Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = muscarinic acetylcholine receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1559 KB  
Article
Modulation of Master Transcription Factor Expression of Nile Tilapia Leukocytes via Cholinergic Pathways
by Manuel Ivan Girón-Pérez, Kenia María Ramírez-Ibarra, Carlos Eduardo Covantes-Rosales, Daniel Alberto Girón-Pérez, Francisco Fabián Razura-Carmona, Arturo Contis-Montes de Oca, Jorge Morales-Montor, Lenin Pavón and Gladys Alejandra Toledo-Ibarra
Int. J. Mol. Sci. 2025, 26(22), 11206; https://doi.org/10.3390/ijms262211206 - 20 Nov 2025
Viewed by 131
Abstract
Teleost fish are the first evolutionary group to exhibit an innate and adaptive immune system. Within the mechanisms of adaptive immunity, fish possess, among others, T-helper cells (CD4-like) and their differentiation machinery, regulated by the master transcription factors T-bet, GATA3, Foxp3, and RORγ. [...] Read more.
Teleost fish are the first evolutionary group to exhibit an innate and adaptive immune system. Within the mechanisms of adaptive immunity, fish possess, among others, T-helper cells (CD4-like) and their differentiation machinery, regulated by the master transcription factors T-bet, GATA3, Foxp3, and RORγ. Many studies support the existence of a non-neuronal cholinergic system involved in the immune response, named after the ability of leukocytes to synthesize de novo acetylcholine (ACh). Organophosphorus pesticides (OPs), such as diazoxon (DXN), are examples of compounds that act as cholinergic disruptors with immunotoxic effects. The present study aimed to evaluate the expression of transcription factors in leukocytes (spleen mononuclear cells, SMNCs) of Nile tilapia by modulating cholinergic pathways in immune cells using agonists, antagonists, and diazoxon (DXN), an anticholinesterase substance. The obtained data showed a significant increase in RORγ mRNA expression upon stimulation with the nicotinic agonist, whereas activation of the muscarinic receptor with its agonist increased T-bet mRNA expression. An alteration in RORγ expression levels induced by DXN exposure was also observed. The results suggest a probable directing of the immune response towards a pro-inflammatory profile orchestrated mainly by RORγ and T-bet transcription factors in response to cholinergic stimuli. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Toxicity Caused by Environmental Pollutants)
Show Figures

Figure 1

28 pages, 5847 KB  
Article
Dual-Algorithm Integration Framework Reveals Qing-Wei-Zhi-Tong’s Dual Mechanisms in Chronic Gastritis
by Zhijie Shu, Ying Huang, Yujie Xi, Bo Zhang, Rui Cai, He Xu and Feifei Guo
Pharmaceuticals 2025, 18(11), 1743; https://doi.org/10.3390/ph18111743 - 17 Nov 2025
Viewed by 705
Abstract
Background: Chronic gastritis (CG) involves gastric mucosal imbalance, with H. pylori (>90% cases), acid-pepsin imbalance, and bile reflux as druggable mechanisms. FDA-approved drugs show limited efficacy against antibiotic-resistant strains and fail to target undruggable pathways (e.g., inflammation, autoimmune atrophy). Traditional Chinese Medicine [...] Read more.
Background: Chronic gastritis (CG) involves gastric mucosal imbalance, with H. pylori (>90% cases), acid-pepsin imbalance, and bile reflux as druggable mechanisms. FDA-approved drugs show limited efficacy against antibiotic-resistant strains and fail to target undruggable pathways (e.g., inflammation, autoimmune atrophy). Traditional Chinese Medicine (TCM), particularly Qing-Wei-Zhi-Tong micro-pills (QWZT), offers multi-target advantages, though its mechanisms remain poorly understood. Methods: The dual-algorithm integration framework predicts QWZT’s pharmacological effects to treat gastritis. For druggable processes (pathways targeted by existing drugs), the structure–target–pathway similarity algorithm quantifies QWZT similar activities to FDA drugs, validated by gastrointestinal smooth muscle experiments. For undruggable processes (novel biological mechanisms not addressed by current therapies), the multi-target perturbation algorithm predicts QWZT’s unique capacity to undruggable processes and is validated via LPS-induced inflammation in RAW264.7 and GES-1 cells. Results: Structure–target–pathway similarity algorithm identified QWZT compounds sharing prokinetic mechanisms with FDA drugs, validated by dopamine-induced relaxations and acetylcholine-induced contractions in gastrointestinal smooth muscle. Multi-target perturbation algorithm quantified QWZT’s superior disruption of undruggable immune/inflammation networks, confirmed by restored cell viability in LPS-injured GES-1 cells and significantly reduced the expression of NO, IL-6, and TNF-α in RAW264.7 cells via key compounds (paeoniflorin and berberine). Conclusions: QWZT may exert its regulatory effects on gastrointestinal smooth muscle by mediating muscarinic and dopamine receptor D2 (DRD2), and reduce the expression of NO, IL-6, and TNF-α to achieve anti-inflammatory effects, thereby effectively treating CG. The integration strategy that integrates algorithms and experiments to reveal the common and distinct mechanisms of QWZT compared to FDA-approved drugs, offering a novel approach for studying Traditional Chinese Medicine mechanisms. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 7453 KB  
Article
Comparative Analysis of Cholinergic Machinery in Carcinomas: Discovery of Membrane-Tethered ChAT as Evidence for Surface-Based ACh Synthesis in Neuroblastoma Cells
by Banita Thakur, Samar Tarazi, Lada Doležalová, Homira Behbahani and Taher Darreh-Shori
Int. J. Mol. Sci. 2025, 26(21), 10311; https://doi.org/10.3390/ijms262110311 - 23 Oct 2025
Viewed by 468
Abstract
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models [...] Read more.
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models to enable drug screening, mechanistic studies, and exploration of new therapeutic avenues. In this study, we investigated four cancer cell lines: one of neuroblastoma origin previously used in cholinergic signaling studies (SH-SY5Y), one non-small cell lung adenocarcinoma line (A549), and two small cell lung carcinoma lines (H69 and H82). We assessed the expression and localization of key components of the cholinergic system, along with the cellular capacity for acetylcholine (ACh) synthesis and release. Whole-cell flow cytometry following membrane permeabilization revealed that all cell lines expressed the ACh-synthesizing enzyme choline acetyltransferase (ChAT). HPLC-MS analysis confirmed that ChAT was functionally active, as all cell lines synthesized and released ACh into the conditioned media, suggesting the presence of autocrine and/or paracrine ACh signaling circuits, consistent with previous reports. The cell lines also demonstrated choline uptake, indicative of functional choline and/or organic cation transporters. Additionally, all lines expressed the ACh-degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as well as the alfa seven (α7) nicotinic and M1 muscarinic ACh receptor subtypes. Notably, flow cytometry of intact SH-SY5Y cells revealed two novel findings: (1) ChAT was localized to the extracellular membrane, a feature not observed in the lung cancer cell lines, and (2) BChE, rather than AChE, was the predominant membrane-bound ACh-degrading enzyme. These results were corroborated by both whole-cell and surface-confocal microscopy. In conclusion, our findings suggest that a functional cholinergic phenotype is a shared feature of several carcinoma cell lines, potentially serving as a survival checkpoint that could be therapeutically explored. The discovery of extracellular membrane-bound ChAT uniquely in neuroblastoma SH-SY5Y cells points to a novel form of in situ ACh signaling that warrants further investigation. Full article
(This article belongs to the Special Issue New Research Progresses on Multifaceted Cholinergic Signaling)
Show Figures

Figure 1

16 pages, 3102 KB  
Article
Synaptic Plasticity-Enhancing and Cognitive-Improving Effects of Standardized Ethanol Extract of Perilla frutescens var. acuta in a Scopolamine-Induced Mouse Model
by Jihye Lee, Eunhong Lee, Hyunji Kwon, Somin Moon, Ho Jung Bae, Joon-Ho Hwang, Gun Hee Cho, Haram Kong, Mi-Houn Park, Sung-Kyu Kim, Dong Hyun Kim and Ji Wook Jung
Int. J. Mol. Sci. 2025, 26(20), 9925; https://doi.org/10.3390/ijms26209925 - 12 Oct 2025
Cited by 1 | Viewed by 644
Abstract
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts [...] Read more.
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts additional cognitive benefits independent of Aβ pathology remained unclear. Here, we aimed to evaluate the effects of PE on synaptic plasticity and learning and memory functions. Male ICR mice were used, and cognitive impairment was induced by scopolamine administration. PE was orally administered at doses determined from previous studies, and cognitive performance was assessed using the passive avoidance, Y-maze, and Morris water maze tests. In parallel, hippocampal slices were employed to examine the effects of PE on synaptic plasticity. PE (100 and 300 μg/mL) significantly enhanced long-term potentiation (LTP) in a concentration-dependent manner without altering basal synaptic transmission. This facilitation of LTP was blocked by scopolamine (1 μM), a muscarinic acetylcholine receptor (mAChR) antagonist, and IEM-1460 (50 μM), a calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) inhibitor, indicating the involvement of mAChR and CP-AMPAR pathways. In vivo, PE (100, 250, and 500 mg/kg) treatment improved memory performance across all behavioral tasks and upregulated hippocampal synaptic proteins including GluN2B, PSD-95, and CaMKII. Collectively, these results demonstrate that PE ameliorates scopolamine (1 mg/kg)-induced cognitive impairment by enhancing synaptic plasticity, likely through modulation of mAChR, CP-AMPAR, and NMDA receptor signaling. These findings highlight the therapeutic potential of PE for memory deficits associated with cholinergic dysfunction. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 2861 KB  
Article
Metabolite Signatures and Particle Size as Determinants of Anti-Inflammatory and Gastrointestinal Smooth Muscle Modulation by Chlorella vulgaris
by Natalina Panova, Anelia Gerasimova, Mina Todorova, Mina Pencheva, Ivayla Dincheva, Daniela Batovska, Vera Gledacheva, Valeri Slavchev, Iliyana Stefanova, Stoyanka Nikolova, Irena Mincheva, Magdalena Szechyńska-Hebda and Krastena Nikolova
Foods 2025, 14(19), 3319; https://doi.org/10.3390/foods14193319 - 25 Sep 2025
Viewed by 3143
Abstract
Chlorella vulgaris is a nutrient-dense microalga with recognized antioxidant, anti-inflammatory, and metabolic regulatory properties, making it an attractive candidate for functional food applications. In such contexts, both chemical composition and particle size can influence dispersibility, bioactive release, and physiological effects. In this study, [...] Read more.
Chlorella vulgaris is a nutrient-dense microalga with recognized antioxidant, anti-inflammatory, and metabolic regulatory properties, making it an attractive candidate for functional food applications. In such contexts, both chemical composition and particle size can influence dispersibility, bioactive release, and physiological effects. In this study, two commercial C. vulgaris powders from India (Sample 1) and the UK (Sample 2) were compared with respect to particle size, metabolite composition, and biological activity. Sample 1 exhibited finer particles, while Sample 2 was coarser. GC–MS profiling revealed distinct compositional differences: Sample 1 displayed a higher relative abundance of saturated fatty acids, β-sitosterol, β-amyrin, and glucitol, whereas Sample 2 contained higher levels of unsaturated fatty acids, betulin, salicylic acid, and specific carbohydrates. In vitro assays showed stronger inhibition of albumin denaturation by Sample 1 compared with Sample 2 and prednisolone. Ex vivo tests indicated that both samples induced tonic contraction of gastric smooth muscle through muscarinic acetylcholine receptors (mAChRs) and L-type calcium channels, as evidenced by the marked reduction in responses after atropine and verapamil treatment, with Sample 1 producing a more pronounced effect. Immunohistochemistry further demonstrated broader IL-1β upregulation with Sample 1 and localized nNOS modulation with Sample 2. Overall, the results demonstrate that the interplay between composition and particle size shapes the bioactivity of C. vulgaris, supporting its targeted use in digestive, neuroimmune, and cardiometabolic health. Full article
Show Figures

Figure 1

31 pages, 2506 KB  
Review
Muscarinic Receptor Antagonism and TRPM3 Activation as Stimulators of Mitochondrial Function and Axonal Repair in Diabetic Sensorimotor Polyneuropathy
by Sanjana Chauhan, Nigel A. Calcutt and Paul Fernyhough
Int. J. Mol. Sci. 2025, 26(15), 7393; https://doi.org/10.3390/ijms26157393 - 31 Jul 2025
Viewed by 1569
Abstract
Diabetic sensorimotor polyneuropathy (DSPN) is the most prevalent complication of diabetes, affecting nearly half of all persons with diabetes. It is characterized by nerve degeneration, progressive sensory loss and pain, with increased risk of ulceration and amputation. Despite its high prevalence, disease-modifying treatments [...] Read more.
Diabetic sensorimotor polyneuropathy (DSPN) is the most prevalent complication of diabetes, affecting nearly half of all persons with diabetes. It is characterized by nerve degeneration, progressive sensory loss and pain, with increased risk of ulceration and amputation. Despite its high prevalence, disease-modifying treatments for DSPN do not exist. Mitochondrial dysfunction and Ca2+ dyshomeostasis are key contributors to the pathophysiology of DSPN, disrupting neuronal energy homeostasis and initiating axonal degeneration. Recent findings have demonstrated that antagonism of the muscarinic acetylcholine type 1 receptor (M1R) promotes restoration of mitochondrial function and axon repair in various neuropathies, including DSPN, chemotherapy-induced peripheral neuropathy (CIPN) and HIV-associated neuropathy. Pirenzepine, a selective M1R antagonist with a well-established safety profile, is currently under clinical investigation for its potential to reverse neuropathy. The transient receptor potential melastatin-3 (TRPM3) channel, a Ca2+-permeable ion channel, has recently emerged as a downstream effector of G protein-coupled receptor (GPCR) pathways, including M1R. TRPM3 activation enhanced mitochondrial Ca2+ uptake and bioenergetics, promoting axonal sprouting. This review highlights mitochondrial and Ca2+ signaling imbalances in DSPN and presents M1R antagonism and TRPM3 activation as promising neuro-regenerative strategies that shift treatment from symptom control to nerve restoration in diabetic and other peripheral neuropathies. Full article
Show Figures

Figure 1

17 pages, 2536 KB  
Review
Unravelling the Role of Post-Junctional M2 Muscarinic Receptors in Cholinergic Nerve-Mediated Contractions of Airway Smooth Muscle
by Srijit Ghosh, Tuleen Alkawadri, Mark A. Hollywood, Keith D. Thornbury and Gerard P. Sergeant
Int. J. Mol. Sci. 2025, 26(12), 5455; https://doi.org/10.3390/ijms26125455 - 6 Jun 2025
Viewed by 2657
Abstract
It has long been recognised that airway smooth muscle cells (ASMCs) possess an abundance of M2 muscarinic receptors (M2Rs). However, the contribution of postjunctional M2Rs to contractions of airway smooth muscle (ASM) induced by the release of acetylcholine (ACh) from parasympathetic nerves was [...] Read more.
It has long been recognised that airway smooth muscle cells (ASMCs) possess an abundance of M2 muscarinic receptors (M2Rs). However, the contribution of postjunctional M2Rs to contractions of airway smooth muscle (ASM) induced by the release of acetylcholine (ACh) from parasympathetic nerves was thought to be minimal. Instead, it was believed that these responses were exclusively mediated by activation of M3Rs. However, evidence is emerging that postjunctional M2Rs may have a greater role than previously realised. In this review, we discuss ACh signalling in airways, highlighting the well-established autoinhibitory role of prejunctional M2Rs and the putative roles of postjunctional M2Rs to cholinergic contractions of ASM. The cellular mechanisms that underpin M2R-dependent contractions of ASM are reviewed, with a particular emphasis on the role of ion channels in these responses. The regulation of M2R signalling pathways by β-adrenoceptor activation is also considered, along with the potential involvement of postjunctional M2Rs in airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Full article
(This article belongs to the Special Issue New Insights into Airway Smooth Muscle: From Function to Dysfunction)
Show Figures

Figure 1

16 pages, 1306 KB  
Article
The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study
by Boglárka Oesch-Régeni, Nicolas Germann, Georg Hafer, Dagmar Schmid and Norbert Arn
J. Clin. Med. 2025, 14(11), 3802; https://doi.org/10.3390/jcm14113802 - 29 May 2025
Viewed by 4986
Abstract
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) [...] Read more.
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) patients fulfill the diagnostic criteria of ME/CFS. According to the Canadian Consensus Criteria (CCC), the presence of specific symptoms such as fatigue, post-exertional malaise, sleep dysfunction, pain, neurological/cognitive manifestations, and symptoms from at least two of the following categories lead to the diagnosis of ME/CFS: autonomic, neuroendocrine, and immune manifestation. In this study, the patient selection was based on the identification of ME/CFS patients with elevated autoantibodies, regardless of the triggering factor of their condition. Methods: The aim of this study was to identify ME/CFS patients among long COVID patients with elevated autoantibodies. In seven cases, plasmapheresis (PE) and intravenous immunoglobulins (IVIGs) with repetitive autoantibody measurements were applied: four PE sessions on days 1, 5, 30, and 60, and a low-dose IVIG therapy after each treatment. Antibodies were measured before the first PE and two weeks after the last PE session. To monitor clinical outcomes, the following somatic and psychometric follow-up assessments were conducted before the first PE, 2 weeks after the second, and 2 weeks after the last PE: the Schellong test, ISI (insomnia), FSS (fatigue), HADS (depression and anxiety), and EQ-5D-5L (quality of life) questionnaires. Results: There was a negative association between both the β2-adrenergic and M3-muscarinic receptor autoantibody concentration and the quality of life measurements assessed with the EQ-5D-5L questionnaire. Per 1 U/mL increase in the concentration levels of β2-adrenergic receptor antibodies or M3-muscarinic acetylcholine receptor antibodies, the EQ-5D-5L index score [−0.59 to 1] decreased by 0.01 (0.63%) or 0.02 (1.26%), respectively. There were no significant associations between the ISI, HADS, and FSS questionnaires and the β1-adrenergic and M4-muscarinic receptor antibodies titers. Conclusions: After a thorough selection of patients with present autoantibodies, this pilot study found negative associations concerning autoantibody concentration and somatic, as well as psychological wellbeing. To validate these promising feasibility study results—indicating the potential therapeutic potential of antibody-lowering methods—further investigation with larger sample sizes is needed. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

35 pages, 15385 KB  
Review
A New Era of Muscarinic Acetylcholine Receptor Modulators in Neurological Diseases, Cancer and Drug Abuse
by Helena Tsimpili and Grigoris Zoidis
Pharmaceuticals 2025, 18(3), 369; https://doi.org/10.3390/ph18030369 - 5 Mar 2025
Cited by 2 | Viewed by 9087
Abstract
The cholinergic pathways in the central nervous system (CNS) play a pivotal role in different cognitive functions of the brain, such as memory and learning. This review takes a dive into the pharmacological side of this important part of CNS function, taking into [...] Read more.
The cholinergic pathways in the central nervous system (CNS) play a pivotal role in different cognitive functions of the brain, such as memory and learning. This review takes a dive into the pharmacological side of this important part of CNS function, taking into consideration muscarinic receptors and cholinesterase enzymes. Targeting a specific subtype of five primary muscarinic receptor subtypes (M1-M5) through agonism or antagonism may benefit patients; thus, there is a great pharmaceutical research interest. Inhibition of AChE and BChE, orthosteric or allosteric, or partial agonism of M1 mAChR are correlated with Alzheimer’s disease (AD) symptoms improvement. Agonism or antagonism on different muscarinic receptor subunits may lessen schizophrenia symptoms (especially positive allosteric modulation of M4 mAChR). Selective antagonism of M4 mAChR is a promising treatment for Parkinson’s disease and dystonia, and the adverse effects are limited compared to inhibition of all five mAChR. Additionally, selective M5 antagonism plays a role in drug independence behavior. M3 mAChR overexpression is associated with malignancies, and M3R antagonists seem to have a therapeutic potential in cancer, while M1R and M2R inhibition leads to reduction of neoangiogenesis. Depending on the type of cancer, agonism of mAChR may promote cancer cell proliferation (as M3R agonism does) or protection against further tumor development (M1R agonism). Thus, there is an intense need to discover new potent compounds with specific action on muscarinic receptor subtypes. Chemical structures, chemical modification of function groups aiming at action enhancement, reduction of adverse effects, and optimization of Drug Metabolism and Pharmacokinetics (DMPK) will be further discussed, as well as protein–ligand docking. Full article
Show Figures

Graphical abstract

14 pages, 583 KB  
Article
Circulating Autoantibodies Against Vasoactive Biomarkers Related to Orthostatic Intolerance in Long COVID Patients Compared to No-Long-COVID Populations: A Case-Control Study
by Emilie Han, Katrin Müller-Zlabinger, Ena Hasimbegovic, Laura Poschenreithner, Nina Kastner, Babette Maleiner, Kevin Hamzaraj, Andreas Spannbauer, Martin Riesenhuber, Anja Vavrikova, Antonia Domanig, Christian Nitsche, Dominika Lukovic, Thomas A. Zelniker and Mariann Gyöngyösi
Biomolecules 2025, 15(2), 300; https://doi.org/10.3390/biom15020300 - 18 Feb 2025
Cited by 2 | Viewed by 2249
Abstract
Endothelial dysfunction mediated by elevated levels of autoantibodies against vasoactive peptides occurring after COVID-19 infection is proposed as a possible pathomechanism for orthostatic intolerance in long COVID patients. This case-control study comprised 100 long COVID patients from our prospective POSTCOV registry and three [...] Read more.
Endothelial dysfunction mediated by elevated levels of autoantibodies against vasoactive peptides occurring after COVID-19 infection is proposed as a possible pathomechanism for orthostatic intolerance in long COVID patients. This case-control study comprised 100 long COVID patients from our prospective POSTCOV registry and three control groups, each consisting of 20 individuals (Asymptomatic post-COVID group; Healthy group = pan-negative for antispike protein of SARS-CoV-2; Vaccinated healthy group = no history of COVID-19 and vaccinated). Autoantibodies towards muscarinic acetylcholine receptor M3, endothelin type A receptor (ETAR), beta-2 adrenergic receptor (Beta-2 AR), angiotensin II receptor 1 and angiotensin 1-7 (Ang1-7) concentrations were measured by enzyme-linked immunosorbent assay in long COVID patients and controls. Orthostatic intolerance was defined as inappropriate sinus tachycardia, postural tachycardia, orthostatic hypotonia and other dysautonomia symptoms, such as dizziness or blurred vision (n = 38 long COVID patients). Autoantibody concentrations were compared with routine laboratory parameters and quality of life questionnaires (EQ-5D). The concentration of ETAR autoantibodies were significantly higher in long COVID, Asymptomatic and Vaccinated groups compared to the antispike protein pan-negative Healthy group. A trend towards higher plasma levels of Beta-2 AR and Ang1-7 was measured in long COVID patients, not related to presence of orthostatic intolerance. ETAR autoantibody concentration showed significant positive correlation with the EQ-5D item “Problems in performing usual activities”. Full article
(This article belongs to the Special Issue Biomolecule Contributors to Long COVID Syndrome)
Show Figures

Graphical abstract

18 pages, 4101 KB  
Article
Maternal Low-Protein Diet During Nursing Leads to Glucose–Insulin Dyshomeostasis and Pancreatic-Islet Dysfunction by Disrupting Glucocorticoid Responsiveness in Male Rats
by Paulo Cezar de Freitas Mathias, Aline Milena Dantas Rodrigues, Patrícia Cristina Lisboa, Rosiane Aparecida Miranda, Ananda Malta, Tatiane Aparecida Ribeiro, Luiz Felipe Barella, Ginislene Dias, Thalyne Aparecida Leite Lima, Rodrigo Mello Gomes, Egberto Gaspar de Moura and Júlio Cezar de Oliveira
Biology 2024, 13(12), 1036; https://doi.org/10.3390/biology13121036 - 11 Dec 2024
Cited by 1 | Viewed by 1343
Abstract
Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose–insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. [...] Read more.
Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose–insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.5% protein, NP group). At 90 days of age, male rat offspring were challenged with food deprivation (72 h of fasting), intracerebroventricular (icv) injection of dexamethasone (2 µL, 2.115 mmol/L) or chronic intraperitoneal injection of dexamethasone (1 mg/kg body weight/5 days). Body weight, food intake, intravenous glucose tolerance test (ivGTT) results, insulin secretion and biochemical parameters were assessed. LP rats did not display significant metabolic changes after long-term starvation (p > 0.05) or under the central effect of dexamethasone (p = 0.999). Chronic dexamethasone induced rapid hyperglycemia (~1.2-fold, p < 0.001) and hyperinsulinemia (NP: 65%; LP: 216%; p < 0.001), decreased insulin sensitivity (NP: ~2-fold; LP: ~4-fold; p < 0.001), reduced insulinemia (20%) and increased glycemia (35%) only in NP rats under ivGTT conditions (p < 0.001). Glucose and acetylcholine insulinotropic effects, as well as the muscarinic receptor antagonist response, were reduced by chronic dexamethasone only in pancreatic islets from NP rats (p < 0.05). The direct effect of dexamethasone on pancreatic islets reduced insulin secretion (NP: 60.2%, p < 0.001; LP: 33.8%, p < 0.001). Peripheral glucose–insulin dyshomeostasis and functional failure of pancreatic islets in LP rats, as evidenced by an impaired acute and chronic response to metabolic stress, may be due to excessive corticosterone action as a long-term consequence. Full article
(This article belongs to the Special Issue β-Cells at the Center of Type 1 and Type 2 Diabetes)
Show Figures

Graphical abstract

20 pages, 3422 KB  
Article
Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries
by Joohee Park, Christina Sahyoun, Jacinthe Frangieh, Léa Réthoré, Coralyne Proux, Linda Grimaud, Emilie Vessières, Jennifer Bourreau, César Mattei, Daniel Henrion, Céline Marionneau, Ziad Fajloun, Claire Legendre and Christian Legros
Toxins 2024, 16(12), 533; https://doi.org/10.3390/toxins16120533 - 10 Dec 2024
Viewed by 1967
Abstract
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na+ (NaV) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that NaV channels, expressed in arteries, contribute to vascular tone in mouse [...] Read more.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na+ (NaV) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that NaV channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery. Using wire myography, we found that VTD induced vasorelaxation in mouse CAs. This VTD-induced relaxation was insensitive to prazosin, an α1-adrenergic receptor antagonist, but abolished by atropine, a muscarinic receptor antagonist. Indeed, VTD–vasorelaxant effect was totally inhibited by the NaV channel blocker tetrodotoxin (0.3 µM), the NO synthase inhibitor L-NNA (20 µM), and low extracellular Na+ concentration (14.9 mM) and was partially blocked by the NCX1 antagonist SEA0400 (45.4% at 1 µM). Thus, we assumed that the VTD-induced vasorelaxation in CAs was due to acetylcholine release by parasympathetic neurons, which induced NO synthase activation mediated by the NCX1-Ca2+ entry mode in endothelial cells (ECs). We demonstrated NCX1 expression in ECs by RT-qPCR and immunohisto- and western immunolabelling. VTD did not induce an increase in intracellular Ca2+ ([Ca2+]i), while SEA0400 partially blocked acetylcholine-triggered [Ca2+]i elevations in Mile Sven 1 ECs. Altogether, these results illustrate that VTD activates NaV channels in parasympathetic neurons and then vasorelaxation in resistance arteries, which could explain arterial hypotension after VTD intoxication. Full article
(This article belongs to the Special Issue Toxins: From the Wild to the Lab)
Show Figures

Graphical abstract

17 pages, 7442 KB  
Article
Comprehensive Gene Expression Analysis Using Human Induced Pluripotent Stem Cells Derived from Patients with Sleep Bruxism: A Preliminary In Vitro Study
by Taro Sato, Akihiro Yamaguchi, Mayu Onishi, Yuka Abe, Takahiro Shiga, Kei-ichi Ishikawa, Kazuyoshi Baba and Wado Akamatsu
Int. J. Mol. Sci. 2024, 25(23), 13141; https://doi.org/10.3390/ijms252313141 - 6 Dec 2024
Cited by 1 | Viewed by 2175
Abstract
Sleep bruxism (SB) involves involuntary jaw movements during sleep and is potentially caused by motor neuronal hyperexcitability and GABAergic system dysfunction. However, the molecular basis remains unclear. In this study, we aimed to investigate changes in the expression of several genes associated with [...] Read more.
Sleep bruxism (SB) involves involuntary jaw movements during sleep and is potentially caused by motor neuronal hyperexcitability and GABAergic system dysfunction. However, the molecular basis remains unclear. In this study, we aimed to investigate changes in the expression of several genes associated with the pathophysiology of SB. Bulk RNA sequencing (bulk RNA-seq) and single-nucleus RNA sequencing (snRNA-seq) of neurons derived from patient and control human induced pluripotent stem cells (hiPSCs) were performed to comprehensively assess gene expression and cell type-specific alterations, respectively. Bulk RNA-seq revealed significant upregulation of calcium signaling-related genes in SB neurons, including those encoding G protein-coupled receptors and receptor-operated calcium channels. snRNA-seq confirmed the increased expression of GRIN2B (an N-methyl-D-aspartate receptor subunit) and CHRM3 (an M3 muscarinic acetylcholine receptor), particularly in glutamatergic and GABAergic neurons. These alterations were linked to hyperexcitability, with GRIN2B contributing to glutamatergic signaling and CHRM3 contributing to cholinergic signaling. These findings suggest that disrupted calcium signaling and overexpression of GRIN2B and CHRM3 drive neuronal hyperexcitability, providing insight into the pathophysiology of SB. Targeting these pathways may inform therapeutic strategies for SB treatment. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 15837 KB  
Article
Thyroid Hormone Neuroprotection Against Perfluorooctane Sulfonic Acid Cholinergic and Glutamatergic Disruption and Neurodegeneration Induction
by Paula Moyano, Gabriela Guzmán, Andrea Flores, Jimena García, Lucia Guerra-Menéndez, Javier Sanjuan, José Carlos Plaza, Luisa Abascal, Olga Mateo and Javier Del Pino
Biomedicines 2024, 12(11), 2441; https://doi.org/10.3390/biomedicines12112441 - 24 Oct 2024
Viewed by 17595
Abstract
Background: Perfluorooctane sulfonic acid (PFOS), a widely used industrial chemical, was reported to induce memory and learning process dysfunction. Some studies tried to reveal the mechanisms that mediate these effects, but how they are produced is still unknown. Basal forebrain cholinergic neurons [...] Read more.
Background: Perfluorooctane sulfonic acid (PFOS), a widely used industrial chemical, was reported to induce memory and learning process dysfunction. Some studies tried to reveal the mechanisms that mediate these effects, but how they are produced is still unknown. Basal forebrain cholinergic neurons (BFCN) maintain cognitive function and their selective neurodegeneration induces cognitive decline, as observed in Alzheimer’s disease. PFOS was reported to disrupt cholinergic and glutamatergic transmissions and thyroid hormone action, which regulate cognitive processes and maintain BFCN viability. Objective/Methods: To evaluate PFOS neurodegenerative effects on BFCN and the mechanisms that mediate them, SN56 cells (a neuroblastoma cholinergic cell line from the basal forebrain) were treated with PFOS (0.1 µM to 40 µM) with or without thyroxine (T3; 15 nM), MK-801 (20 µM) or acetylcholine (ACh; 10 µM). Results: In the present study, we found that PFOS treatment (1 or 14 days) decreased thyroid receptor α (TRα) activity by decreasing its protein levels and increased T3 metabolism through increased deiodinase 3 (D3) levels. Further, we observed that PFOS treatment disrupted cholinergic transmission by decreasing ACh content through decreased choline acetyltransferase (ChAT) activity and protein levels and through decreasing muscarinic receptor 1 (M1R) binding and protein levels. PFOS also disrupted glutamatergic transmission by decreasing glutamate content through increased glutaminase activity and protein levels and through decreasing N-methyl-D-aspartate receptor subunit 1 (NMDAR1); effects mediated through M1R disruption. All these effects were mediated through decreased T3 activity and T3 supplementation partially restored to the normal state. Conclusions: These findings may assist in understanding how PFOS induces neurodegeneration, and the mechanisms involved, especially in BFCN, to explain the process that could lead to cognitive dysfunction and provide new therapeutic tools to treat and prevent its neurotoxic effects. Full article
(This article belongs to the Special Issue Cholinergic System Neurodegeneration: Novel Pharmacotherapy)
Show Figures

Graphical abstract

12 pages, 1086 KB  
Article
Effects of Different Photoperiods on Growth Performance, Glucose Metabolism, Acetylcholine, and Its Relative Acetylcholine Receptor Modulation in Broiler Chickens
by Miao Yu, Mengjie Xu, Guangju Wang, Jinghai Feng and Minhong Zhang
Animals 2024, 14(20), 3003; https://doi.org/10.3390/ani14203003 - 17 Oct 2024
Cited by 2 | Viewed by 1586
Abstract
Photoperiods are crucial environmental factors in the growth and health of modern intensive broiler chicken production. To date, the effects of different photoperiods on glucose metabolism, acetylcholine (ACh), and its relative acetylcholine receptor modulation in broilers remain elusive. Herein, we aimed to identify [...] Read more.
Photoperiods are crucial environmental factors in the growth and health of modern intensive broiler chicken production. To date, the effects of different photoperiods on glucose metabolism, acetylcholine (ACh), and its relative acetylcholine receptor modulation in broilers remain elusive. Herein, we aimed to identify the effects of different photoperiods on regulating glucose metabolism, ACh, nicotinic acetylcholine receptor alpha 4 (α4 nAChR) mRNA, and M3 muscarinic acetylcholine receptor (M3 mAChR) modulation in broilers. A total of 216 healthy 5-day-old Arbor Acres (AA) male broilers was randomly assigned to 12L:12D, 18L:6D, and 24L:0D photoperiods for 4 weeks. The results show that, compared with the 12L:12D photoperiod, the 18L:6D and 24L:0D photoperiods significantly increase the average daily gain (ADG) and average daily feed intake (ADFI) of broilers (p < 0.05). However, the feed efficiency (FE) of broilers significantly decreased in the 18L:6D and 24L:0D photoperiods (p < 0.05). Moreover, compared with the 12L:12D photoperiod, the ACh concentrations and α4 nAChR mRNA expression levels in the hypothalamus and medulla oblongata of broilers significantly increased (p < 0.05); M3 mAChR mRNA expression levels in cecum significantly reduced in the 18L:6D photoperiod and the 24L:0D photoperiod (p < 0.05). Compared with the 12L:12D photoperiod, the serum glucose (GLU), serum insulin (INS), serum triglyceride (TG) levels, and homeostasis model assessment of insulin resistance (HOMA-IR) of broilers significantly enhanced in the 18L:6D and 24L:0D photoperiods (p < 0.05). Our results indicate that extending the photoperiod can promote the growth rate, ACh expression, and α4 nAChR mRNA expression of broilers while reducing the feed efficiency, inhibiting M3 mAChR mRNA expression, and inducing glucose metabolism disorders in broilers. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop