Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = methane pyrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6953 KB  
Article
In Vitro and In Silico Evaluation of the Pyrolysis of Polyethylene and Polypropylene Environmental Waste
by Joaquín Alejandro Hernández Fernández, Katherine Liset Ortiz Paternina, Jose Alfonso Prieto Palomo, Edgar Marquez and Maria Cecilia Ruiz
Polymers 2025, 17(22), 2968; https://doi.org/10.3390/polym17222968 - 7 Nov 2025
Viewed by 396
Abstract
Plastic pollution, driven by the durability and widespread use of polyolefins such as polypropylene (PP) and high-density polyethylene (HDPE), poses a formidable environmental challenge. To address this issue, we have developed an integrated multiscale framework that combines thermocatalytic experimentation, process-scale simulation, and molecular-level [...] Read more.
Plastic pollution, driven by the durability and widespread use of polyolefins such as polypropylene (PP) and high-density polyethylene (HDPE), poses a formidable environmental challenge. To address this issue, we have developed an integrated multiscale framework that combines thermocatalytic experimentation, process-scale simulation, and molecular-level modeling to optimize the catalytic pyrolysis of PP and HDPE waste. Under the identified optimal conditions (300 °C, 10 wt % HMOR zeolite), liquid-oil yields of 60.8% for PP and 87.3% for HDPE were achieved, accompanied by high energy densities (44.2 MJ/kg, RON 97.5 for PP; 43.7 MJ/kg, RON 115.2 for HDPE). These values significantly surpass those typically reported for uncatalyzed pyrolysis, demonstrating the efficacy of HMOR in directing product selectivity toward valuable liquids. Above 400 °C, the process undergoes a pronounced shift toward gas generation, with gas fractions exceeding 50 wt % by 441 °C, underscoring the critical influence of temperature on product distribution. Gas-phase analysis revealed that PP-derived syngas contains primarily methane (20%) and ethylene (19.5%), whereas HDPE-derived gas features propylene (1.9%) and hydrogen (1.5%), highlighting intrinsic differences in bond-scission pathways governed by polymer architectures. Aspen Plus process simulations, calibrated against experimental data, reliably predict product distributions with deviations below 20%, offering a rapid, cost-effective tool for reactor design and scale-up. Complementary density functional theory (DFT) calculations elucidate the temperature-dependent energetics of C–C bond cleavage and radical formation, revealing that system entropy increases sharply at 500–550 °C, favoring the generation of both liquid and gaseous intermediates. By directly correlating catalyst acidity, molecular reaction mechanisms, and process-scale performance, this study fills a critical gap in plastic-waste valorization research. The resulting predictive platform enables rational design of catalysts and operating conditions for circular economy applications, paving the way for scalable, efficient recovery of fuels and chemicals from mixed polyolefin waste. Full article
(This article belongs to the Special Issue Polymer Composites in Municipal Solid Waste Landfills)
Show Figures

Figure 1

14 pages, 3452 KB  
Article
The Investigation of Methane Pyrolysis and Its Carbon Products Utilizing Molten Metal/Molten Salt Composite Reactors
by Xichen Su, Jiashu Liao, Xiangyang Luo, Xuncheng Ouyang, Jianjun Wei and Fujun Gou
Processes 2025, 13(11), 3549; https://doi.org/10.3390/pr13113549 - 4 Nov 2025
Viewed by 295
Abstract
Methane pyrolysis for turquoise hydrogen production faces dual challenges of reactor clogging and carbon contamination, particularly the difficulty in extracting high-purity carbon from molten media. While most existing studies focus on two-phase systems, carbon products are inevitably contaminated by the medium. This work [...] Read more.
Methane pyrolysis for turquoise hydrogen production faces dual challenges of reactor clogging and carbon contamination, particularly the difficulty in extracting high-purity carbon from molten media. While most existing studies focus on two-phase systems, carbon products are inevitably contaminated by the medium. This work presents a novel dual-layer bubble column reactor (Cu0.45Bi0.55 alloy/NaCl salt) operating at 900–1100 °C. The system achieved continuous operation for over 72 h without clogging. Crucially, the selected NaCl salt offers distinct advantages: its low cost, non-toxicity and high water solubility facilitate effective carbon separation strategies. This configuration reduced metal contamination in carbon from 52.4 wt% to below 4.0 wt%, with post-treatment achieving ultralow metal content below 1.5 wt%. Moreover, the molten salt environment induced valuable structural modifications in the carbon. This work provides an economically viable process for co-producing clean hydrogen and high-value carbon, addressing key technical barriers in molten media reactors. Full article
(This article belongs to the Special Issue Hydrogen and Carbon Production by Methane Catalytic Cracking)
Show Figures

Graphical abstract

19 pages, 2039 KB  
Article
Decarbonising Sustainable Aviation Fuel (SAF) Pathways: Emerging Perspectives on Hydrogen Integration
by Madhumita Gogoi Saikia, Marco Baratieri and Lorenzo Menin
Energies 2025, 18(21), 5742; https://doi.org/10.3390/en18215742 - 31 Oct 2025
Viewed by 299
Abstract
The growing demand for air connectivity, coupled with the forecasted increase in passengers by 2040, implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; [...] Read more.
The growing demand for air connectivity, coupled with the forecasted increase in passengers by 2040, implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; however, ensuring its overall sustainability depends on reducing the life cycle carbon footprints. A key challenge prevails in hydrogen usage as a reactant for the approved ASTM routes of SAF. The processing, conversion and refinement of feed entailing hydrodeoxygenation (HDO), decarboxylation, hydrogenation, isomerisation and hydrocracking requires substantial hydrogen input. This hydrogen is sourced either in situ or ex situ, with the supply chain encompassing renewables or non-renewables origins. Addressing this hydrogen usage and recognising the emission implications thereof has therefore become a novel research priority. Aside from the preferred adoption of renewable water electrolysis to generate hydrogen, other promising pathways encompass hydrothermal gasification, biomass gasification (with or without carbon capture) and biomethane with steam methane reforming (with or without carbon capture) owing to the lower greenhouse emissions, the convincing status of the technology readiness level and the lower acidification potential. Equally imperative are measures for reducing hydrogen demand in SAF pathways. Strategies involve identifying the appropriate catalyst (monometallic and bimetallic sulphide catalyst), increasing the catalyst life in the deoxygenation process, deploying low-cost iso-propanol (hydrogen donor), developing the aerobic fermentation of sugar to 1,4 dimethyl cyclooctane with the intermediate formation of isoprene and advancing aqueous phase reforming or single-stage hydro processing. Other supportive alternatives include implementing the catalytic and co-pyrolysis of waste oil with solid feedstocks and selecting highly saturated feedstock. Thus, future progress demands coordinated innovation and research endeavours to bolster the seamless integration of the cutting-edge hydrogen production processes with the SAF infrastructure. Rigorous techno-economic and life cycle assessments, alongside technological breakthroughs and biomass characterisation, are indispensable for ensuring scalability and sustainability. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

17 pages, 1033 KB  
Review
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
by Ayann Tiam, Marshall Watson and Talal Gamadi
Processes 2025, 13(10), 3195; https://doi.org/10.3390/pr13103195 - 8 Oct 2025
Viewed by 493
Abstract
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in [...] Read more.
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides base-load preheating and isothermal holding, while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heat-integration targets and duty splits; (ii) assessing scalability through high-pressure reactor design, thermal management, and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX, incorporates carbon pricing and credits, and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically, linking molten media demonstrations, catalyst development, and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed, recycle, and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation, thereby mitigating coking, sintering, and broad particle size distributions. High-pressure operation improves the hydrogen yield and equipment compactness, but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power, and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price, geothermal capacity factor, and overall conversion and selectivity. Overall, geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen, if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment. Full article
Show Figures

Figure 1

16 pages, 2904 KB  
Article
Morphological and Structural Analysis of Pyrolytic Carbon from Simple Thermal Methane Pyrolysis
by Michał Wojtasik, Wojciech Krasodomski, Grażyna Żak, Katarzyna Wojtasik and Wojciech Pakieła
Appl. Sci. 2025, 15(19), 10742; https://doi.org/10.3390/app151910742 - 6 Oct 2025
Viewed by 599
Abstract
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), [...] Read more.
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), process efficiency (36.1%), and very high selectivity (98.9%) towards hydrogen production, highlighting its potential as a CO2-free hydrogen generation method. Distinct carbon morphologies were observed depending on the formation areas within the reactor: a predominant flake-like silver carbon formed on reactor walls at temperatures between 600 and 980 °C (accounting for 91% of the solid product) and a minor powdery carbon formed near 980–1000 °C (9% of the solids). The powdery carbon exhibited a high specific surface area (125.3 m2/g), substantial mesoporosity (60%), and porous spherical aggregates, indicating an amorphous structure. In contrast, flake-like carbon demonstrated a low surface area (1.99 m2/g), high structural order confirmed by Raman spectroscopy, and superior thermal stability, making it suitable for advanced applications requiring mechanical robustness. Additionally, polycyclic aromatic hydrocarbons were detected in cooler zones of the reactor, suggesting side reactions in low-temperature areas. The study underscores the impact of temperature zones on carbon structure and properties, emphasizing the importance of precise thermal control to tailor carbon materials for diverse industrial applications while producing clean hydrogen. Full article
Show Figures

Figure 1

16 pages, 1001 KB  
Article
Production of Hydrogen-Rich Syngas via Biomass-Methane Co-Pyrolysis: Thermodynamic Analysis
by Haiyan Guo, Zhiling Wang, Kang Kang and Dongbing Li
Polymers 2025, 17(19), 2695; https://doi.org/10.3390/polym17192695 - 5 Oct 2025
Viewed by 907
Abstract
This study presents a thermodynamic equilibrium analysis of hydrogen-rich syngas production via biomass–methane co-pyrolysis, employing the Gibbs free energy minimization method. A critical temperature threshold at 700 °C is identified, below which methanation and carbon deposition are thermodynamically favored, and above which cracking [...] Read more.
This study presents a thermodynamic equilibrium analysis of hydrogen-rich syngas production via biomass–methane co-pyrolysis, employing the Gibbs free energy minimization method. A critical temperature threshold at 700 °C is identified, below which methanation and carbon deposition are thermodynamically favored, and above which cracking and reforming reactions dominate, enabling high-purity syngas generation. Methane addition shifts the reaction pathway towards increased reduction, significantly enhancing carbon and H2 yields while limiting CO and CO2 emissions. At 1200 °C and a 1:1 methane-to-biomass ratio, cellulose produces 50.84 mol C/kg, 119.69 mol H2/kg, and 30.65 mol CO/kg; lignin yields 78.16 mol C/kg, 117.69 mol H2/kg, and 19.14 mol CO/kg. The H2/CO ratio rises to 3.90 for cellulose and 6.15 for lignin, with energy contents reaching 43.16 MJ/kg and 52.91 MJ/kg, respectively. Notably, biomass enhances methane conversion from 25% to over 53% while sustaining a 67% H2 selectivity. These findings demonstrate that syngas composition and energy content can be precisely controlled via methane co-feeding ratio and temperature, offering a promising approach for sustainable, tunable syngas production. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

15 pages, 3391 KB  
Article
A Method of Analyzing the Component Reactions of an Overall Reaction: Autothermal Reforming of Acetic Acid Example
by James Manganaro, Yujia Liu, Jiazhun Huang, Bi Chen and Adeniyi Lawal
Processes 2025, 13(10), 3112; https://doi.org/10.3390/pr13103112 - 28 Sep 2025
Viewed by 368
Abstract
Using Excel and its Solver feature, a novel method of analyzing the component reactions of an overall reaction is outlined. As an example, autothermal reforming (300–700 °C) of acetic acid (AA), a significant component of pyrolysis oil, was considered. The overall reaction can [...] Read more.
Using Excel and its Solver feature, a novel method of analyzing the component reactions of an overall reaction is outlined. As an example, autothermal reforming (300–700 °C) of acetic acid (AA), a significant component of pyrolysis oil, was considered. The overall reaction can be viewed as comprising five individual reactions: reforming, oxidation, water–gas shift, reverse Boudouard, and methanation. A laboratory apparatus was set up in which acetic acid, air, and water were continuously fed to a BASF dual-layer catalytic reactor in plug flow at 1 atm. For this setup, it is easy to construct a material balance in Excel in which five factors, fi, are defined which represent the fraction of reactant going to each of the individual five reactions. Using the Solver feature of Excel, it can readily be determined which of the five factors fi produce the best match of the calculated exit gas composition with the measured gas concentrations for CO, CO2, H2, CH4, and O2. Furthermore, a program such as GasEq or Aspen can then be used to calculate the theoretical equilibrium gas composition at a given condition. Using this equilibrium gas composition and Solver, the individual (fi)equilb can be calculated. Thus, the ratio fi/(fi)equilb is an indication of how close each component reaction is to equilibrium. In this way, an idea is gained of which of the individual component reactions need to be improved or inhibited or if operating parameters should be adjusted. For the specific case of autothermal reforming of acetic acid, the steam reforming reaction requires at least 600 °C to approach equilibrium. In contrast, the oxidation reaction goes to equilibrium throughout the temperature range, completely consuming oxygen. The water–gas shift reaction appears to approach equilibrium to the extent of 71–90% throughout the temperature range. The reverse Boudouard reaction is favored at lower temperatures; in fact, coking was predicted and found at the low temperature of 300 °C. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 4083 KB  
Article
Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts
by Seyed Mohamad Rasool Mirkarimi, Andrea Salimbeni, Samir Bensaid, Viviana Negro and David Chiaramonti
Energies 2025, 18(19), 5162; https://doi.org/10.3390/en18195162 - 28 Sep 2025
Viewed by 534
Abstract
Catalytic methane decomposition (CMD) is an environmentally friendly method of hydrogen production that, unlike other conventional processes, such as steam methane reforming, partial oxidation of methane, and dry reforming of methane, can convert methane into hydrogen with a simultaneous generation of solid carbon [...] Read more.
Catalytic methane decomposition (CMD) is an environmentally friendly method of hydrogen production that, unlike other conventional processes, such as steam methane reforming, partial oxidation of methane, and dry reforming of methane, can convert methane into hydrogen with a simultaneous generation of solid carbon without CO2 emissions. This study mainly focused on the application of carbon-based catalysts derived from biomass and biowaste for the CMD process. For this purpose, eight catalysts were produced from three carbon materials (wood, sewage sludge, and digestate) through the subsequent processes of pyrolysis, leaching, and physical activation. The comparison of catalysts prepared from the slow pyrolysis of biowaste and wood indicated that carbon materials with a lower ash content achieved a higher initial methane conversion (wood char > digestate char > sewage sludge char). For feedstocks with a high initial ash content, such as digestate and sewage sludge chars, an improvement in the catalytic activity was observed after ash removal through the leaching process with HNO3. In addition, physical activation through CO2 fluxing led to an enhancement in the BET surface area of these catalysts, and consequently to a growth in methane conversion. The initial methane conversion was assessed for all chars under operating conditions of 900 °C, a gas hourly space velocity (GHSV) of 3 L/g/h, and a CH4:N2 ratio of 1:9, and it was 65.9, 59.1, and 42.6% v/v, respectively, for chars derived from wood, sewage sludge, and digestate; these values increased to almost 80% v/v when these chars were upgraded by chemical leaching and physical activation. Full article
(This article belongs to the Collection Feature Papers in Bio-Energy)
Show Figures

Graphical abstract

23 pages, 1637 KB  
Article
Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor
by Conor McIvor, Sumit Roy, Neal Morgan, Bill Maxwell and Andrew Smallbone
Hydrogen 2025, 6(3), 66; https://doi.org/10.3390/hydrogen6030066 - 5 Sep 2025
Cited by 1 | Viewed by 1257
Abstract
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis, utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen [...] Read more.
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis, utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen and solid carbon outputs. Operating at 20 bar and 1100 °C, the reactor employs a molten nickel-bismuth alloy as both catalyst and heat transfer medium, alongside a sodium bromide layer to enhance carbon purity and facilitate separation. Four operational scenarios were modelled, comparing various heating and recycling configurations to optimise hydrogen yield and process economics. Results indicate that the levelised cost of hydrogen (LCOH) is highly sensitive to methane and electricity prices, CO2 taxation, and the value of carbon by-products. Two reactor configurations demonstrate competitive LCOHs of 1.29 $/kgH2 and 1.53 $/kgH2, highlighting methane pyrolysis as a viable low-carbon alternative to steam methane reforming (SMR) with carbon capture and storage (CCS). This analysis underscores the potential of methane pyrolysis for scalable, economically viable hydrogen production under specificmarket conditions. Full article
Show Figures

Figure 1

23 pages, 1825 KB  
Article
Co-Pyrolysis of Biomass with Bituminous Coal in a Fixed-Bed Reactor for Biofuel and Bioreducing Agents Production
by Lina Kieush, Andrii Koveria, Peter Sommersacher, Stefan Retschitzegger and Norbert Kienzl
Sustainability 2025, 17(17), 7654; https://doi.org/10.3390/su17177654 - 25 Aug 2025
Viewed by 1134
Abstract
In this paper, the interaction between caking bituminous coal (HC) and two types of biomass, namely sunflower husks (SFHs) and walnut shells (WSs), was studied via lab-scale fixed-bed reactor experiments and thermogravimetric analysis (TGA). The dynamics of volatile matter composition and weight loss [...] Read more.
In this paper, the interaction between caking bituminous coal (HC) and two types of biomass, namely sunflower husks (SFHs) and walnut shells (WSs), was studied via lab-scale fixed-bed reactor experiments and thermogravimetric analysis (TGA). The dynamics of volatile matter composition and weight loss changes were analyzed for the initial biomass types and their 1:1 blends with HC during co-pyrolysis. Derivative thermogravimetry (DTG) revealed that during the co-pyrolysis of HC with biomass, the number of reaction stages increased to four, compared to three during individual pyrolysis, indicating synergistic thermal behavior. The apparent activation energy (Ea) of the blends was higher (62.8 kJ/mol for SFH/HC and 61.8 kJ/mol for WS/HC) than that of the individual HC (55.1 kJ/mol), SFHs (43.8 kJ/mol), and WSs (52.4 kJ/mol), confirming intensified reaction complexity. Co-pyrolysis resulted in higher methane (CH4) production, with the CH4:HAc (acetic acid) ratio increasing from 1.2 (WSs) and 1.7 (SFHs) to 1.9 (WS/HC) and 3.3 (SFH/HC). The non-additive behavior of blends is established, indicating the interactions between biomass and HC during co-pyrolysis. These findings support a more resilient and sustainable approach to producing fuels and reducing agents, particularly through the utilization of agricultural residues and waste biomass. Full article
Show Figures

Figure 1

24 pages, 2692 KB  
Article
Pyrolysis of Polypropylene and Nitrile PPE Waste: Insights into Oil Composition, Kinetics, and Steam Cracker Integration
by Ross Baird, Raffaella Ocone and Aimaro Sanna
Molecules 2025, 30(16), 3351; https://doi.org/10.3390/molecules30163351 - 12 Aug 2025
Viewed by 1314
Abstract
In this study, non-isothermal pyrolysis of a mixture of disposable surgical face masks (FMs) and nitrile gloves (NGs) was conducted, using a heating rate of 100 °C/min, N2 flowrate of 100 mL/min, and temperatures between 500 and 800 °C. Condensable product yield [...] Read more.
In this study, non-isothermal pyrolysis of a mixture of disposable surgical face masks (FMs) and nitrile gloves (NGs) was conducted, using a heating rate of 100 °C/min, N2 flowrate of 100 mL/min, and temperatures between 500 and 800 °C. Condensable product yield peaked at 600 °C (76.9 wt.%), with gas yields rising to 31.0 wt.%, at 800 °C. GC-MS of the condensable product confirmed the presence of aliphatic compounds (>90%), while hydrogen, methane, and ethylene dominated the gas composition. At 600 °C, gasoline (C4 to C12)-, diesel (C13 to C20)-, motor oil (C21 to C35)-, and heavy hydrocarbon (C35+)-range compounds accounted for 23.7, 46.7, 12.5, and 17.1%, of the condensable product, respectively. Using model-free methods, the average activation energy and pre-exponential factor were found to be 309.7 ± 2.4 kJ/mol and 2.5 ± 3.4 × 1025 s−1, respectively, while a 2-dimensional diffusion mechanism was determined. Scale-up runs confirmed high yields of condensable product (60–70%), with comparable composition to that obtained from lab-scale tests. The pyrolysis oil exceeds acceptable oxygen, nitrogen, chlorine, and fluorine levels for industrial steam crackers—needing pre-treatment—while other contaminants like sulphur and metals could be managed through mild blending. In summary, this work offers a sustainable approach to address the environmental concerns surrounding disposable FMs and NGs. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

16 pages, 6744 KB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 784
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 4597 KB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 459
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

18 pages, 5074 KB  
Article
A Novel Polymer-Derived Ni/SiOC Catalyst for the Dry Reforming of Methane
by Rachel Olp, Keith L. Hohn and Catherine B. Almquist
Catalysts 2025, 15(7), 645; https://doi.org/10.3390/catal15070645 - 1 Jul 2025
Viewed by 869
Abstract
Nickel (Ni)-based catalysts, prepared by pyrolyzing Ni-containing polydimethylsiloxane (Ni-PDMS), were evaluated for their activity in the dry reforming of methane (DRM) reaction. The pyrolyzed PDMS support was found to be largely microporous, and the active nickel particles were nano-sized but were not dispersed [...] Read more.
Nickel (Ni)-based catalysts, prepared by pyrolyzing Ni-containing polydimethylsiloxane (Ni-PDMS), were evaluated for their activity in the dry reforming of methane (DRM) reaction. The pyrolyzed PDMS support was found to be largely microporous, and the active nickel particles were nano-sized but were not dispersed evenly in the resulting catalysts. The catalysts were prepared with 0 wt%, 2 wt%, 4 wt%, and 6 wt% Ni in PDMS prior to pyrolysis. The resulting catalysts demonstrated notable activity in the DRM reaction, comparable to many of those described in the published literature. The catalyst with 6 wt% Ni (prior to pyrolysis) displayed the highest conversion of methane (47%) and the lowest loss of activity (9.8%) over 11 h of continuous operation. This research was successful in exploring novel polymer-derived catalysts, specifically pyrolyzed Ni-PDMS catalysts, in the dry reforming of methane (DRM) reaction. Full article
(This article belongs to the Special Issue Catalysis for the Future)
Show Figures

Graphical abstract

21 pages, 3028 KB  
Article
Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina
by Hamid Ahmed, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Ahmed I. Osman, Anis H. Fakeeha, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Syed Farooq Adil, Tahani Saad Algarni and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 631; https://doi.org/10.3390/catal15070631 - 27 Jun 2025
Viewed by 1148
Abstract
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and [...] Read more.
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and alumina composite to improve this process even more. In a fixed-bed reactor operating at 800 °C and atmospheric pressure, all catalyst activities for methane decomposition were thoroughly assessed while keeping the gas hourly space velocity at 6 L/g h. Surface area and porosity, H2-temperature programmed reduction/oxidation, X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and thermogravimetry analysis were utilized to investigate the physicochemical properties of the catalyst. The result showed that iron supported on a titanium-alumina catalyst exhibited higher activity, stability, and reproducibility with a methane conversion of 90% and hydrogen production of 81% after three cycles, with 240 min for each cycle and stability for 480 min. In contrast, the liquid metal-promoted catalysts improved the metal-support interaction and textural properties, such as surface area, pore volume, and particle dispersion of the catalysts. Still, the catalytic efficiency significantly improved. However, the gallium-promoted catalyst displayed excellent reusability. The characterization of the spent catalyst proved that both the iron supported on a titanium-alumina and its gallium-promoted derivative produced graphitic carbon; on the contrary, the indium-promoted catalyst produced amorphous carbon. These results demonstrate how liquid metal promoters can be used to adjust the characteristics of catalysts, providing opportunities for improved reusability and regulated production of carbon byproducts during methane decomposition. Full article
Show Figures

Figure 1

Back to TopTop