Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = nonradiative multi-phonon model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5256 KB  
Article
Over- and Undercoordinated Atoms as a Source of Electron and Hole Traps in Amorphous Silicon Nitride (a-Si3N4)
by Christoph Wilhelmer, Dominic Waldhoer, Lukas Cvitkovich, Diego Milardovich, Michael Waltl and Tibor Grasser
Nanomaterials 2023, 13(16), 2286; https://doi.org/10.3390/nano13162286 - 9 Aug 2023
Cited by 8 | Viewed by 3067
Abstract
Silicon nitride films are widely used as the charge storage layer of charge trap flash (CTF) devices due to their high charge trap densities. The nature of the charge trapping sites in these materials responsible for the memory effect in CTF devices is [...] Read more.
Silicon nitride films are widely used as the charge storage layer of charge trap flash (CTF) devices due to their high charge trap densities. The nature of the charge trapping sites in these materials responsible for the memory effect in CTF devices is still unclear. Most prominently, the Si dangling bond or K-center has been identified as an amphoteric trap center. Nevertheless, experiments have shown that these dangling bonds only make up a small portion of the total density of electrical active defects, motivating the search for other charge trapping sites. Here, we use a machine-learned force field to create model structures of amorphous Si3N4 by simulating a melt-and-quench procedure with a molecular dynamics algorithm. Subsequently, we employ density functional theory in conjunction with a hybrid functional to investigate the structural properties and electronic states of our model structures. We show that electrons and holes can localize near over- and under-coordinated atoms, thereby introducing defect states in the band gap after structural relaxation. We analyze these trapping sites within a nonradiative multi-phonon model by calculating relaxation energies and thermodynamic charge transition levels. The resulting defect parameters are used to model the potential energy curves of the defect systems in different charge states and to extract the classical energy barrier for charge transfer. The high energy barriers for charge emission compared to the vanishing barriers for charge capture at the defect sites show that intrinsic electron traps can contribute to the memory effect in charge trap flash devices. Full article
(This article belongs to the Special Issue Nanoscale Science and Technology on Semiconductor Device Physics)
Show Figures

Figure 1

21 pages, 2309 KB  
Review
Reliability of Miniaturized Transistors from the Perspective of Single-Defects
by Michael Waltl
Micromachines 2020, 11(8), 736; https://doi.org/10.3390/mi11080736 - 29 Jul 2020
Cited by 16 | Viewed by 4069
Abstract
To analyze the reliability of semiconductor transistors, changes in the performance of the devices during operation are evaluated. A prominent effect altering the device behavior are the so called bias temperature instabilities (BTI), which emerge as a drift of the device threshold voltage [...] Read more.
To analyze the reliability of semiconductor transistors, changes in the performance of the devices during operation are evaluated. A prominent effect altering the device behavior are the so called bias temperature instabilities (BTI), which emerge as a drift of the device threshold voltage over time. With ongoing miniaturization of the transistors towards a few tens of nanometer small devices the drift of the threshold voltage is observed to proceed in discrete steps. Quite interestingly, each of these steps correspond to charge capture or charge emission event of a certain defect in the atomic structure of the device. This observation paves the way for studying device reliability issues like BTI at the single-defect level. By considering single-defects the physical mechanism of charge trapping can be investigated very detailed. An in-depth understanding of the intricate charge trapping kinetics of the defects is essential for modeling of the device behavior and also for accurate estimation of the device lifetime amongst others. In this article the recent advancements in characterization, analysis and modeling of single-defects are reviewed. Full article
(This article belongs to the Special Issue Miniaturized Transistors, Volume II)
Show Figures

Figure 1

Back to TopTop