materials using regionally available starch resources. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

20 pages, 7542 KB  
Article
Thermal Stability of Dexamethasone—Evaluation with Regard to Modern Medicinal and Pharmaceutical 3D-Printing Applications
by Roman Svoboda, Roman Vrbenský, Jan Honzíček and Mária Chromčíková
Molecules 2025, 30(21), 4234; https://doi.org/10.3390/molecules30214234 - 30 Oct 2025
Viewed by 601
Abstract
The high-temperature thermal stability of dexamethasone (DEX) was systematically investigated under nitrogen and air atmospheres using non-isothermal thermogravimetry at heating rates of 0.1–20 °C·min−1. The thermal decomposition was found to initiate below the melting temperature, proceeding via a three-step pathway that [...] Read more.
The high-temperature thermal stability of dexamethasone (DEX) was systematically investigated under nitrogen and air atmospheres using non-isothermal thermogravimetry at heating rates of 0.1–20 °C·min−1. The thermal decomposition was found to initiate below the melting temperature, proceeding via a three-step pathway that generated a complex mixture of volatile and condensed by-products (~10% solid residuum at 550 °C). Kinetic modeling was realized using the single-curve multivariate kinetic analysis (sc-MKA), and was based on the autocatalytic framework with temperature-dependent parameters, combined with consequent reaction mechanisms. An excellent agreement of the theoretical model with the experimental data enabled reliable predictive extrapolations to pharmaceutical processing conditions. Whereas the onset of degradation was observed at ~180–190 °C, significant decomposition rates (>1% mass loss during first 5 min) were only reached above 220 °C, well above the processing windows of most pharmaceutical polymers. Consequently, dexamethasone can be considered thermally stable for hot-melt extrusion and fused deposition modeling, except in high-temperature-processing applications involving polymers such as, e.g., polylactic acid, polyvinyl alcohol, or thermoplastic polyurethanes. Importantly, the study highlights that reliable kinetic predictions require measurements across a broad heating-rate range and in both oxidizing and inert atmospheres, with special emphasis on low heating rates (≤0.2 °C·min−1), which proved critical for capturing early-stage degradation. These findings provide a rigorous kinetic framework for ensuring safe incorporation of DEX into advanced pharmaceutical and medical device formulations. Full article
Show Figures

Figure 1

20 pages, 8835 KB  
Article
Ergosterol Modulates Physicochemical Properties and Conformational Changes in High-Moisture Soy-Wheat Protein Extrudates
by Yang Gao, Song Yan, Kaixin Chen, Qing Chen, Bo Li and Jialei Li
Foods 2025, 14(21), 3627; https://doi.org/10.3390/foods14213627 - 24 Oct 2025
Viewed by 351
Abstract
This work explores the impact of ergosterol (ERG) addition (0%, 0.5%, 1.0%, 1.5%, and 2.0%) on the physicochemical properties, conformational changes, and digestive characteristics of soy protein isolate (SPI) and wheat gluten (WG) processed by high-moisture extrusion. The results demonstrated that the incorporation [...] Read more.
This work explores the impact of ergosterol (ERG) addition (0%, 0.5%, 1.0%, 1.5%, and 2.0%) on the physicochemical properties, conformational changes, and digestive characteristics of soy protein isolate (SPI) and wheat gluten (WG) processed by high-moisture extrusion. The results demonstrated that the incorporation of ERG significantly reduced the apparent viscosity and dynamic moduli of the feedstock system, enhancing melt fluidity and consequently reducing extrusion torque, die pressure, and specific mechanical energy. An appropriate amount of ERG (1.0%) effectively facilitated the development of a distinct fibrous morphology, increased the fibrous degree, lightened the color, and softened the texture. However, excessive addition weakened the fibrous structure due to excessively high fluidity. ERG influenced protein aggregation behavior through hydrophobic interactions, reduced thermal stability, and induced a transition in secondary structure from β-turns to α-helices. The in vitro digestibility initially decreased and then increased, with the lowest value observed at 1.0% ERG. This study indicates that ERG can elevate the performance and value of extruded products by modulating protein structure and rheological behavior, providing a theoretical basis for its application in plant-based meat analogue products. Full article
Show Figures

Figure 1

21 pages, 2521 KB  
Article
Encapsulation of rhBMP-2 as a Strategy for Dose Shielding Whilst Preserving Structural Integrity, Bioactivity, and Osteogenic Potential
by Charles Matthews, Elisa Tarsitano, Sejal Odedra, Whitney Holden, Dhanaraman Thillai Villalan, Sina Kavalakatt, Kalhari Silva, Laura-Marie A. Zimmermann and John von Benecke
Processes 2025, 13(11), 3395; https://doi.org/10.3390/pr13113395 - 23 Oct 2025
Viewed by 303
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is widely used to promote bone regeneration. However, conventional surface-attached delivery on absorbable collagen sponges causes a rapid burst release, excessive inflammation, and suboptimal healing. To overcome these limitations, we developed a thermally controlled Poly(DL-lactide-co-glycolide) (PDL [...] Read more.
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is widely used to promote bone regeneration. However, conventional surface-attached delivery on absorbable collagen sponges causes a rapid burst release, excessive inflammation, and suboptimal healing. To overcome these limitations, we developed a thermally controlled Poly(DL-lactide-co-glycolide) (PDLLGA) encapsulation system, designed to stabilize rhBMP-2 and enable controlled release. rhBMP-2 was incorporated in PDLLGA pellets using the hot-melt extrusion of a lyophilized mixture containing poloxamer 407 and hydroxypropyl-β-cyclodextrin, and terminal sterilization (X-ray irradiation). The released rhBMP-2 maintained its molecular integrity after sterilization and remained stable for up to 732 days in storage, as confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis (CE). Further, high-affinity binding between released rhBMP-2 and BMPR-IA was confirmed by bio-layer interferometry (BLI), and the released protein induced a robust in vitro ALP response, confirming preserved osteogenic activity. Our encapsulation approach for rhBMP-2 using PDLLGA, including the combination product with β-TCP (LDGraft; Locate Bio, Nottingham, UK), provides a stable and bioactive rhBMP-2 delivery strategy with inherent dose-shielding properties, supporting safe, controlled, and effective bone regeneration therapies. Full article
(This article belongs to the Special Issue Pharmaceutical Development and Bioavailability Analysis, 2nd Edition)
Show Figures

Figure 1

Back to TopTop